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Abstract
In this paper, a process is described for analysing

the motion of a human target in a video stream. Mov-
ing targets are detected and their boundaries extracted.
From these, a \star" skeleton is produced. Two mo-
tion cues are determined from this skeletonization:
body posture, and cyclic motion of skeleton segments.
These cues are used to determine human activities
such as walking or running, and even potentially, the
target's gait. Unlike other methods, this does not re-
quire an a priori human model, or a large number of
\pixels on target". Furthermore, it is computationally
inexpensive, and thus ideal for real-world video appli-
cations such as outdoor video surveillance.

1 Introduction
Using video in machine understanding has recently

become a signi�cant research topic. One of the more
active areas is activity understanding from video im-
agery [7]. Understanding activities involves being able
to detect and classify targets of interest and analyze
what they are doing. Human motion analysis is one
such research area. There have been several good hu-
man detection schemes, such as [8] which use static
imagery. But detecting and analyzing human motion
in real time from video imagery has only recently be-
come viable with algorithms like P�nder [10] and W 4

[5]. These algorithms represent a good �rst step to
the problem of recognizing and analyzing humans, but
they still have some drawbacks. In general, they work
by detecting features (such as hands, feet and head),
tracking them, and �tting them to some a priori hu-
man model such as the cardboard model of Ju et al
[6].

There are two main drawbacks of these systems in
their present forms: they are completely human spe-
ci�c, and they require a great deal of image-based in-
formation in order to work e�ectively. For general
video applications, it may be necessary to derive mo-
tion analysis tools which are not constrained to human
models, but are applicable to other types of targets,
or even to classifying targets into di�erent types. In
some real video applications, such as outdoor surveil-
lance, it is unlikely that there will be enough \pixels on
target" to adequately apply these methods. What is
required is a fast, robust system which can make broad
assumptions about target motion from small amounts
of image data.

This paper proposes the use of the \star" skele-
tonization procedure for analyzing the motion of tar-
gets - particularly, human targets. The notion is that
a simple form of skeletonization which only extracts
the broad internal motion features of a target can be
employed to analyze its motion.

Once a skeleton is extracted, motion cues can be
determined from it. The two cues dealt with in this
paper are: cyclic motion of \leg" segments, and the
posture of the \torso" segment. These cues, when
taken together can be used to classify the motion of
an erect human as \walking" or \running".

This paper is organized as follows: section 2 de-
scribes how moving targets are extracted in real-time
from a video stream, section 3 describes the processing
of these target images and section 4 describes human
motion analysis. System analysis and conclusions are
presented in sections 5 and 6.

2 Real-time target extraction
The initial stage of the human motion analysis

problem is the extraction of moving targets from
a video stream. There are three conventional ap-
proaches to moving target detection: temporal dif-
ferencing (two-frame or three-frame) [1], background
subtraction [5, 10] and optical 
ow (see [2] for an excel-
lent discussion). Temporal di�erencing is very adap-
tive to dynamic environments, but generally does a
poor job of extracting all relevant feature pixels. Back-
ground subtraction provides the most complete fea-
ture data, but is extremely sensitive to dynamic scene
changes due to lighting and extraneous events. Optical

ow can be used to detect independently moving tar-
gets in the presence of camera motion, however most
optical 
ow computation methods are very complex
and are inapplicable to real-time algorithms without
specialized hardware.

The approach presented here is similar to that
taken in [5] and is an attempt to make background
subtraction more robust to environmental dynamism.
The notion is to use an adaptive background model to
accommodate changes to the background while main-
taining the ability to detect independently moving tar-
gets.

Consider a stabilized video stream or a stationary
video camera viewing a scene. The returned image
stream is denoted In where n is the frame number.
There are four types of image motion which are sig-
ni�cant for the purposes of moving target detection:
slow dynamic changes to the environment such as
slowly changing lighting conditions; \once-o�" inde-
pendently moving false alarms such as tree branches
breaking and falling to the ground; moving environ-
mental clutter such as leaves blowing in the wind; and
legitimate moving targets.

The �rst of these issues is dealt with by using a sta-
tistical model of the background to provide a mech-
anism to adapt to slow changes in the environment.
For each pixel value pn in the nth frame, a running



average pn and a form of standard deviation �pn are
maintained by temporal �ltering. Due to the �ltering
process, these statistics change over time re
ecting dy-
namism in the environment.

