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A Method for Monitoring Activities of Multiple Objects

by Using Stochastic Model
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SUMMARY We present a method for estimating activities of
multiple, interacting objects detected by a video surveillance sys-
tem. The activities are described in a stochastic context because
our method is concerned with humans and uses noisy features
detected from video. To monitor activities in this context, we in-
troduce the concept of an attribute set for each blob, consisting of
object type, action, and interaction. Using probabilistic relations
introduced by a specific Markov model of these attribute sets, the
activity descriptions are estimated from surveillance video.
key words: video surveillance,activity monitoring, Markov
model

1. Introduction

By newly introducing a method where activities of mul-
tiple, interacting objects are described in a stochastic
model, we have realized a practical video surveillance
system to monitor the activities mainly concerning with
human actions.

Recent developments of low-cost video sensors and
high-performance video processing hardwares made it
possible to realize video surveillance systems. Surveil-
lance cameras are already installed at many public fa-
cilities, such as banks, airports, stations and others.
Video data, however, is commonly monitored and in-
spected by human operators, which costs very expen-
sive. It is expected to implement automatic video un-
derstanding techniques which can not only detect mov-
ing objects but also extract unusual and meaningful
events involving human activities.

Some automatic surveillance systems were already
reported by Ohata et al. [1], and Lipton et al. [2]. In
those systems, moving objects were automatically de-
tected and classified to extract candidates of mean-
ingful predetermined events. But activities involving
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object interactions, such as “A human entered a vehi-
cle” could not be monitored to specify events in de-
tail. These types of activities should be described as
extended context to handle interactions between ob-
jects. And the context should not be deterministic but
stochastic because human actions, which we mainly
concern with, and their noise condition can be de-
scribed stochastically.

To solve the problem of this sort, very recently
Ivanov and Bobick [3]. and Oliver et al. [4]. have re-
ported a new monitoring algorithm by parsing a SCFG
and by using CHMM, respectively. In the first paper,
Ivanov et al. have set some probabilities for the parsing
which were not based on real observed data but were
decided manually by experienced operators. It is very
difficult to set those probabilities because an activity
for a same event could be observed differently depend-
ing on position of camera, angle, etc. In the latter one,
Oliver et al. generated training data by a multi-agent
computer graphics simulator whose parameters were set
by hand to account for situation-specific tuning against
small numbers of training examples. But it seems very
difficult to specify training data because their contexts
in those systems are described by hidden inner-states,
and not clearly predetermined.

To overcome these problems for practical applica-
tions, we have newly implemented a stochastic model
for activities based surveillance system. In this paper,
Sect. 2 introduces a new concept called “attribute set”
to model and monitor activities mainly concerning with
human actions,involving their interactions. Section 3
describes how to estimate parameters of the model from
real training data. Section 4 describes an implementa-
tion of our method in the CMU VSAM test-bed sys-
tem [5]. Experimental results for performance of our
method are presented in Sect. 5.

2. Stochastic Estimation of Activities: Prob-
lem Definition

In a video surveillance system, we can detect, track
and classify objects. Our goal is to form a stochastic
representation of activities involving object interactions
in data-driven manner by the system. Moreover, the
context should be explicitly represented to allow for
situation-specific tuning. To solve these problems, we
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Fig. 1 Basic concept of activity description.

introduce the concept of an attribute set for each blob,
consisting of object type, action, and interaction.

Figure 1 shows a basic concept of activity descrip-
tion based on the attribute sets. If a blob i and a
blob j are detected in a frame and can be tracked
for several frames, each trajectory consists of blob se-
quence B

(i)
0 , . . . B

(i)
t−1, B

(i)
t and B

(j)
0 , . . . B

(j)
t−1, B

(j)
t . The

sequence of blob i is considered as the observation of
a real object which has a sequence of attribute sets of
object-typeO(i), actions A
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Our final goal is to obtain the most re-

liable description of the activity of each ob-
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states for the object types o = o0, o1, . . ., actions
a = a0, a1, . . ., interactions i = i0, i1, . . ., and obser-
vations b = b0, b1, . . . .

3. Markov Model for Selecting the Most Prob-
able Attribute Sequence

Consider a two frame sequence. If only two blobs, blob-
i and blob-j, are in the scene, the conditional joint
probability governing sequences of observations of these
blobs is described as below.
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Using Bayes Rule, the first term on the right hand side
of Eq. (2) becomes
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Equation (2) means that the conditional probabil-
ities for times t = 0 to t = t′ can be described by using
the conditional probabilities for t = 0 to t = t′−1 recur-
sively. Practically, if t′ is large, all of these conditional
probabilities from t = 0 to t = t′ − 1 can’t be used.

