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Object Type Classification Using Structure-based
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SUMMARY Current feature-based object type methods
classify on texture and shape by using information derived from
image patches. Generally, input features, such as the aspect ra-
tio, are derived from the rough characteristics of an entire object.
However, we derive input features from a parts-based representa-
tion of an object. We have developed a method that distinguishes
object types using structure-based features described by a Gaus-
sian mixture model. This approach uses Gaussian fitting of fore-
ground pixels detected by background subtraction to segment an
image patch into several sub-regions, each of which is related to
a physical part of an object. The object is modeled as a graph,
where the nodes contain SIFT (scale invariant feature transform)
information obtained from the corresponding segmented regions
and the arcs contain information on the distance between two
connected regions. By calculating the distance between the ref-
erence and input graphs, we can use a k-NN-based classifier to
classify an object as: single human, human group, bike, or ve-
hicle. We found that higher classification performance can be
obtained using both the conventional and structure-based fea-
tures together compared with using either alone.
key words: SIFT, feature representation, object classification.

1. Introduction

Feature-based methods are commonly used for object
recognition and type classification in visual surveillance
[1]. For robustness, we need features that are invariant
to changes caused by the environment, scaling, view-
point, and lighting.

Previous work in this area has focused on produc-
ing descriptors and a classification method that is in-
variant to the scaling and viewpoint of detected objects.
Lipton et al. [2] proposed a binary classification method
that uses two feature vectors, dispersedness and area,
to distinguish an image blob detected by adaptive back-
ground subtraction. The automated video surveillance
system, called VSAM [1][3], uses a classification method
based on an artificial neural network that enables clas-
sification robust to size changes (by using information
about the zoom parameter of a camera). Since both of
these features are only shape-based, the performance is
not high. Texture-based features, such as histograms
of oriented gradients for human detection, have been
proposed [4]. This method computes high-dimensional
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features based on arcs and uses SVM (binary classifi-
cation) to detect human regions. Viola and Jones have
proposed a pedestrian detection system that integrates
intensity and motion information [5]. In general, input
features, which are used in conventional approaches for
object type classification, are derived from the rough
characteristics of an entire object. However, we derive
input features from the parts-based representation of
an object.

In this paper, we propose a method that distin-
guishes object types using structure-based features de-
scribed by a Gaussian mixture model. Our method
uses Gaussian fitting of an object image to segment it
into several sub-regions, each of which is related to a
physical part of the object. We model the object as a
graph. The nodes contain the vector quantization his-
tograms of SIFT (scale invariant feature transform) ob-
tained from the corresponding segmented regions, and
the arcs contain information on distances between two
connected regions. By calculating the distance between
the reference and input graphs, we can use a k-NN-
based classifier to classify an object into one of the fol-
lowing categories: single human, human group, bike,
or vehicle. We found that higher classification perfor-
mance can be obtained using both the conventional and
structure-based features together compared with using
either set of features alone. We also found that the pro-
posed method is robust to rotation changes compared
with the bag-of-keypoints approach.

2. Structure-based Feature Representation

Our approach uses Gaussian fitting of the foreground
pixels to segment an image patch into several sub-
regions, each of which is related to a physical part of
the object. We model the object as a graph. The nodes
contain the vector quantization histograms of SIFT ob-
tained from the corresponding segmented regions, and
the arcs contain information about distances between
two connected regions.

2.1 GMM-based Segmentation

Seki et al. [6][7] have proposed a method for model-
ing a class of objects. They use the Gaussian mixture
model (GMM) to describe topological structures of an
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object’s internal patterns. This approach also elim-
inates influences caused by individual pattern differ-
ences. We thus applied the GMM in order to segment a
detected object into several regions. Let x = {u, v, I}T

denote coordinate (u, v) and intensity I in the image,
let Φ = {αj , φj = (μj , and Σj)}c

j=1 denote the GMM
parameter and c denote the number of Gaussian com-
ponents. To fit the GMM, we use the deterministic
annealing EM (DAEM) algorithm [8] to estimate the
parameters ΦML with the following equation:

ΦML = arg max
Φ

c∑
j=1

(αj · pj(x|μj ,Σj))β

p(x|μj ,Σj) =
1√

(2π)3|Σj |
·

exp
{
−1

2
(x − μj)

TΣ−1
j (x − μj)

}
, (1)

where μj is the average, Σj is the covariance matrix,
φj = {μj ,Σj} is each Gaussian parameter, β is the an-
nealing parameter, and αj is the mixture ratio (αj > 0,∑c

j=1 αj = 1). Figure 1 shows an example of GMM
fitting using a three-dimensional Gaussian model ex-
pressed as ΦML projected onto the (u, v) plane. We
see that each Gaussian distribution corresponds to the
internal pattern of an object.

