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Abstract

This paper proposes a new method for incoher-
ent motion recognition from video sequences. We use
time-series spatio-temporal intensity gradients within a
space-time patch. Using a global space-time parch, we
found that the gradient feature allows us to distinguish
an incoherent motion from a coherent motion without
segmentation. Furthermore the algorithm can run in
real time even on an embedded device. In this paper,
we verify motion recognition performance for actions
which we consider coherent (walk/run) and incoherent
(turn/squat/inverse walk). To identify the multiple mo-
tion classes, we use linear discriminant analysis and the
KNN method. As a resuli, our method can distinguish
multiple-class motion patterns with a detection rate of
about 80%. Also the detection rate of incoherent mo-
tions is 100% with a false positive rate of less than 10
%.

1. Introduction

In recent years, the decreasing cost of CCTV cam-
cras and hard disk recorders has led to the wide-spread
use of large scale surveillance systems. However there
is a risk that in a network of thousands of local cam-
eras the image server can overflow, causing the server
to go down. To avoid such a problem, we need to de-
crease traffic between the cameras and the server by in-
stalling intelligence such as behavior-based correlation
[1], event detection [3][4][8], and abnormal action de-
tection [2][5] on the cameras and the server.

E. Shechtman, et.al. have proposed an algorithm for
detecting motion patterns using correlation between a
spatio-temporal event template and video sequences [1].
This method is based on the continuous rank-increase
measure of Gram matrix of a local space-time patch and
can detect the query pattern even in a noisy sequence.
Yu, et.al. have presented stable contact concept, which
comes from extreme points of human contour [5]. The

978-1-4244-2175-6/08/$25.00 ©2008 IEEE

Hironobu Fujiyoshi
Chubu University
hf@cs.chubu.ac.jp

stable contact is trained by Hidden Markov Model, and
specific motion patterns, such as fence-climbing and
rock-climbing can be detected by this method.

Since our development is aimed at embedded de-
vices such as IP cameras, the computational costs of the
space-time volume scanning against an input video se-
quence [ 1], or of the spatio-temporal mean shift cluster-
ing [3] are critical, e.g., the previous method [1] needs
30 minutes for searching a 60 x 30 x 30 query against
a 144 x 180 x 200 video sequence. In order to reduce
the computational costs of the Gram matrices and the
scanning. we use a large space-time patch in place of
the small space-time patch used n [1, 3]. Since the
Gram matrix can represent motion coherency or mo-
tion discontinuity [1][6] within the patch, use of the
large patch allows us to distinguish an incohcrent mo-
tion from a coherent motion without scgmentation. Fur-
thermore, we use time-series Gram matrix components
which come from spatio-temporal intensity gradients
within the large space-time patch. This is because one
space-time patch is not enough for representing multi-
motion classes. In our experiments, we verify motion
recognition performance for actions which we consider
coherent (walk/run) and incoherent (turn/squat/inverse
walk). To identify the multiple motion classes, we use
lincar discriminant analysis and the K Nearest Neighbor
(KNN) method.

The rest of this paper is organized as follows: Sec-
tion 2 describes the incoherent detection algorithm;
Section 3 shows the experimental results; and Scction
4 summarizes and describes considerations and future
work.

2. Algorithm Overview

Our algorithm is based on features from spatio-
temporal gradients in a global space-time patch. To de-
tect the incoherent motion, we utilize lincar discrimi-
nant analysis and the KNN method to a feature vector
given by time-series Gram matrices. The algorithm is
described in detail below.



2.1 Time-series Gram matrix feature vector

A feature vector for representing a human motion is
derived from a Gram matrix. The matrix is obtained
from an optical flow equation as shown below.

VPi(u,v,w)" =0 (1

Here (u, v, w) is the homogencous expression of the 2-
D optical flow vector, and VP;is the space-time gra-
dient of the intensity at cach pixel within a space-time
patch (hereafter, ST-patch) (i = 0,1, 2, ...n), whichis a
small video clip, e.g., a 7 x 7 x 3 pixel space-time vol-
ume. The ST-patch is used to compute the behavioral
similarity between two video segments (e.g., query and
reference).
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where n is the number of pixels in the patch. We obtain
Gram matrix M by multiplying both sides of Eq.(2) by
the transposition of G, as below.
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This matrix is in fact a co-variance matrix of the space-
time gradients within the ST-patch. E. Shechtman, et.al.
use a small ST-patch and assume the patch includes a
locally uniform motion [1]. However, this assumption
will be violated at motion discontinuities in a video se-
quence. They use a set of the patches as a query for
detecting a behavior pattern from video clips.