To overcome this, we make the following assump-
tion:
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Equation (3) is then rewritten using this assump-
tion, as
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As we mainly concerned with the activity of hu-
mans, who can change their actions nondeterministi-
cally, we assume the attributes sets and the observa-
tions follow a 1st-order Markov model, and based on
this, we can introduce the following assumptions.
• I
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Note that not all objects in a surveillance scene
follow this assumption. For example, if observations of
an object contain considerable error for some frames,
the assumption will break. Nevertheless, using these
assumptions and Eq. (4), the conditional joint proba-
bility of Eq. (2) is described generally as,

P (O(i), O(j),
(
A(i)

)t

0
,
(
A(j)

)t

0
,
(
I(i,j)

)t

0

|
(
B(i)

)t

0
,
(
B(j)

)t

0
)

=
P (B(i)

t | O(i), A
(i)
t , I

(i,j)
t ) · P (B(j)

t | O(j), A
(j)
t , I

(i,j)
t )

P
(
B

(i)
t , B

(j)
t

)

·P
(
I
(i,j)
t | O(i), O(j), A

(i)
t , A

(j)
t

)

·P
(
A

(i)
t | O(i), A

(i)
t−1, I

(i,j)
t−1

)

·P
(
A

(j)
t | O(j), A

(j)
t−1, I

(i,j)
t−1

)

·P (O(i), O(j),
(
A(i)

)t−1

0
,
(
A(j)

)t−1

0
,
(
I(i,j)

)t−1

0

|
(
B(i)

)t−1

0
,
(
B(j)

)t−1

0
) (5)

Note, the conditional probabilities for t = t can be
described only by states and observations for t = t and
t = t − 1.

In Eq. (5), t = 0 corresponds to the initial state of
an object’s activity and is written as,
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To calculate these equations, we need tables for
the conditional probabilities P (B(i)

t | O(i), A
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0 ). The tables for the a priori probabilities can be
obtained by counting events for each attribute set in
training samples consisting of image sequences showing
various types of activity.

The path that maximizes the probabilities de-
scribed in Eq. (1) can be obtained by calculating Eq. (5)
through the trellis diagram in Fig. 2. In this diagram,
s1, s2 . . . are state labels, and v, h, hg are labels of
object-type. AP(i), MOVE(i), . . . mean that blob-i has
an action label “AP,” “MOVE,” . . . and NEAR(i,j), . . .
means that blob-i and blob-j have an interaction label
“NEAR,” . . . in a state. If we have a model (trellis di-
agram) for each activity, the most desirable description
is obtained by selecting a model having the maximal
posterior conditional joint probability.

To describe more than two blobs detected in a
surveillance scene, we can generate a model for each
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Fig. 2 Trellis diagram.

pair of trajectories. These models continue to exist till
the time when one blob of each pair is not detected for
a certain duration (a few seconds). In order to prevent
combinational explosion, the model has to have limited
length, and should exist only for the pair for which the
distance between blobs is smaller than some threshold.

4. Implementation

Our method for monitoring activity was implemented
in the CMU VSAM test-bed system [5] as shown in
Fig. 3.

In this figure, candidates of objects are detected as
blobs by a blob-detector and trajectories of these blobs
are detected by a tracker. Detected blobs are classi-
fied based on object type (semantic categories) such as
human, human group, and vehicle by an object classi-
fier. Finally, using the object’s types and the actions
and interactions obtained by observing their trajecto-
ries, activities for each pair of blobs are described by
an activity-descriptor (a state-machine) which gener-
ates a trellis and calculates the path maximizing the a
posteriori probability.

The first three of these functions run in real time

Fig. 3 The test-bed system.

(about 10FPS) in the test-bed system, and the last
function runs off-line. Cropped subimages and clas-
sified types of detected objects are stored in a database
of this test-bed with their activities to be retrieved.
All activities can be explored by web browsing via CGI
through HTTP server.

4.1 Blob-Detector and Tracker

To monitor activities between objects, such as a human
entered or got out of a vehicle, we need to detect both
objects even when the human overlaps the stopped ve-
hicle. To achieve this capability, the blob-detector in-
troduced “layered adaptive background subtraction”[5]
based on analyzing whether a pixel is stationary or
transient to detect moving and stopped blobs respec-
tively. The tracker [5] extends the basic Kalman filter
notion to maintain a list of multiple hypotheses to ac-
quire the trajectories of multiple observed blobs. A blob
can be tracked when it disappears for some frames, or
when it splits into two blobs due to noisy background
subtraction. When an object is occluded behind an-
other one, and only becomes visible again after some
time, a new trajectory is generated. In this test, we
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Table 1 Blob’s observations and attribute set.

