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Abstract

This paper describes an end-to-end method for extract-
ing moving targets from a real-time video stream, classi-
fying them into predefined categories according to image-
based properties, and then robustly tracking them. Moving
targets are detected using the pixel wise difference between
consecutive image frames. A classification metric is ap-
plied these targets with a temporal consistency constraint
to classify them into three categories: human, vehicle or
background clutter. Once classified, targets are tracked by
a combinationof temporal differencing and template match-
ing.

The resulting system robustly identifies targets of inter-
est, rejects background clutter, and continually tracks over
large distances and periods of time despite occlusions, ap-
pearance changes and cessation of target motion.

1. Introduction

The increasing availability of video sensors and high per-
formance video processing hardware opens up exciting pos-
sibilities for tackling many video understanding problems
[9]. It is important to develop robust real-time video under-
standing techniques which can process the large amounts of
data attainable. Central to many video understanding prob-
lems are the themes of target classification and tracking.

Historically, target classification has been performed on
single images or static imagery [12, 7]. More recently, how-
ever, video streams have been exploited for target detection
[6, 14, 10]. Many methods like these, are computationally
expensive and are inapplicable to real-time applications, or
require specialised hardware to operate in the real-time do-
main. However, methods such as Pfinder [14], W 4 [6] and

Beymer et al [2] are designed to extract targets in real-time.

The philosophy behind these techniques is the segmen-
tation of an image, or video stream, into object Vs. non-
object regions. This is based on matching regions of inter-
est to reasonably detailed target models. Another require-
ment of these systems is, in general, to have a reasonably
large number of pixels on target. For both of these rea-
sons, these methods would, by themselves, be inadequate
in a general outdoor surveillance system, as there are many
different types of targets which could be important, and it is
often not possible to obtain a large number of pixels on tar-
get. A better approach is one in which classification is based
on simple rules which are largely independent of appear-
ance or 3D models. Consequently, the classification metric
which is explored in this paper, is based purely on a target’s
shape, and not on its image content.

Furthermore, the temporal component of video allows a
temporal consistency constraint [4] to be used in the classi-
fication approach. Multiple hypotheses of a target’s classifi-
cation can be maintained over time until the system is con-
fident that it can accurately classify the target. This allows
the system to disambiguate targets in the case of occlusions
or background clutter.

Many systems for target tracking are based on Kalman
filters but as pointed out by [8], they are of limited use be-
cause they are based on unimodal Gaussian densities and
hence cannot support simultaneous alternative motion hy-
potheses. A few other approaches have been devised, for
example, (a) Isard and Blake [8] present a new stochas-
tic algorithm for robust tracking which is superior to pre-
vious Kalman filter based approaches, and (b) Bregler [3]
presents a probabilistic decomposition of human dynamics
to learn and recognise human beings (or their gaits) in video
sequences.

This paper presents a much simpler method based on a



combination of temporal differencing and image template
matching which achieves highly satisfactory tracking per-
formance in the presence of clutter and enables good clas-
sification. Hence the use of Kalman filtering or other prob-
abilistic approaches is avoided.

Two of the basic methods for target tracking in real-
time video applications are temporal differencing (DT) [1]
and template correlation matching. In the former approach,
video frames separated by a constant time �t are compared
to find regions which have changed. In the latter approach
each video image is scanned for the region which best cor-
relates to an image template. Independently, these methods
have significant shortcomings.

DT tracking is impossible if there is significant camera
motion, unless an appropriate image stabilisation algorithm
is employed [5]. It also fails if the target becomes occluded
or ceases its motion. Template correlation matching gen-
erally requires that the target object’s appearance remains
constant. The method is generally not robust to changes
in object size, orientation or even changing lighting condi-
tions.

However, the tracking properties of these two methods
are complementary. When the target is stationary, template
matching is at its most robust while DT will fail. And when
the target is in motion, DT will be successful where tem-
plate matching will tend to “drift”. This is the motivation
for combining the two methods. The idea is to use DT to
detect moving targets and train the template matching algo-
rithm. These targets are then tracked using template match-
ing guided by the DT stage. This combination obviates the
need for any predictive filtering in the tracking process as
the tracking is guided by motion detection. This simple
paradigm produces remarkably robust results.