On the other hand, we use a large ST-patch, the
size of which is the image size at most, and determine
whether or not the large patch includes an incoherent
motion. As described in [1], when the ST-patch in-
cludes multiple independent motions, the rank of M be-
comes 3.

Here, we assume 1-D motion for simplicity. When
multiple motions occur in a scene as shown in Fig.1
(a), the corresponding x-t image, which consists of scan
lines, contains two trajectories. As a result, there ex-
ist an intersection, i.c., a space-time corner point as de-
noted by a circle in Fig.1 (b). We can detect such the

-

(a) Image sequence

(b) Space-time corner point
Figure 1. Incoherency of motion

point by usc of Harris detector [7]. Harris detector eval-
uates a co-variance matrix as below.
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If there exists the space-time corner point, then
rank(M®) becomes 2. Therefore, rank(M®) = 2 im-
plies that there could be multiple motions, i.c., inco-
herent motion in a summation area. In the case of 2-D
motion, the matrix can be expanded into Eq.(3), and the
multiple motions make the rank of M 3. We exploit
this property for detecting incoherent motion, such as
inverse running, falling, or putting an object in a crowd.
However, we use the Gram matrix components explic-
itly, while the rank or continuous rank-increase measure
of M is used for action detection [1]. This is because we
consider the rank of a large ST-patch degenerates the
motion propertics.

Though the Gram matrix in the ST-patch can de-
scribe the motion coherency at cach frame, we can-
not know a motion type simply through a sequence of
frames. In our rescarch, we use a time-series chain of
the Gram matrix components as a feature vector = in
order to recognize motion patterns, as below:
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where L is the number of frames to be used. We don't
use duplicate components of M. Therefore the dimen-
sion of z is 6 x L. The length of L depends on the cycle
ol the motion Lo be detected. Empirically, it is said that
the human walk cycle is about 1 sccond, i.c., 30 frames.
Though some might say we need to use L = 30, we set
L = 5 because we assume that instantancous motion
is a characteristic for detecting an incoherent motion.
We need to set the optimum length of L, or eventually,
change it dynamically.



2.2 Motion pattern classification

Since m changes frame by frame consecutively, the
feature vector @ has redundancy. In this rescarch work,
we project & onto a low-dimensional subspace by linear
discriminant analysis (LDA) of Eq.(7).

WB, (7

where B is an inter-class covariance matrix and W is an
intra-class covariance matrix denoted as:
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where J is the number of motion classes, n is the num-
ber of the total samples, ny. is the number of samples
in k-th class, 2y ; is i-th input vector of k-th class, Z is
a mean vector of all of z; ;, and 7. is a mean vector
of k-th class. We decide the dimensions of discriminant
subspace M using a threshold from Eq.(10):

N M
THxY > A (10)
=] =1

where A; is the i-th eigen value of Eq.(7), and N is the
dimension of x:

A=A > 2 Ay aiy

After the projection, the feature vectors make clus-
ters in the discriminant subspace. We use the KNN
method for classifying motion patterns in the subspace.
In the training phase, the training data set after the pro-
jection is quantized by the LBG algorithm [9] to select
representative vectors g for the each class. Input vectors
are classified into motion classes defined using the rep-
resentative vectors. Then a consecutive frame judgment
is applied to the classification result in order to decrease
false positives. Fig. 2 presents various motion patterns.

3. Experimental Results

3.1 Conditions and parameter setting

We use frame subtraction edges to obtain the Gram
matrix of Eq.(3), while E. Shechtman, ct.al. [1] usc all
the pixels within an ST-patch. This is because the inco-
herent motion of a small object could be buried under
the global noise which occurs in an image. We use a
constant value for the frame subtraction, e.g., 15, in this

(d) turn

(e) cross

Figure 2. Motion patterns

Table 1. Confusion matrix

True class — | walk  run  squat turn  cross
walk 809 128 o.l 4.1 0
run 83 801 35 34 69
squat 10.0 1.5 834 205 05
turn 0.8 19 70 611 32
Cross 0 37 0 10.8 915

paper. Our method works well for now under the condi-
tions that a pedestrian in an image is not occluded and
the size of the pedestrian is over 60 x 30 pixels against
an image of 320 x 240 pixels. For an occluded or small
pedestrian, we need to introduce a-part based approach
[3]. To validate the feature vector @ of Eq.(5), in this
scction, we prepared the appropriate sample sequences
shown in Fig.1.

