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Abstract. This paper presents a method for classifying the direction
of movement and for segmenting objects simultaneously using features
of space-time patches. Our approach uses vector quantization to classify
the direction of movement of an object and to estimate its centroid by
referring to a codebook of the space-time patch feature, which is gener-
ated from multiple learning samples. We segmented the objects’ regions
based on the probability calculated from the mask images of the learn-
ing samples by using the estimated centroid of the object. Even though
occlusions occur when multiple objects overlap in different directions of
movement, our method detects objects individually because their direc-
tion of movement is classified. Experimental results show that object
detection is more accurate with our method than with the conventional
method, which is only based on appearance features.

1 Introduction

Recent achievements in automatic object detection and segmentation have led to
applications in robotics, visual surveillance, and ITS[1]. Motion- and part-based
approaches have previously been proposed to detect and estimate the positions of
objects moving in images. Optical-flow, which quantifies the movement of objects
as vector data, has previously been proposed[2]. However, dense, unconstrained,
and non-rigid motion estimation by using optical-flow is noisy and unreliable,
so estimating the movement of objects by optical-flow is difficult. Shechtman
et al.[3] proposed a method for detecting similar motion in video streams de-
spite differences in appearance due to clothing, background, and illumination by
using space-time patches. For short, we refer to space-time patch as ST-patch.
Niebles et al.[4] proposed a method for categorizing human action by gathering
information from space-time interest points.

The part-based approach with local features has been used to categorize
unknown objects in difficult real-world images. Agarwal et al.[5] proposed an



approach that uses an automatically acquired, sparse, part-based representation
of objects to learn a classifier that can be used to accurately detect occurrences
of a category of objects in a static image. Leibe et al.[6, 7] proposed a method for
categorizing and segmenting objects by estimating the centroids of objects with
image patches, which were extracted from a test image, and the corresponding
appearance codebook. Moreover, the method for object categorization using the
object boundary fragments and relation to centroid[8], a people detection algo-
rithm using a dense grid of Histograms of Oriented Gradients(HOG)[9], and a
face detection system using patterns of appearance obtained by Haar-like fea-
tures[10] are proposed. Thus, many recent studies have also used the part-based
approach. These approaches have an advantage in that they can detect an object,
when part of it is occluded.

However, it is difficult to segment multiple overlapping objects individually,
such as pedestrians who are walking in different directions. We developed a
method, which is based on the part-based approach, by using spatio-temporal
features to simultaneously classify the direction of movement and segment the
objects. Our approach classifies the direction of movement of an object by using
ST-patch features[3] and estimates the position of the centroid of the object
based on its direction of motion. The object is segmented by using the estimated
position of its centroid and its mask image, which are stored in the learning
samples of the ST-patch features.

2 ST-patch

Our approach classifies the direction of movement of objects by using the ST-
patch features. When we observe two movements, such as a pedestrian walking
to the right and another walking to the left, we can obtain the different features
of the ST-patch. Therefore, we can generate a codebook based on the different
motion of the ST-patch features. In this section, we describe the ST-patch fea-
tures used to classify the direction of movement of the object, and we describe
a method for generating a codebook for the ST-patch features extracted from
learning samples.

2.1 Overview of the ST-patch

The ST-patch features are extracted from a small domain of a spatio-temporal
image, i.e., the 3-dimensional data, which extend the image in the direction of
time. Fig.1 shows an overview of the ST-patch. Three color lines represent the
motion of each pixel, where [u v w]T is a space-time direction vector in the
ST-patch, and ∇Pi represents the space-time gradients.

2.2 ST-patch Features

A locally uniform motion induces parallel lines(see zoomed-in part in Fig.1)
within the ST-patch P . All the color lines within a single ST-patch are oriented



Fig. 1. Overview of the ST-patch.

in the space-time direction [u v w]T. The orientation of [u v w]T can be different
for different points. It is assumed to be uniform locally, within a small ST-patch
P in video streams. By examining the space-time gradients ∇Pi = (Pxi

, Pyi
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)
of the intensity at each pixel within the ST-patch P (i = 1, · · ·, n), we find that
these gradients all point to directions of the maximum change in the intensity
of space-time. Namely, these gradients will all be perpendicular to the direction
[u v w]T of the color lines.
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Stacking these equations from all n pixels within the small ST-patch P , we
obtain:
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where n is the number of pixels in P , and we denote an nx3 matrix by G. By
multiplying both sides of Eq.(2) by GT(the transpose of the gradient matrix G),
yields:
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GTG is a 3x3 matrix. We denote it by M:
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The matrix M contains information about the appearance and motion of the
ST-patch. This matrix can be represented as 9-dimensional vector e as follows:

e =
(∑
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x ,
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t

)
. (5)

2.3 The Codebook of the ST-patch Features

To generate a codebook of the ST-patch features for classifying the direction of
movement and for segmenting objects, we used the LBG algorithm[11]. The LBG
algorithm is a method for clustering the features and generating a codebook.
Using the LBG algorithm, the feature vector of the learning samples can be
clustered into a group of N representation vectors. The learning samples in
which pedestrians or vehicles moved to the right and to the left in the image
were used to generate the codebook of the ST-patch features. The following steps
represent the flow for generating the codebook of the ST-patch features.