This paper describes a system for robustly tracking tar-
gets in a video stream and classifying the targets into “hu-
mans” and “vehicles” for an outdoor video surveillance ap-
plication. Target tracking is based on two main principles;
(a) temporal consistency which provides a robust way of
classifying moving targets while rejecting background clut-
ter, and (b) the combination of motion detection with image-
based template matching which provides a highly robust
target tracking scheme. Target classification is based on a
simple application of maximum likelihood estimation after
computing a simple shape based metric for each target.

1.1. System Overview

The system proposed in this paper consists of three
stages as outlined in figure 1. In the first stage, all mov-
ing objects are detected using a temporal differencing algo-
rithm. These are described as motion regions. Each one is
classified at each time frame using an image-based classi-
fication metric. Classifications for each individual motion
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Figure 1. Overview of the identication and
tracking system. Moving objects are detected
in a video stream using temporal differenc-
ing. Targets are then classied according to
a classication metric. These targets can be
tracked using a combination of motion infor-
mation and image based correlation

region are recorded over a period of time, and a simple
Maximum Likelihood Estimation (MLE) criterion is used
to correctly classify each target. Once a motion region has
been classified, it can be used as a training template for the
tracking process. The tracking process involves correlation
matching between a template and the current motion re-
gions (obtained by DT). The motion region with the best
correlation is tracked and is used to update the template for
subsequent tracking.

2. Temporal differencing

There are many variants on the DT method, but the sim-
plest is to take consecutive video frames and determine the
absolute difference. A threshold function is then used to de-
termine change. If In is the intensity of the nth frame, then
the pixel wise difference function �n is

�n = jIn � In�1j

and a motion image Mn can be extracted by thresholding

Mn(u; v) =

�
In(u; v) ; �n(u; v) � T

0 ; �n(u; v) < T



The threshold T has been determined empirically to be
�15% of the digitizer’s brightness range. For a digitizer
providing 255 grey levels, a value of T � 40 should be
used.
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Figure 2. Motion regions. Notice that much
of the background information is not incor-
porated into the template.

After the motion image is determined, moving sections
are clustered into motion regions Rn(i). This is done using
a connected component criterion. Figure 2 shows the result
of extracting motion regions.

One problem with DT motion detection is that it tends to
include undesirable background regions on the periphery of
the target where the object has “just been”. Large amounts
of this background information in the template is one of the
causes of template “drift”. One way to alleviate this prob-
lem is to use knowledge of the target’s motion to crop these
background regions from the template.

The 2D image velocity vector of the target
( _u; _v)(pixels/frame) can be approximately determined
by calculating the difference between the centroid of
the previous template Rn�1 and the centroid of the new
template Rn. It can be assumed that the region trailing the
template is background material exposed by the passage of
the target. This information can be cropped from Rn so
that it contains mostly target pixels (see figure 3).
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Figure 3. Motion cropping. As the target
moves, background information is included
in the new template. Knowledge of the tar-
get's motion is used for cropping.

3. Target Classification

There are two key elements to classifying targets; some
identification metric operator ID(x) which is used for dis-
tinguishing between types of targets (in this case, a very
simple image-based metric is employed), and the notion of
temporal consistency. If a target persists over time, it is a
good candidate for classification. If not, it is considered to
be background clutter. At each instant, it is classified ac-
cording to ID(x). These classifications are collected until
a statistical decision can be made about the classification of
the target. A version of MLE is used to make the classifica-
tion decision.

3.1. Classication metric

dispersedness : 61.8 dispersedness : 41.0

Figure 4. Typical dispersedness values for a
human and a vehicle.

To classify targets in real surveillance applications it is
important to use a classification metric which is computa-
tionally inexpensive, reasonably effective for small num-
bers of pixels on target, and invariant to lighting condi-
tions or viewpoint. It is clear that the most obvious types
of targets which will be of interest are humans and vehi-
cles [6, 11]. For this reason, a classifier to detect these two
groups has been implemented. The metric is based on the
knowledge that humans are, in general, smaller than vehi-
cles, and that they have more complex shapes.

A bi-variate approach is employed, with the target’s total
area on one axis, and its dispersedness on the other. Dis-
persedness is based on simple target shape parameters and
is given by

Dispersedness =
Perimeter2

Area

Clearly, a human, with its more complex shape, will have
larger dispersedness than a vehicle - see figure 4. Note that
the interlacing effects apparent in figure 4 are removed from
the procedure by applying a morphological dilation to mo-
tion regions. Figure 5 shows the distribution of a training
sample of over 400 targets. Also, shown is a linear seg-
mentation and a Mahalanobis distance-based segmentation
which provides a superior segmentation for classification
purposes.
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Figure 5. Bi-variate classication data for
training sample of over 400 images. Both lin-
ear and Mahalanobis clustering are shown.