Fig. 1 Example of GMM fitting for detected pixels

2.1.1 Region Segmentation by Mixture of Gaussian
Distribution

We developed a region segmentation method using
Gaussian distribution parameter φ. A detected pixel
x can be distinguished from the sub-region Cj using
the following equation:

Cj = arg max
j

pj(x|φj). (2)

Figure 2 shows examples of GMM-based segmentation.
We found that each Gaussian distribution corresponds
to the physical part of an object. Figure 3 shows a
comparisones between the proposed and conventional
methods ( mean-shift clustering [9]) for region segmen-
tation. We found that dividing the side and back of the
vehicle is difficult using mean-shift clustering. However,
the proposed method can divide the sub-regions into a
useful because thise method clusters the region in the
{u, v, I}T space.

Fig. 2 Examples of GMM-based segmentation

Fig. 3 Example of segmentation results. (a) Segmentation re-
sults with proposed method, and (b) segmentation results with
mean-shift clustering. Proposed method represents structural in-
formation better than mean-shift clustering.

2.2 Feature Extraction

At each pixel, SIFT features are extracted. Vector
quantization is performed to make a histogram for each
segmented region. The SIFT descriptor is depicted as
a 128-dimensional vector from a normalized gradient
orientation histogram.

2.2.1 SIFT Descriptor

The SIFT descriptors are computed for normalized im-
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Fig. 4 Feature extraction

age patches with a code provided by Lowe [10]. A gradi-
ent orientation θ(x, y) and magnitude m(x, y) of image
L(x, y) is computed as:

m(x, y) =
√

fx(x, y)2 + fy(x, y)2 (3)

θ(x, y) = tan−1

(
fy(x, y)
fx(x, y)

)
, (4)

where fx(x, y) = L(x+1, y)−L(x−1, y) and fy(x, y) =
L(x, y + 1) − L(x, y − 1). A gradient orientation his-
togram is given by:

hθ =
∑

x

∑
y

w(x, y) · δ[θ, θ(x, y)] (5)

w(x, y) = G(x, y, σ) · m(x, y) (6)

δ[θ, θ(x, y)] =
{

1 if θ = θ(x, y)
0 otherwise , (7)

where G(x, y, σ) is the Gaussian distribution, and θ is
36 bins covering the 360◦ range of orientations. The
SIFT features are local histograms of edge directions
computed over different parts of the region of interest.
Using eight orientation directions and a 4×4-grid gives
the best results, leading to a descriptor size of 128.

2.2.2 Vector Quantization Histogram

We cluster a SIFT descriptor to make a codebook. The
codebook is the center of the cluster. More specifically,
we apply the LBG algorithm [11] to a set of local de-
scriptors extracted from training images, and continue
using the SIFT descriptor. We used Euclidean distance
in the clustering and quantization processes.

Finally, a vector quantization histogram represen-
tation is constructed from local descriptors in accor-
dance with:

n = {n(C, v1), . . . , n(C, vN )} , (8)

where n(C, v) denotes the number of occurrences of
SIFT descriptor vi in sub-region C, and N denotes the
number of clusters.

3. Object Type Classification of Graph Match-
ing

3.1 Graph Representation For Structure-based Fea-
tures

We modeled the object as a graph. The nodes contain
the vector quantization histogram based on the SIFT
features obtained from the corresponding segmented re-
gions, and the arcs contain information on distances
between two connected regions. By calculating the dis-
tance between the reference and input graphs, we can
use a k-NN based classifier to classify an object (Figure
5).

3.2 Graph Matching

We constructed a complete graph. The nodes contain
the vector quantization histograms for each segmented
region, and the arcs contain the Euclidean distance be-
tween two connected regions. The arc feature is given
by:

eij =
√

(mi
u − mj

u)2 + (mi
v − mj

v)2, (9)

where m is the mean of the Gaussian distribution.
Let N = {n1, . . . , nc}T denote a set of nodes, and
E = {e12, . . . , en}T denote a set of arcs. The distance
between reference graph T = {N t, Et}T and input
graph X = {Nx, Ex}T is given by

cost(T , X) =
wn

c

c∑
j=1

||nt
j − nx

j || +

we

n

n∑
k=1

||et
k − ex

k|| (10)

wn + we = 1, (11)

where wn and we are weight parameters. Since the
correspondence of the nodes between T and X is un-
known, the cost of all combinations of T and X nodes
are calculated (Figure 6). The minimum cost is then
selected from all combinations of T and X as

Cost(T , X) = min
i∈cPc

{cost(T , Xi)}. (12)

A final matching score is calculated by the following
equation:

Cost = α · Costl + (1 − α) · Costg, (13)
(0 ≤ α ≤ 1)

where Costl is the cost calculated by structure-based
feature representation, and Costg is the cost calculated
by the conventional approach. The cost calculated by
the conventional approach is c = 1. By calculating the
matching cost between the input and reference graphs,
we can classify an object using a k-NN-based classifier.
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Fig. 5 Outline

Fig. 6 Correspondence of nodes between � and �

4. Experimental Results

We have present the results of from two experiments.
For the first experiment, we describe the results of using
a four-class dataset an outdoor surveillance site. For
the second experiment, we describe the results of using
generic object recognition and compare them with a
conventional approach with bags-of-keypoints [12][13].