Step1 ST-patch features are extracted from multiple learning samples.
Step2 The ST-patch features are labeled based on their direction of movem-

ent od = {right, left,bg}. Moreover, the position of the centroid and
the mask image of the object are stored in each learning samples of
ST-patch feature.

Step3 A codebook is created by clustering N groups with the LBG algorithm.
Step4 The probability for direction of movement p (od | I) of codebook cluster

I is calculated.

When the codebook of the ST-patch features is created by using the LBG algo-
rithm, not all labels belonging to each codebook cluster are the same. However,
in a codebook cluster, the rate of same label becomes high. Then, the probabil-
ity for direction of movement p (od | I) of codebook cluster I is calculated from
number of labels belonging to each codebook cluster. And, the positions of the
centroids of the learning samples and the mask images are used for estimating
the centroids of objects, and for segmenting objects’ regions.

3 Classifying Direction of Movement and Segmenting
Regions of Objects

We quantized the vector of the ST-patch features that we acquired from an input
image using the codebook of the ST-patch features. We estimated the position
of the centroid of the object by voting on different centroid positions based on
the classification of the direction of movement and by sampling the ST-patch
features. Then, we classified the direction of movement of the object. The flow
of the proposed method is illustrated in Fig.2.



Fig. 2. Flow of the proposed method.

3.1 Vector Quantization of the ST-patch Features

The vector quantization of the ST-patch features was performed using the code-
book generated in advance. The flow of vector quantization is shown below.

Step1 The image patch is obtained by downsampling the image, and the ST-
patch features are extracted from this patch(Fig.3(a)).

Step2 Vector quantization is performed on the ST-patch features(Fig.3(b)).
The Euclidean distance, between the vectors of the input ST-patch
features e and the features of the codebook cluster c, is calculated.
And the codebook cluster I which is the minimum Euclidean distance
is selected from Eq.(6).

I = argmin
c

‖ e − c ‖2 . (6)

Step3 The size of a patch is changed to handle the change in scale.
Step4 Steps1-3 are repeated until the raster scan.

Thus, we can perform response to an object scale by changing the size of a patch.

3.2 Estimating Position of Centroid of Object

We estimated the position of the centroid of the object by voting the classification
of the direction of movement based on the vector quantization of the input ST-
patch features and from the learning samples.

Voting on Centroid Position To estimate the position of the centroid of the
object, we vote on centroid positions[6, 7]. Let e be our evidence, an extracted
ST-patch observed at location l. By matching it to our codebook, we obtain valid
interpretation I. The interpretation is weighted with probability p (I | e, l). Here,
we use the relative matching score of a codebook cluster I and ST-patch feature e
for p (od, x | I, l). If a codebook cluster matches, it can cast its votes for different
object positions. That is, for learning samples belonging to a codebook cluster
I, we can obtain votes for several directions of movement of objects od and
positions x, which we weight with p (od, x | I, l). Formally, this can be expressed
by the following marginalization.

p (od, x | e, l) = p (od, x | e, I, l) p (I | e, l) . (7)



Fig. 3. Estimating position of centroid of object.

Since we have replaced the unknown ST-patch by a known interpretation, the
first term can be treated as independent from ST-patch e. In addition, we match
patches to the codebook independent of their location l. The equation thus
reduces to:

p (od, x | e, l) = p (od, x | I, l) p (I | e) . (8)
= p (x | od, I, l) p (od | I, l) p (I | e) . (9)

The first term is the probabilistic vote for an object position given its identity
and the patch interpretation. The second term specifies a confidence that the
codebook cluster is really matched to the direction of movement. The third term
reflects the quality of the match between the ST-patch and the codebook cluster.
Thus, the total number of votes for object od at location x in window W (x) is:

score (od, x) =
∑

k

∑
xj∈W (x)

p (od, xj | ek, lk) . (10)

Mean-Shift Clustering We can search for the positions of points with the most
votes(i.e., the local maxima) by using 3-dimensional(x-y-scale space) Mean-Shift
clustering(Fig.3(c))[12]. Fig.3 illustrates this procedure. Local maxima that con-
verge by Mean-Shift clustering integrate into one cluster by Nearest Neighbor
clustering algorithm. When the total weight integrated around the local maxi-
mum is below a certain threshold, we reject it as an outlier(Fig.3(d)). We can
therefore remove the outliers of the voted points.We can then estimate the po-
sition of the centroid of the object.

3.3 Segmenting Regions of Objects

We construct regions of objects based on the number of voting points around
the position of the centroids. Fig.4 shows the flow of segmenting the regions of
objects.



Fig. 4. Segmenting regions of object.