3.2. Temporal consistency

The main difficulty with classification is that in any sin-
gle frame, the instance of a particular motion region may
not be representative of it’s true character. For example,
a partly occluded vehicle may look like a human, or some
background clutter may briefly appear as a vehicle. To over-
come this problem, a multiple hypothesis approach is used.

The first step in this process is to record all Nn poten-
tial targets Pn(i) = Rn(i) from some initial frame. These
regions are classified according to the classification metric
operator ID(x) (see section 3.1) and the result is recorded
as a classification hypothesis�(i) for each one.

�(i) = fID(Pn(i))g

Each one of these potential targets must be observed in sub-
sequent frames to determine whether they persist or not, and
to continue classifying them. So for new frames, each previ-
ous motion region Pn�1(i) is matched to the spatially clos-
est current motion regionRn(j) according to a mutual prox-
imity rule. After this process, any previous potential targets
Pn�1 which have not been matched to current regions are
considered transient and removed from the list, and any cur-
rent motion regions Rn which have not been matched are
considered new potential targets. At each frame, their new
classifications (according to the metric operator) are used to
update the classification hypothesis.

�(i) = f�(i)g [ fID(Pn(i))g

In this way, the statistics of a particular potential target can
be built up over a period of time until a decision can be
made about its correct classification. Furthermore, transient
motion regions such as trees blowing in the wind will be
thrown away.

3.3. Target classication

In this implementation, a simple application of MLE is
employed to classify targets. A classification histogram is
computed for each motion region at each time and if the
target persists for time tclass, the peak of the histogram is
used to classify the target. Furthermore, at every time in-
stant after tclass, the object can be reclassified.
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Figure 6. Process of classication. Only after
several frames can this object be correctly
identied.

One advantage of this method is that if an object is tem-
porarily occluded, it will not adversely affect the ultimate
classification. Figure 6 shows a situation in which an ob-
ject is originally misclassified because of partial occlusion,
but with the passage of time, the classification statistics cor-
rectly reclassify it.

A further advantage of this method is that it is robust
to background clutter such as leaves blowing in the wind.
These effects appear as very transient and unstable motion.
It is unlikely that this motion will be present long enough
to be classified at all. If it does persist, it is unlikely to be
consistently misclassified for a long period of time.
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Figure 7. The tracking process. (a) There are
four target candidates three moving targets
and the previous template position. (b) The
current template is compared to each of the
candidates. (c) The current template is up-
dated using an IIR lter.

4. Tracking

Classified motion regions are then used as training tem-
plates for the tracker. Tracking consists of a combination of
appearance-based correlation matching and motion detec-
tion.

Motion regions can be used to guide correlation process-
ing and template updating. This combination makes the
tracker robust to changes of target appearance, occlusion,
and cessation of target motion. The procedure is outlined in
figure 7. Candidate motion regions Rn(i) are selected and
each of these are correlated with the current template Rn�1
to find a best match. This will not be sufficient, however, if
the target has ceased its motion, so an extra region, called
Rn(0), is also compared. Rn(0) is made up of the pixels in
In which correspond to the location of Rn�1. That is, it is
the part of the image in which the target used to be located.
Once the best correlation has been found from all of these
candidates, it is merged with Rn�1 through an infinite im-
pulse response (IIR) filter (see section 4.1) to produce Rn.
This is done so that the appearance of the template contin-
ues to match the appearance of the target.

Using the motion image to guide the template match-
ing algorithm carries with it some distinct advantages over
conventional techniques. Correlation matching is the most

computationally expensive part of the tracking algorithm;
if the correlation matching need only be performed where
moving targets are detected, computation time can be re-
duced. Also, if correlation matching is biased towards areas
where motion is detected, it is more likely to retain the tar-
get and not “drift” on to the background. Furthermore, if
updating the content of the template is combined with the
motion function then templates can be constructed which
only contain “active” pixels and do not contain background
information.

