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Abstract
When recognizing objects or motions, humans can accurately judge the necessary

areas for recognition. In contrast, recognition using a deep learning model is based on
its training data and may fail to focus on the correct regions. In image recognition, it
has been shown that visualizing the basis of decisions and embedding human knowl-
edge into deep neural networks are effective in addressing this issue. However, in video
recognition, there is no visualization method enabling us to embed human knowledge.
We propose the spatio-temporal attention branch network (ST-ABN) for video recogni-
tion, which provides visual explanations for both spatial and temporal attentions. One
of the features of the ST-ABN is that its attention output can be modified on the basis
of human knowledge and used for recognition. However, since a video consists of a
large number of frame images, modifying spatial attentions similar to image recognition
is costly. Therefore, we manually modify temporal attentions to embed human knowl-
edge into the ST-ABN. Experimental results with Something-Something v.2 indicate that
the ST-ABN provides visual explanation for both spatial and temporal information and
improves recognition performance. The results also indicate the effectiveness of embed-
ding human knowledge into the ST-ABN and the positive changes in spatial attentions
by modifying temporal attentions.

1 Introduction
Video recognition is a task for identifying actions performed in a video using multiple frame
images. Many convolutional neural networks (CNNs) [1, 15] for video recognition, such
as three-dimensional (3D) CNNs, have been proposed and achieve high recognition perfor-
mance. For practical implementation of video recognition, it is important to ensure reliability

© 2023. The copyright of this document resides with its authors.
It may be distributed unchanged freely in print or electronic forms.

Citation
Citation
{Alex, Sutskever, and Hinton} 2012

Citation
Citation
{LeCun, Boser, Denker, Henderson, Howard, Hubbard, and Jackel} 1989



2 S.NOGUCHI ET AL.: EMBEDDING HUMAN KNOWLEDGE INTO ST-ABN

as well as recognition accuracy. In particular, deep learning models are expected to enable
humans to understand the basis of their decisions. Visual explanation has been used to in-
terpret the decision-making of CNNs by highlighting the gazing area during the inference
process. Typical visual explanations include class activation mapping (CAM) [30], gradient-
weighted class activation mapping (Grad-CAM) [22], and using the attention branch net-
work (ABN) [8]. The ABN achieves high recognition accuracy by visualizing the gazing
area as heat maps and weighting the feature maps. However, if the training data are biased,
it cannot visualize at the correct regions, causing misrecognition.

To solve this problem, a method of embedding human knowledge into the model via
attention map was proposed [21]. This method manually corrects the attention maps of
misclassified images and fine-tunes the deep learning model. This enables the acquisition of
an attention map closer to the human’s gazing area. However, there is no method like this in
the field of video recognition.

To address this issue, we propose the spatio-temporal attention branch network (ST-
ABN) for visual explanation of video recognition that can embed human knowledge. The
ST-ABN provides visual explanation and improves recognition performance by applying
importance of spatial and temporal information to the recognition process. It also has an
attention mechanism to weight attentions and applies them to recognition. Thus, we can
change the parameters of the ST-ABN by using modified attentions.

The main contributions of this work are as follows. We propose the ST-ABN, a network
model for providing visual explanation of video recognition that can embed human knowl-
edge. To show the effectiveness of embedding human knowledge into the ST-ABN, we
manually modify temporal attentions and fine-tune it. Finally, we evaluated the effectiveness
of modifying temporal attentions on spatial attentions.

2 Related Work

Video Recognition Video recognition using deep learning is categorized into three types,
2D CNN-based, 3D CNN-based, and transformer-based. The 2D CNN-based methods [6,
23] typically use a two-stream network structure in which each frame and the optical flow of
motion information are input to two separate CNNs. Each network extracts spatial features
from video frames and temporal ones from an optical flow and is treated as independent.
The 3D CNN-based methods use 3D convolution that extends a 2D convolution into tempo-
ral directions. They extract ST features by stacking multiple 3D convolution layers [13, 24].
Unlike 2D CNN-based methods, the extracted ST features take into account the interrela-
tionship between spatial and temporal information. However, 3D CNN-based methods take
into account only local relationships and are suitable for shorter videos. Transformer-based
methods divide the frame images into patches [2, 3]. Patches at the same location in each
frame are used to obtain temporal information, and those in the same frame are used to ob-
tain spatial-information features. Transformer-based methods can learn global relationships
faster than CNN-based ones.