The �lter is of the form

F (t) = e
t

� (1)

where � is a time constant which can be con�gured to
re�ne the behavior of the system. The �lter is imple-
mented:

pn+1 = �pn+1 + (1� �)pn
�n+1 = �jpn+1 � pn+1j+ (1� �)�n

(2)

where � = � � f , and f is the frame rate. Unlike
the models of both [5] and [10], this statistical model
incorporates noise measurements to determine fore-
ground pixels, rather than a simple threshold. This
idea is inspired by [4].

If a pixel has a value which is more than 2� from
pn, then it is considered a foreground pixel. At this
point a multiple hypothesis approach is used for de-
termining its behavior. A new set of statistics (p0; �0)
is initialized for this pixel and the original set is re-
membered. If, after time t = 3� , the pixel value has
not returned to its original statistical value, the new
statistics are chosen as replacements for the old.

\Moving" pixels are aggregated using a connected
component approach so that individual target regions
can be extracted. Transient moving objects will cause
short term changes to the image stream that will not
be included in the background model, but will be
continually tracked, whereas more permanent changes
will (after 3� ) be absorbed into the background.

3 Target pre-processing
No motion detection algorithm is perfect. There

will be spurious pixels detected, holes in moving fea-
tures, \interlacing" e�ects from video digitization pro-
cesses, and other anomalies. Foreground regions are
initially �ltered for size to remove spurious features,
and then the remaining targets are pre-processed be-
fore motion analysis is performed.

3.1 Pre-processing
The �rst pre-processing step is to clean up anoma-

lies in the targets. This is done by a morphological di-
lation followed by an erosion. This removes any small
holes in the target and smoothes out any interlacing
anomalies. In this implementation, the target is di-
lated twice followed by a single erosion. This e�ec-
tively robusti�es small features such as thin arm or
leg segements.

After the target has been cleaned, its outline is ex-
tracted using a border following algorithm. The pro-
cess is shown in �gure 1.

3.2 \Star" skeletonization
An important cue in determining the internal mo-

tion of a moving target is the change in its boundary
shape over time and a good way to quantify this is to
use skeletonization. There are many standard tech-
niques for skeletonization such as thinning and dis-
tance transformation. However, these techniques are

binarization
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Moving target

Figure 1: Target pre-processing. A moving target re-
gion is morphologically dilated (twice) then eroded.
Then its border is extracted.

computationally expensive and moreover, are highly
susceptible to noise in the target boundary. The
method proposed here provides a simple, real-time, ro-
bust way of detecting extremal points on the boundary
of the target to produce a \star" skeleton. The \star"
skeleton consists of only the gross extremities of the
target joined to its centroid in a \star" fashion.
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Figure 2: The boundary is \unwrapped" as a dis-
tance function from the centroid. This function is then
smoothed and extremal points are extracted.

1. The centroid of the target image boundary
(xc; yc) is determined.

xc =
1

Nb

PNb

i=1 xi

yc =
1

Nb

PNb

i=1 yi
(3)

where (xc; yc) is the average boundary pixel po-
sition, Nb is the number of boundary pixels, and
(xi; yi) is a pixel on the boundary of the target.

2. The distances di from the centroid (xc; yc) to each
border point (xi; yi) are calculated

di =
p
(xi � xc)2 + (yi � yc)2 (4)



These are expressed as a one dimensional discrete
function d(i) = di. Note that this function is
periodic with period Nb.

3. The signal d(i) is then smoothed for noise reduc-

tion, becoming d̂(i). This can be done using a
linear smoothing �lter or low pass �ltering in the
Fourier domain.

4. Local maxima of d̂(i) are taken as extremal
points, and the \star" skeleton is constructed by
connecting them to the target centroid (xc; yc).
Local maxima are detected by �nding zero-
crossings of the di�erence function

�(i) = d̂(i) � d̂(i� 1) (5)

This procedure for producing \star" skeletons is illus-
trated in �gure 2.

3.3 Advantages of \star" skeletonization
There are three main advantages of this type of

skeletonization process. It is not iterative and is,
therefore, computationally cheap. It also explicitly
provides a mechanism for controlling scale sensitivity.
Finally, it relies on no a priori human model.