4.1 Experiment on Surveillance Data

4.1.1 Dataset

We collected 200 images for our learning sample for
each category (SH:single human, HG:human group,
BK:bike, VH:vehicle) from a video database for 23
hours. A total of 800 images was used for training. A
human operator collected sample images and assigned
them class labels. Another 800 images were used for the
discriminating experiments described below. Figure 7
shows examples of video images used in this experi-
ment.

Fig. 7 Example of video images

4.1.2 Results

We tested structure-based classification with about 200
sample images for each class, which were not contained
in the training sets. Table 1 shows the classification
results when α changed. In the conventional feature
(α = 0) , HG has a lot of variations because a person’s
position changed. However, in the structure-based fea-
ture (α = 1), the classification rate is high because each
region represents the person. In addition, the conven-
tional feature is better than the structure-based fea-
ture in VH. The classification accuracy for four classes
was to be about 88.2%. A higher classification perfor-
mance can be obtain using both the conventional and
structure-based features together compared with using
either set of features alone.

Table 2 shows a confusion matrix of the classifica-
tion results when α = 0.1. Although the appearances
of a single human and bike are very similar from some
viewpoints, structure-based feature representation can
distinguish them correctly using information obtained
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from the bottom part of a sub-region (Figure 8). Figure
9 shows an example of correct data using conventional
and structure-based features.

Table 1 Classification rate [%]

α

　 0.0 0.1 0.3 0.5 0.7 0.9 1.0

SH 75.6 80.8 77.5 74.7 71.4 70.9 71.8

HG 80.4 87.1 85.7 85.7 85.7 85.2 85.2

class BK 86.3 87.7 86.3 87.2 86.3 85.3 85.8

VH 97.3 96.8 95.9 95.9 96.4 96.4 96.4

Total 85.0 88.2 86.4 85.9 85.0 84.5 84.9

Table 2 Confusion matrix (α = 0.1)

out

SH HG BK VH correct rate[%]

SH 172 24 16 1 172 80.8

HG 9 182 16 2 182 87.1

in BK 15 10 185 1 185 87.7

VH 7 0 0 212 212 96.8

Total 751 88.2

4.2 Experiment on Generic Object Recognition

In the second experiment, we performed generic ob-
ject recognition in the Caltech 256 database †. Object
boundaries in the Caltech 256 database, which are used
in this experiment, are extracted in advance by a hu-
man operator. Images are shown in Figure 10. Five
images in each category were used for a reference pat-
tern. The evaluation data consists of positive class 103
images and negative class 2524 images.

In this experiment, we compared the follow-
ing three methods: bag-of-keypoints [12](bok1),
[13](bok2), and the proposed method.

bok1 [12] Bag-of-keypoints, which is often used for
object categorization, is based on vector quanti-
zation of SIFT descriptors of image patches. This
method is robust to background clutter and pro-
duces good caterorization accuracy even without
exploiting geometric information.

bok2 [13] This method subdivides an image in to a
grid and computes histograms of an image features
over the resulting sub-regions.

proposed method Our method is GMM-based seg-
mentation, which computes histograms of an im-
age features over the resulting sub-regions.

†http://www.vision.caltech.edu/Image Datasets/
Caltech256/

Fig. 8 Structure-based feature for mis-classification pattern
(single human and bike). In the conventional feature, the SH
and BK features are similar. However, the structure-based fea-
ture representation can distinguish them correctly using informa-
tion obtained from the bottom part of a sub-region (c)(d) and
(g)(h).

4.2.1 Results

Figure 11 shows classification results obtained using



6
IEICE TRANS. INF. & SYST., VOL.Exx–??, NO.xx XXXX 200x

Fig. 9 Example of correct sample with proposed method

Fig. 10 Example of Caltech Images

bok1[12], bok2[13] and the proposed method. As shown
in Figure 11, the proposed method can achieve 17.6%
better classification than that with bok1. However, we
can see that bok2 can achieve 5.6% better classifica-
tion than that with the proposed method. This is be-
cause bok2 exploits geometric information. Correspon-
dence of the sub-regions is clear in bok2. However,
the correspondence of the sub-regions is unknown in
the proposed method. Therefore, the proposed method
can make a mistake in the correspondence of the sub-
regions. When input images are rotated 45 degrees,
the classification rate of the proposed method does not
change. However, the classification rate of bok2 de-
creases. This is because GMM-based segmentation is
robust to rotation changes. Figure 12 shows an exam-

Fig. 11 Classification results.

ple of a GMM-based segmentation of a rotated image.
We can see that the segmentation result of the rotated
image is the same as that of the original image. With
bok2, geometric information changes when the image
is rotated. Therefore, bok2 cannot be correctly match.

Fig. 12 Segmentation result by rotation image.

5. Conclusion

We developed an method for object type classification
using structure-based feature representation. We pro-
posed GMM-based segmentation and object classifi-
cation by graph matching using SIFT. The effective-
ness of integrating conventional and structure-based
features was confirmed through experimentation. A
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higher classification performance can be obtained us-
ing both the conventional and structure-based features
together with using either set of features alone. We
also confirmed that our method can extract appearance
and geometric information that is robust to rotation
changes.
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