Visual Explanation In image-classification tasks, many methods for visual explanation [8,
22, 30] have been proposed to analyze the basis of the decision by visualizing an attention
map that shows the gazing area of the model. There are two methods for obtaining attention
maps: one is using the gradient during backpropagation, and the other is using the response
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Figure 1: Detailed structure of ST-ABN. We divide the backbone network into the feature
extractor and perception branch and add the ST attention branch between them.

from the network. Grad-CAM [22] is one way to use the gradient during backpropagation.
It obtains attention maps by using a gradient of a particular class during the backpropagation
process and can be applied to many pre-trained networks. One method of using the response
from the network is CAM [30], which obtains attention maps from feature maps. Its attention
maps are obtained using the feature maps in the convolution layer and weights at the fully
connected layers at each channel. However, CAM degrades recognition accuracy due to the
lack of spatial information caused by global average pooling (GAP) between the convolution
and fully connected layers. To solve this problem, the attention branch network (ABN) was
proposed [8]. It applies attention maps to the attention mechanism to improve recognition
accuracy and visual explainability.

Recognition with a deep learning model is based on its training data and may fail to focus
on the correct regions. In contrast, humans already have enough information through expe-
rience, and can accurately judge the necessary areas. Models using an attention mechanism
weight the attention map as input during recognition, and inappropriate gazing areas induce
misrecognition. To solve this problem, Mitsuhara et al. proposed a method of embedding hu-
man knowledge into CNNs [21]. With this method, attention maps are corrected manually
and the deep learning model is fined-tuned to improve its performance.

In video-recognition tasks, there is a method for visual explanation [28] but none can
embed human knowledge. However, in these tasks, inappropriate gazing areas occur in the
spatial information that should be gazing at the object and the temporal information that
should be focusing on the motion segment. In particular, temporal information is important
for video recognition, and it also has been shown that using only appropriate frames that
include motion improves recognition accuracy [27].

3 Proposed Method

The ST-ABN provides a visual explanation for spatial and temporal information. Since the
ST-ABN uses an attention mechanism, we can embed human knowledge via both spatial and
temporal attentions.
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3.1 ST-ABN
As shown in Figure 1, The ST-ABN involves three modules: a feature extractor, ST attention
branch, and perception branch. The feature extractor consists of multiple convolution layers
and outputs feature maps from the inputs. We introduce an ST attention branch that outputs
spatial and temporal attentions, which indicate the importance of spatial and temporal infor-
mation to a network based on 3D CNNs. The perception branch inputs feature maps, which
are weighted spatial and temporal attentions, by the attention mechanism and outputs the
probability of each class.

3.1.1 Spatio-temporal Attention Branch

As shown in Figure 1, the ST attention branch generates spatial and temporal attentions that
represent the importance of spatial and temporal information, respectively. It also outputs
the classification results via 3D GAP. In the ST attention branch, the feature maps output
from the feature extractor are first fed into the 3D convolution layers consisting of multiple
residual blocks, which have the same structure as the perception branch. We set the stride
of the convolution layer at the first residual block to 1 to maintain the resolution of the
feature maps. The feature maps from the 3D convolution layers are then input to another 3D
convolution layer of K×T×1×1, where K indicates the number of classes and T indicates
the number of frames. Thus, the size of feature maps becomes K×T×W×H. These feature
maps are then input to the K×T×1×1 3D convolution layer, 3D GAP, and a softmax function
to obtain the classification probabilities for each class. Another study of the ST attention
branch is in the supplementary material.

Spatial Attentions We generate spatial attentions from the above-mentioned K×T×W×H
feature maps. We apply a 1×T×1×1 3D convolution layer for the K×T×W×H feature
maps and obtain a single 1×T×W×H feature map for each frame. This means that we
aggregate the K feature maps with respect to each video frame into a single feature map. We
can then obtain the spatial attentions Ms for each frame by applying a sigmoid function.

Temporal Attentions Similar to spatial attentions, we generate temporal attentions from
the K×T×W×H feature maps. These feature maps are first aggregated into a single
1×T×W×H feature map with respect to each frame by applying a 1×T×3×3 3D convolu-
tion layer. The channel dimensions of the 1×T×W×H feature maps are then reduced and
transformed into T×W×H feature maps. The T×W×H feature maps are further input to a
T×1×1 2D convolution layer, and the mean value of each feature map in the spatial direction
is calculated by GAP. Finally, the temporal attentions Mt is generated via the fully connected
layer, rectified linear unit (ReLU), and a sigmoid function. We use a simple gating mech-
anism that uses a sigmoid function such as squeeze-and-excitation networks (SENet) [12].
This enables the ST-ABN to emphasize multiple frames instead of only a single frame.