The scale of features which can be detected is di-
rectly con�gurable by changing the cuto� frequency c
of the low-pass �lter. Figure 3 shows two smoothed
versions of d(i) for di�erent values of c: c = 0:01�Nb

and c = 0:025�Nb. For the higher value of c, more de-
tail is included in the \star" skeleton because more of
the smaller boundary features are retained in d̂(i). So
the method can be scaled for di�erent levels of target
complexity.

An interesting application of this scalability is the
ability to measure the complexity of a target by ex-
amining the number of extremal points extracted as a
function of smoothing.

Other analysis techniques [10, 6, 5], require a pri-
ori models of humans { such as the cardboard model
in order to analyze human activities. Using the skele-
tonization approach, no such models are required, so
the method can be applied to other objects like ani-
mals and vehicles (see Figure 4). It is clear that the
structure and rigidity of the skeleton are important
cues in analysing di�erent types of targets. However,
in this implementation, only human motion is consid-
ered. Also, unlike other methods which require the
tracking of speci�c features, this method uses only
the object's boundary so there is no requirement for a
large number of \pixels on target".

4 Human motion analysis
One technique often used to analyze the motion

or gait of an individual target is the cyclic motion
of skeletal components [9]. However, in this imple-
mentation, the knowledge of individual joint positions
cannot be determined in real-time. So a more funda-
mental cyclic analysis must be performed.

Another cue to the gait of the target is its posture.
Using only a metric based on the \star" skeleton, it is
possible to determine the posture of a moving human.
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Figure 3: E�ect of cut-o� value c. When c is small
only gross features are extracted, but larger values of
c detect more extremal points.

4.1 Signi�cant features of the \star"
skeleton

For the cases in which a human is moving in an
upright position, it can be assumed that the lower
extremal points are legs, so choosing these as points to
analyze cyclic motion seems a reasonable approach. In
particular, the left-most lower extremal point (lx; ly) is
used as the cyclic point. Note that this choice does not
guarantee that the analysis is being performed on the
same physical leg at all times, but the cyclic structure
of the motion will still be evident from this point's
motion. If f(xsi ; y

s
i )g is the set of extremal points,

(lx; ly) is chosen according to the following condition:

(lx; ly) = (xsi ; y
s
i ) : xsi = min

ys
i
<yc

xsi (6)

Then, the angle (lx; ly) makes with the vertical � is
calculated as

� = tan�1
lx � xc

ly � yc
(7)

Figure 5(a) shows the de�nition of (lx; ly) and �.
One cue to determining the posture of a moving

human is the inclination of the torso. This can be
approximated by the angle of the upper-most extremal
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(b) Vehicle

(c) Polar bear

video image motion detection skeleton

Figure 4: Skeletonization of di�erent moving targets.
It is clear the structure and rigidity of the skeleton is
signi�cant in analyzing target motion.
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Figure 5: Determination of skeleton features. (a) �
is the angle the left cyclic point (leg) makes with the
vertical, and (b) � is the angle the torso makes with
the vertical.

point of the target. This angle � can be determined
in exactly the same manner as �. See �gure 5(b).

Figure 6 shows human target skeleton motion se-
quences for walking and running and the values of �n
for the cyclic point. These data were acquired in real-
time from a video stream with frame rate 8Hz. This
value is not a constant in this technique but depends
on the amount of processing which is required to per-
form motion analysis and target pre-processing.

Note that in �gure 6(c), there is an o�set in the
value of �n in the negative direction. This is because
only the leftmost leg (from a visual point of view)
is used in the calculation and the calculation of � is
therefore biased towards the negative. There is also
a bias introduced by the gait of the person. If s/he
is running, the body tends to lean forward, and the
values of �n tend to re
ect this overall posture. An-
other feature which can clearly be observed is that the
frequency of the cyclic motion point is clearly higher
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Figure 6: Skeleton motion sequences. Clearly, the pe-
riodic motion of �n provides cues to the target's mo-
tion as does the mean value of �n.

in the case of the running person, so this can be used
as a good metric for classifying the speed of human
motion.