Backprojection of the ST-patch Features We perform a backprojection of
the ST-patch features, which is the number of voted points around the position
of centroid of the object, and remove the outliers of the voted points. We can
then select information about the reliable ST-patch features. The effect of the
backprojected ST-patch e can be expressed as:

p (e, l | od, x) =
p (od, x | e, l) p (e, l)

p (od, x)
=

p (od, x | I, l) p (I | e) p (e, l)
p (od, x)

, (11)

where the patch votes p (od, x | e, l) are obtained from the codebook, as described
in the Eq.(8).

Estimating Region of Object To segment the object, we now want to know
whether a certain image pixel p is part of the object or the background, given the
backprojected ST-patch e. More precisely, we are interested in the probability
p (p = obj. | od, x). Given the effect of p (e, l | od, x), we can obtain information
about a specific pixel as follows:

p (p = obj. | od, x) =
∑
num

p (p = obj. | od, x, e, l) p (e, l | od, x), (12)

where num is number of the backprojected ST-patch, and p (p = obj. | od, x, e, l)
denoting patch-specific segmentation information, which is weighted by the effect
of p (e, l | od, x). Again, we can resolve patches by resorting to the learned patch
interpretation I stored in the codebook.

p (p = obj. | od, x) =
∑
num

p (p = obj. | od, x, e, I, l) p (e, I, l | od, x).

=
∑
num

p (p = obj. | od, x, I, l)
p (od, x | I, l) p (I | e) p (e, l)

p (od, x)
. (13)

Then, segmentation information p (p = obj. | od, x, I, l) can be acquired from the
mask image of the object stored in the lerning samples. This means that for every



pixel, we calculate a weighted average over all segmentations stemming from
ST-patches. Therefore, we can calculate the probability of objects for each pixel.
Here, the probability of objects below a certain threshold represents a pixel in
the background, and the probability of objects over that threshold represents a
pixel in the object. We can therefore segment the objects’ regions into rectangles
by using the probability of objects for each pixel.

4 Experiment

This section describes the experimental results of the proposed method and the
conventional method[6] which uses appearance information only.

4.1 Experimental Overview

We extracted 10,198 ST-patch features from sequences of pedestrians walking
toward the right, 10,220 ST-patch features from sequences of pedestrians walk-
ing toward the left, and 36,982 ST-patch features from the background. We also
extracted 9,885 ST-patch features from sequences of vehicles moving toward
the right, 9,968 ST-patch features from sequences of vehicles moving toward
the left, and 20,047 ST-patch features from the background. Using pedestrian
and vehicle codebooks which were generated from the ST-patch features we ex-
tracted, we classified thedirection of movement and segmented the regions of the
objects. In this experiment, the size of the ST-patch is 15x15[pixels]x3[frames],
and the codebook size is 512 clusters. The experiment sequences were taken with
a fixed camera at the location different from that where learning samples were
collected. The sequences include rightward and leftward movement objects such
a pedestrian and vehicle. The total number of frames for experiment sequences
are 23,097.

4.2 Experimental Results

Fig.5 shows the detection and segmentation results by the conventional method
and by our method. As shown in Fig.5(a)-(d), we can see that the proposed
method can be used to classify the direction of movement and to segment the
regions of a pedestrian and a moving vehicle. In particular, separate objects can
be segmented exactly even when multiple objects walking in different directions
overlap, because our method segments objects’ regions based on the classification
of the direction of movement. As shown in Fig.5(b), our method responds to the
scale of an object. As shown in Fig.5(c), the pedestrian who has occlusion in the
body can be segmented in consideration of the objects’ regions, because they
are estimated from the mask image of the learning samples. Moreover, as shown
in Fig.5(a), the proposed method detects multiple objects individually, without
being affected by shadow.

Table1 shows the experimental results of object detection with our method
and the conventional method. Only the frame in which the object exists in an



Fig. 5. Classifying direction of movement and segmenting the objects’ regions.

image is set as a detection target. As shown in Table1, we can see that our
method of detection is better than the conventional method. Thus, because our
method is based on classifying the direction of movement, the object detection
rate was also better than that with the conventional method.

From Fig.6(a), it is difficult to estimate the position of the centroid when
multiple objects move in the same direction, such as a group of pedestrians.
This is why the segmentation goes wrong. To solve this problem, we will add
more information about the appearance to the 9-dimensional vector e in future
work. Moreover, for moving objects(for example, a bus and a truck), which do
not exist in learning samples, as shown in Fig.6(b), detection may also go wrong
because such objects cannot be classified.

5 Conclusion

We developed a method for classifying the direction of movement and for seg-
menting objects simultaneously by using ST-patch features. Our method seg-
ments objects based on occlusion. Moreover, our method detects objects individ-



Table 1. Detection result.

conventional method[6] proposed method

pedestrian sequence 64.3% 74.7%

vehicle sequence 70.7% 93.3%

average 67.3% 84.0%

Fig. 6. Example of failure.

ually when multiple objects overlap in different directions of movement because
the direction of movement is classified.

Our future work will involve overlapped objects moving in the same direction,
and we will create a method for identifying objects by adding more information
about the object’s appearance to the ST-patch features.
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