3.1.2 Attention Mechanism

The spatial and temporal attentions acquired from the ST attention branch are further used as
an attention mechanism for weighting feature maps. Let xi be the i-th video in a dataset and
f (xi) be the corresponding feature maps obtained from the feature extractor. The weighted
feature maps f ′s(xi) by spatial attentions Ms(xi) is defined as

f ′s(xi) = (1+Ms (xi)) · f (xi) . (1)
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For spatial attentions, we apply a residual mechanism [25] and add the unweighted feature
maps to the weighted feature maps. This can suppress the disappearance of the feature
maps, and the attention maps can be efficiently reflected in the recognition. The attention
mechanism with Mt(xi) calculates the weighted feature maps f ′t (xi) as

f ′t (xi) = Mt (xi) · f (xi) . (2)

For the temporal attentions, we apply simple weighting and do not use a residual attention
mechanism.

These f ′s(xi) and f ′t (xi) are combined in the channel direction by

f ′(xi) = convθ

(
concat[ f ′s(xi), f ′t (xi)]

)
, (3)

where f ′(xi) denotes the concatenated feature maps. The number of channels is doubled
because the two feature maps are channel-wise concatenated.

3.1.3 Training

In this section, we explain the implementation of the ST-ABN. The ST-ABN is constructed
by dividing a backbone network into a feature extractor and perception branch and adding
an ST attention branch between them. As a result, it can be easily introduced into various
baseline models (e.g., C3D, 3D ResNet). In this study, we used 3D ResNet, which is a
temporally inflated version of ResNet [10], as the backbone network. Specifically, ST-ABN
is constructed using 3D ResNet on the basis of the slow pathway of SlowFast networks [7].
The spatial dimension of the input is 224×224, and the input data size is C×T×W×H. To
suppress overfitting, we apply a dropout [11] of 0.5 to both the ST attention branch and the
perception branch.

The loss function of ST-ABN L(xi) is calculated as

L(xi) = Latt(xi)+Lper(xi), (4)

where Latt(xi) and Lper(xi) denotes the training loss at the ST attention branch and percep-
tion branch, respectively. The Latt(xi) and Lper(xi) can be calculated by the softmax function
and cross-entropy error. The loss function of the ST-ABN is trained in an end-to-end manner.

3.2 Embedding Human Knowledge via Temporal Attentions
The attentions obtained from the ST attention branch sometimes indicate inappropriate gaz-
ing areas, similar to other visual explanation methods. However, ST-ABN can embed human
knowledge thanks to its attention mechanism. Therefore, we manually modified the atten-
tions and fine-tuned the ST-ABN. In this paper, we only modified the temporal attentions, as
modifying the attentions is highly costly, as shown in the supplementary material.

3.2.1 Fine-tuning with Modified Temporal Attentions

Temporal attentions are modified in three steps, as shown in Figure 2.
Step 1 Train the ST-ABN and collect the temporal attentions of misclassified videos.
Step 2 Manually modify the temporal attentions collected in step 1.
Step 3 Fine-tune the branches of ST-ABN with the modified temporal attentions in step 2.
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Step 1 : Train ST-ABN and collect temporal attentions
Step 2 : Manually modify temporal attentions

Step 3 : Fine-tune branches using modified temporal attentions
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Figure 2: Flow of embedding human knowledge into the ST-ABN via temporal attentions.

An example of temporal-attention modification is in the supplementary material.
After modifying the temporal attentions, the ST-ABN embeds human knowledge by be-

ing fine-tuned with these attentions. The loss function of fine-tuning L(xi) is defined as

L(xi) = Latt(xi)+Lper(xi)+Ltemp(xi). (5)

In this process, we add Ltemp(xi) to that of the ST-ABN calculated with L(xi) = Latt(xi)+
Lper(xi). By adding Ltemp(xi), temporal attentions obtained from the ST-ABN become
closer to the modified attentions. As for the loss of the temporal attentions Ltemp(xi), we
use the mean squared error of these temporal attentions. We denote the output temporal
attentions from the ST-ABN and modified temporal attentions as Mt(xi) and M′

t (xi), respec-
tively. The Ltemp(xi) is formulated as

Ltemp(xi) = γt
1
n

n

∑
j=1

(
{M′

t (xi)} j −{Mt(xi)} j
)2
, (6)

where n is the number of input frames, and γt is a scale factor.
Thus, we can embed human knowledge into the ST-ABN via modified temporal atten-

tions by fine-tuning the ST-ABN. During the fine-tuning, the ST-ABN optimizes its ST at-
tention and perception branches. The feature extractor, which extracts the feature maps from
an input video, is not updated during the fine-tuning process.