As described in Section 2.1, we set the size of the ST-
patch to an image size, e.g., 320 x 240. The dimension
of the discriminant subspace M of Eq.(10) is 15 and the
number of frames L for the input vector is 6.

3.2 Motion pattern classification

First, in order to verify the separation performance of
the intra-class of training sequences, we define coher-
ent and incoherent motion classes as follows. Coherent
motions are “walk™ and “run”. Incoherent motions are
“squat”, “turn”, and “cross”. Key frames of these mo-
tions are shown in Fig. 2. Each of the motion classes
has twenty sequences and each sequence includes 60 to
100 frames. Using this dataset, we verify the separation
performance by the KNN method in a lincar discrimi-
nant space. The verification result is shown in Table 1 as
a confusion matrix. The table denotes the percentages
of detected frames for cach motion class. As shown in
the table, the separation performance is about 80% for
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Figure 3. Discriminant space

the cach class. The separation performance for “turn”
is worse than for the others. This is because “turn”
partially includes “walk™. On the other hand, “cross™
shows the best performance. This is because “cross™ in-
cludes two independent motions in the ST-patch, max-
imizing the rank of M in Eq.(3): in other words, the
motion of the ST-patch is incoherent.

The separation is not perfect because clusters of the
motion classes overlap cach other in a lincar discrim-
inant space. Fig. 3 shows an example of the clusters
(this figure shows only the upper 3 dimensions of M of
Eq.(10)). Though it is difficult to boost the classifica-
tion rate duc to the overlaps, we can reduce false pos-
itives by using the consecutiveness of a human action.
We discuss this property in the next section.

3.3 Incoherent motion detection

We verified a consecutive frame judgment to reduce
the false positives described in the previous section. In-
put sequences are different from the training dataset,
and we define a true detection as follows: When the
same classification result occurs consccutively in N,
frames within a sequence, we count it as a true detec-
tion, where N, is the number of consecutive frames.
This definition arises from the difficulty of motion seg-
mentation. In other words, no matter how we segment
motions, there will be frames which belong to more
than one motion class, due to the consecutiveness of hu-
man motions.

Fig.4 shows comparison results between CHLAC
(Cubic Higher-order Local Auto-Correlation) [2] and
our method (denoted as “ST-patch™). CHLAC is based
on higher-order correlation within a local region, e.g.,
3 x 3 x 3 pixels for example. CHLAC has several prefer-
able properties, which are shift invariance to data, addi-
tivity for data, and robustness to noise in data. Due to

the properties, CHLAC has been used for Gait recogni-
tion recently. Here, we show the results from “walk™,
“run”, “squat”, “turn”, and “cross”. Each graph shows
true positive and false positive rate for both of CHLAC
and our method. Altogether, the larger N, is, the lower
the false detection rate becomes. As shown in Fig.4(a),
(b), and (c), the performance of the both methods is al-
most same. On the other hand, the true positive rate of
our method is superior to CHLAC in case of “turn” and
“cross”. Also the detection rate of incoherent motions is
100% with a false positive rate of less than 10 %. From
these results, it can be said that our method is suitable
for detecting incoherent motions. However, it is diffi-
cult for our method to deal with geometric transforma-
tions of the sequences and different speed in the human
actions. We are going to apply a pedestrian detector and
scale normalization to deal with the problems.

Our algorithm can run with a 320 x 240 pixel im-
age within about 30 milli seconds on a SH4 200MHz
processor and Image Processing Accelerator VCHIP-II
[10]. This speed is fast enough for an embedded device,
such as an IP camera.

4. Conclusion and future work

We have presented an approach for detecting inco-
herent motion in video clips. In this paper, we have
described the method, which uses time-series Gram ma-
trix components, and have shown its performance. The
results of our experiment demonstrate that our method
can distinguish multiple-class motion patterns with a
detection rate of about 80%. Also the detection rate
of incoherent motions is 100% with a false positive
rate of less than 10 %. Though direct comparison of
the run-time is difficult, our algorithm can run with a
320 x 240 pixel image within about 30 milliseconds on
a SH4 200MHz processor and Image Processing Accel-
erator VCHIP-II, while the previous method [1] needs
30 minutes for scraching a 60 x 30 x 30 query against a
144 % 180 % 200 video sequence. In future work, we will
enhance our method by using a segmentation based ap-
proach [3], in order to deal with the occlusion problem
and detect more precise motion patterns.
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