4.1. Updating templates

In this implementation, adaptive template updating is
used to ensure that the current template accurately repre-
sents the new image of the object. So the new template Rn
is generated by merging the previous instance Rn�1 with
current information from Mn and In using an infinite im-
pulse response filter of the form

Rn = �Mn + (1 � �)Rn�1

The effect of the IIR filter is shown in figure 8.

t = 0 t = 14 t = 21 t = 37

Figure 8. The IIR lter. As the image changes
from a face in prole to a frontal view, the
template is updated using an IIR. If the im-
age is stable for some time, the template also
remains stable.

5. Results

The system has been implemented on a Pentium 200Mhz
system under Microsoft Windows 95 with a Matrox Meteor
digitizer. The system can detect, classify and track targets at
14 frames/second over a 320�240 pixel image. The system
has been applied to large amounts of live video in unstruc-
tured environments in which human and vehicular activity
is present. Over six hundred instances of vehicles and hu-
mans have been identified and target tracking has been per-
formed over the life span of over two hundred targets.



5.1. Classication

REJECTREJECTHUMAN

HUMAN

VEHICLEVEHICLE VEHICLE

HUMANVEHICLE

Figure 9. Example of target classication. No-
tice that groups of people can be misclassi-
ed as a vehicle.

Figure 9 shows some examples of target classification.
For single targets, this algorithm provides a robust classifi-
cation. Note that trees blowing in the wind are correctly re-
jected as background clutter. Furthermore, accurate classi-
fication is largely independent of target size, speed or view-
ing aspect. However, when multiple human targets are close
together, they can be misclassified as a vehicle. There are
two reasons for this; the clustering of the motion regions is
too liberal in this case, erroneously joining multiple regions,
and the classification metric is not sophisticated enough to
deal with this situation. Another limitation is that targets
which are very small (< 5� 5 pixels) tend to be temporally
inconsistent and hence rejected.

Table 1 shows the results of the classification algorithm
applied to over four hours of live video in an unstructured
environment. The main problem with vehicle recognition
is that when vehicles are partially occluded for long times,
they are sometimes rejected. Humans are much smaller than
vehicles and are often not recognised as temporally stable
objects. Also, humans tend to move in close groups that can
be misclassified as vehicles according to the simple metric.

Target Tot. Unclass. Misclass. Correct

Vehicle 319 10.7% 2.5% 86.8%
Human 291 11.0% 6.2% 82.8%
False 4

Table 1. Classication results from live video
in unstructured environments.

(a) (b)

(c) (d)

Figure 10. Identication and tracking of a ve-
hicle. A vehicle is classied and tracked as it
drives for about 2 mins.

5.2. Tracking

In figure 10 a vehicle is tracked as it drives around a test
site. In figures 10(b)-(c) other visibly similar targets are
present, but the template tracking does not stray because it
is guided by the motion regions. Even when the target is
partially occluded by a similar target, the tracker remains
stable. The target can be tracked over long distances and
periods of time (� 2 mins. - the life span of the target),
even as it becomes small. In figure 10(d) it is only 4 � 9
pixels.

In figure 11 two humans are detected and one of them
is tracked. Over the life span of these targets (� 4 mins.),
the tracker does not get confused, even when one target oc-
cludes the other, because the template matching algorithm
“prefers” the correct target over a false one.

6. Conclusions

The two key elements which make this system robust are
the classification system based on temporal consistency and
the tracking system based on a combination of temporal dif-
ferencing and correlation matching. The system effectively
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Figure 11. Identication and tracking of hu-
man targets. Two humans are correctly clas-
sied and one of them is tracked for about 3
mins.

combines simple domain knowledge about object classes
with time-domain statistical measures to classify target ob-
jects. Target models are simple and based purely on target
shape so they are applicable to a large number of real-world
video applications. Using a combination of domain knowl-
edge and temporal consistency, targets are robustly identi-
fied in spite of partial occlusions and ambiguous poses, and
background clutter is effectively rejected.

Using temporal differencing to guide vision-based corre-
lation matching has three main advantages; it allows contin-
uous tracking despite occlusions and cessation of target mo-
tion, it prevents templates “drifting” onto background tex-
ture, and it provides robust tracking without the requirement
of having a predictive temporal filter such as a Kalman filter.
Future work involves using temporal filtering and building
on some of the ideas presented in [8] and [3] to achieve tar-
get recognition and multiple target tracking.
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