(a)Observations
Object-type labels Human/Vehicle/Human-Group/Uncertain

Action-type labels Appear/Move/Stop/Disappear/Uncertain

Interaction-type labels Near/From/To/No-Inter

(b)Blob’s attributes set
Object-type o0:Human, o1:Vehicle, o2:Human-Group

Action a0:Appear, a1:Move, a2:Stop, a3:Disappear

Interaction i0:Near, i1:From, i2:To, i3:No-Inter

o0, . . . o2, a0, . . . a3, i0, . . . i3 are described in Eq. (1).

except such situations, even though such broken trajec-
tories can potentially be remerged using classification
results. The observations used in the test are described
in Table 1 (a). The tracker extracts features for the
action-type labels in the table for each detected blob
if the length of the trajectory exceeds a threshold (for
removing noise). These features are used as input for
the activity-descriptor.

4.2 Object-Type Classifier

Another important observation used in the activity de-
scriptor is an object-type label for each blob described
in Table 1 (a). To obtain the label, we use an object-
type classifier based on Linear Discriminant Analysis of
the blob’s appearance [5]. In the test-bed system, ap-
pearance features used for analysis were area, center of
gravity, width and height of a blob, and 1st, 2nd and
3rd order image moments along the x-axis and y-axis.

4.3 Activity Descriptor and Tables for Conditional
Probabilities and Joint Probability

In this test, the target activities to monitor were “A
Human entered a Vehicle,” “A Human got out of a
Vehicle” and “Human Rendezvous.”

During monitoring, the trellis diagrams for these
three types of activities are generated for each pair of
blobs whose distance is smaller than a certain thresh-
old. To calculate Eq. (5) through trajectories, a la-
bel which is decided by the combination of object-type
label, action-type label, and interaction-type label is
used. The interaction label is calculated by referring
to the inter-blob distance and the relative velocity be-
tween each blob in a pair.

Decision of activity for the input scene is made by
selecting from the three trellis diagrams corresponding
to the pair of trajectories the one that has the maximum
posteriori probability.

Conditional probabilities and joint probabilities
described in Sect. 3 for the activities are obtained
through the following training steps:

• Blob pairs that correspond to each activity are col-
lected from sampled scenes.

Fig. 4 A scene in test image sequences.

• Trajectories for each pair of blobs for each frame
are detected by the blob-detector and tracker. For
each detected blob, an object-type is obtained by
an object-type classifier. An action such as Ap-
pear, Move, Stop, . . . and an interaction like Near,
From, To, . . . are decided by using the trajectories.

• For each blob’s pair, an observation label combin-
ing an object-type label, an action-type label, and
an interaction-type label is assigned.

• For each pair of blobs, an attribute set label de-
scribed in Table 1(b) is assigned to each detected
blob in off-line teaching .

• A priori probabilities in terms of the right hand
side of Eq. (5) and Eq. (6) are obtained for each
blob’s pair for each activity.

These probabilities are calculated by counting the num-
ber of events, like

N(B(i)
, O(i), A

(i)
t , I

(i,j)
t )/N(O(i), A

(i)
t , I

(i,j)
t ).

Here N(a) shows the number of event a.

5. Experimental Results

We have tested the functionality of our method
with some image sequences acquired in a parking lot
at Carnegie Mellon University during the daytime.
These image sequences have activities including human-
human and human-vehicle interactions. An example
scene from these image sequences is shown in Fig. 4.

The image sequences for our performance test were
acquired between 10:00 a.m. and 2:00 p.m. on a day
in October 1999 by the test-bed system. Weather con-
ditions ranged from fine to cloudy that day. The test
sequences contained scenes ranging from 1 second to 8
seconds, and their total length was 10 minutes. The
a priori probabilities for the test were obtained by us-
ing 10 additional minutes of image sequences acquired
at the same site. The number of trajectories for each
activity contained in the training sequences for the a
priori probabilities are shown in Table 2.

The objective of this test was mainly to check the
performance of the activity-descriptor whose function
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Table 2 Number of trajectories for each activity in training
data.

A Human entered a Vehicle 4
A Human got out of a Vehicle 3
Human Rendezvous 2

Table 3 Recognition results.

Detected

Ground Truth En Go Rn Rj C T %

En 7 1 0 0 7 8 87.5

Go 0 8 0 0 8 8 100

Rn 0 0 2 1 2 3 66.6

Rj 0 0 0 27 27 27 100

TYPE-I 17 19 89.4

TYPE-II 44 46 95.7

En: A Human entered a Vehicle, Go: A Human got out of a Vehicle,
Rn: Human Rendezvous, Rj: Reject, C: Correct, T: Total.

is not only a description of activity for each input tra-
jectory pair but also rejection of false trajectory pairs
caused by noise or that have no interaction. We define
two type of recognition rates as follows.

TY PE − I ≡ CP/TP (7)

TY PE − II ≡ (CP + CR)/(TP + FP ) (8)

Here, CP is the number of correctly described pairs,
CR is the number of correctly rejected pairs, TP is the
number of true pairs with distance of blobs in the pair
under two meters, and FP is the number of false pairs
caused by noise or having distance over two meters.