Comparing the average values �n in �gures 6(e)-(f)
show that the posture of a running target can easily
be distinguished from that of a walking one using the
angle of the torso segment as a guide.

4.1.1 Cycle detection

Figures 6(c)-(d) display a clear cyclical nature in �n.
To quantify these signals, it is useful to move into
the Fourier domain. However, there is a great deal
of signal noise, so a naive Fourier transform will not
yield useful results - see �gure 7(b). Here, the power
spectrum of �n shows a great deal of background noise.

To emphasize the major cyclic component, an auto-
correlation is performed on �n providing a new signal
Ri.

Ri =
1

N + 1� i

NX

n=1

�n�n�i (8)
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Figure 7: Process for detecting cyclic motion.

where N is number of frames. This is shown in �gure
7(c).

This autocorrelation process introduces a new
source of noise due to the bias (or DC component)
of the �n signal. When low frequency components are
autocorrelated, they remain in the signal and show
up in the power spectrum as a large peak in the low
frequencies with a degeneration of 6 [dB/oct] in the
case of �gure 7(d). To alleviate this problem, a high
frequency pre-emphasis �lter H(z) is applied to the
signal before autocorrelation. The �lter used is:

H(z) = 1� az�1 (9)

with a chosen empirically to be � 1:0. This yields the
�gure shown in �gure 7(e).

Finally, �gure 7(g) shows that the major cyclic com-
ponent of the cyclic point can be easily extracted from
the power spectrum of this processed signal.

5 Analysis
This motion analysis scheme has been tried on a

database of video sequences of people walking and run-
ning. There are approximately 20 video sequences in
each category, with pixles on target ranging from� 50
to � 400. The targets are a mixture of adults and
children. The end-to-end process of MTD, target pre-
processing, and motion analysis was performed on an
SGI O2 machine containing an R10000 175Mhz pro-
cessor.

Figure 8 shows histograms of the peaks of the power
spectrum for each of the video streams. It is clear
from �gure 8(a) that the low frequency noise would
cause a serious bias if motion classi�cation were at-
tempted. However, �gure 8(b) shows how e�ective
the pre-emphasis �lter is in removing this noise. It
also shows how it is possible to classify motion in
terms of walking or running based on the frequency
of the cyclic motion. The average walking frequency
is 1.75[Hz] and for running it is 2.875[Hz]. A Thresh-
old frequency of 2.0[Hz] correctly classi�es 97.5% of
the target motions. Note that these frequencies are
twice the actual footstep frequency because only the
visually leftmost leg is considered. Another point of
interest is that the variance of running frequencies is
greater than that of walking frequencies, so it could be
possible to classify di�erent \types" of running such
as jogging or sprinting. For each video sequence, the
average inclination � of the upper extremal point (or
torso) was determined. These values are shown in �g-
ure 9. It can be seen that the forward leaning of a
running �gure can be clearly distinguished from the
more vertical posture of a walking one. A threshold
value of 0.15[rads] correctly classi�es 90% of the target
motions.

6 Conclusion
Analyzing human motion for video applications is

a complex problem. Real-world implementations will
have to be computationally inexpensive and be ap-
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Figure 8: Histogram of cyclic motion frequency peaks.
(a) The bias in �n often produces a frequency peak
which is signi�cantly higher than the peak produced by
cyclic motion. (b) The pre-emphasis �lter e�ectively
removes this noise.

plicable to real scenes in which targets are small and
data is noisy. The notion of using a target's boundary
to analyze its motion is a useful one under these con-
ditions. Algorithms need only be applied to a small
number of pixels and internal target detail, which may
be sketchy, becomes less important.

This paper presents the approach of \star" skele-
tonization by which the component parts of a tar-
get with internal motion may easily, if grossly, be ex-
tracted. Further, two analysis techniques have been
investigated which can broadly classify humanmotion.
Body inclination can be measured from the \star"
skeleton to determine the posture of the human, which
derives clues as to the type of motion being executed.
In addition, cyclic analysis of extremal points provides
a very clean way of broadly distinguishing human mo-
tion in terms of walking and running and potentially
even di�erent types of gait.

In the future, this analysis technique will be ap-
plied to more complex human motions such as crawl-
ing, jumping, and so on. It may even be applied to
the gaits of animals.
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