Table 3 shows the number of activities detected
by the activity-descriptor for test sequences consist-
ing of three ground truth events and events to reject.
Through the test, the number of blobs detected by the
blob-detector was 2667 and 46 trajectory pairs were
determined in the tracker. For the trajectory pairs,
17 pairs were correctly recognized when true pairs were
19. So TYPE-I recognition rate was 89.4%. Meanwhile,
TYPE-II recognition rate amounted to 95.7% because
all of 27 false pairs were correctly rejected.

The detected results for human-vehicle interaction
and human-human interaction are shown in Fig. 5. In
these three scenes, events occurred near the center of
the picture. Therefore, the observations of blobs de-
scribed in Table 1 (a) were frequently (but not always)
detected correctly through trajectories at the scenes.

The mis-detected results are shown in Fig. 6. In
this case, an activity was mis-detected as “A Human
entered a Vehicle,” while the ground truth was “A Hu-
man got out of a Vehicle” as shown in Table 3. If each
observations in the test were close to those in training
data, typical sequences of attribute sets for training the
activity and sequences selected for the test sequence
should be close. In this case, typical context which we
taught to describe the scene was as follows.

(a) A result for “a human got out of a vehicle”

(b)A result for “human rendezvous”

(c)A result for “a human entered a vehicle”

Fig. 5 Typical results of activity monitoring.

—– Detected Observation Sequence —–
Vehicle,Stop <– Near –> Uncertain,Appear
Vehicle,Stop <– Near –> Uncertain,Move

.......,.... <– .... –> ....,....

.......,.... <– .... –> ....,....
Vehicle,Stop <– Near –> Uncertain,Move
Vehicle,Stop <– From –> human,Move

Vehicle,Stop <– From –> Uncertain,Move

Fig. 6 Typical mis-detection of activity monitoring.
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Fig. 7 An example of wrongly-rejected scene.

Vehicle,Stop <– Near –> human,Appear
Vehicle,Stop <– Near –> human,Move

.......,.... <– .... –> ....,....

.......,.... <– .... –> ....,....
Vehicle,Stop <– Near –> human,Move
Vehicle,Stop <– From –> human,Move
Vehicle,Stop <– From –> human,Move

The selected attribute sequence for the test sequences
were as follows.

Vehicle,Stop <– Near –> human,Stop
Vehicle,Stop <– Near –> human,Stop

.......,.... <– .... –> ....,....

.......,.... <– .... –> ....,....
Vehicle,Stop <– Near –> human,Stop
Vehicle,Stop <– Near –> human,Stop
Vehicle,Stop <– Near –> human,Stop

These two are different in the sense of context. More-
over, the observation sequence in the figure shows that
a detected blob which corresponded to a human con-
tinued to be labeled as “unclassified” during 20 frames
at the beginning of the event. In this case, the obser-
vations with poor samples for learning appeared in the
scene and our method could not compensate them be-
cause of assumption of 1st-order Markov model. To
force situation-specific tuning, we have to set the a
priori probability of this model by using training data
analogous to the test input. In this way, explicit con-
text in our description helps can help with tuning.

Generally speaking, these additional training data
are not always available. The system by Oliver [4] have
generated such training data by a multi-agent CG simu-
lator. In our method, as training is made by just count-
ing the number of events through attribute sequence, it
is expected that models can be tuned not only by train-
ing such synthetic data but also by changing a priori
probability shown in Eq. (5).

The other case which caused inaccurate results is
shown in Fig. 7. There was only one blob detected in
the scene, which consisted of 2 persons walking together
towards the same direction, with considerable amount
of overlapping between the blobs corresponding to the
2 persons. Therefore, the scene was wrongly rejected as

it was considered to be a scene which had no activities
with interaction. It is quite difficult to segment overlap-
ping objects. But if the targets can be segmented by us-
ing other information such as color or appearance pat-
tern together with background subtraction, this type of
scene could be described in our system.

6. Conclusion

A basic idea for monitoring activities of multiple ob-
jects in a video surveillance system was presented and
the functionality of this method was tested by using 10
minutes of video.

In our method, activities of multiple, interacting
objects were described by explicit context called at-
tribute set for allowing situation-specific tuning, and
parameters of these description were estimated from
real training data.

In this test, recognition rate to monitor events cor-
rectly was about 89%, though a limitation caused by an
assumption of a 1st-order Markov model was shown.
And more, the availability of our explicit context de-
scription for situation-specific tuning was shown.

For our future work, we need to test the method
by using longer video scenes with a larger variety of
events, mainly for checking the limitation of the Markov
assumption more precisely. To train this method cor-
rectly, we need video sequences which consists of rel-
atively rare events. Another big issue is developing
a method for training a priori probabilities efficiently
when only a limited number of samples scenes are given.
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