4 Experiments
We evaluated the effectiveness of embedding human knowledge into the ST-ABN using
Something-Something v.2, which is a benchmark for action recognition. We first compared
the recognition accuracy of the ST-ABN, with those of conventional models. We also quali-
tatively and quantitatively evaluated the explainability of spatial and temporal attentions.

4.1 Experiment Details
Something-Something v.2 [9] is used as a benchmark for large-scale action recognition with
220,847 videos and recognizes 174 basic actions of a person handling everyday objects. The
length of the videos ranges from 2 to 6 seconds. To embed human knowledge into the ST-
ABN via temporal attentions, we modified eight actions in which recognition accuracy in
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Table 1: Performance evaluation (top-1 and top-5 accuracy) of each model on Something-
Something v.2. Accuracy of 3D ResNet-50 and 3D ResNet-101 improved by introducing the
ST-ABN and on par with other conventional models.

Model Backbone Frames Top-1 Top-5
TSN [26] BN-Inception 8 27.8 57.6
TRN Multiscale [31] BN-Inception 8 48.8 77.6
TRN Two-stream [31] BN-Inception 16 55.5 83.1
CPNet [18] ResNet-34 24 57.7 84.0
TSM [17] ResNet-50 8 59.1 85.6
TSM [17] ResNet-50 16 63.4 88.5
STM [14] ResNet-50 8 62.3 88.8
STM [14] ResNet-50 16 64.2 89.8
GST [19] ResNet-50 16 62.6 87.9
ABM [33] ResNet-50 16×3 61.3 –
DFB-Net [20] ResNet-152 16 57.7 84.0
bLVNet-TAM [5] bLResNet-101 32×2 65.2 90.3
SmallBigEn [16] ResNet-50 24×2×3 64.5 89.1
PEM [29] ResNet-50 16×2 65.0 –
Zhou et al. [32] 3D DenseNet-121 16 62.9 88.0
3D ResNet-50 (Our baseline) – 32 51.4 80.1
ST-ABN (Ours) 3D ResNet-50 32 58.6 85.5
3D ResNet-50 (Our baseline) – 32×2 63.8 89.2
ST-ABN (Ours) 3D ResNet-50 32×2 64.1 89.6
3D ResNet-101 (Our baseline) – 32 57.7 82.8
ST-ABN (Ours) 3D ResNet-101 32 58.0 83.2
3D ResNet-101 (Our baseline) – 32×2 65.3 90.1
ST-ABN (Ours) 3D ResNet-101 32×2 65.8 90.4

both training and evaluation data were low. Seventy-four people manually modified 2396
videos and used them in the fine-tuning process. The backbone networks of the ST-ABN
were 3D ResNet-50 and 3D ResNet-101. Regarding for the number of frames to be input,
we compared the recognition accuracy between the case of inputting 32 frames selected at
random and that of inputting two sets of 32 frames in which the input video was randomly
divided into two segments. We optimized the networks by stochastic gradient descent with
momentum and set a momentum and weight decay of 0.9 and 0.0005, respectively. We used
over 8 GPUs, and each GPU had a batch size of 8, resulting in a mini-batch of 64 in total.
Our models were initialized using pre-trained models on ImageNet [4]. All models started
training at a learning rate of 0.01, and the learning rate was multiplied by 1/10 after the
saturation of the validation loss. During fine-tuning, we stared training at a learning rate of
0.0001 and the scale factor γt of 10. The other experimental details were the same as those
for training the ST-ABN.

4.2 Experimental Results
We quantitatively evaluated the ST-ABN and conventional models, and its effectiveness in
embedding human knowledge.

Comparison with Conventional Models We compared the performances of various con-
ventional models with that of the ST-ABN. Table 1 shows the top-1 and top-5 accuracies
of the comparison. It shows that introducing the ST-ABN into the backbone network, 3D
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Figure 3: Visualization results of spatial and temporal attentions of two videos. From top to
bottom, each figure shows input video frames and corresponding temporal attentions, spatial
attentions, and action class.

ResNet, improved recognition accuracy and performed equally to or greater than the other
models. This indicates that recognition accuracy can be improved by applying spatial and
temporal attentions to the recognition process through the attention mechanism.

Table 2: Performance of top-1 accu-
racy before and after fine-tuning. The
‘Modified’ column shows the accu-
racy for 8 action classes with modified
temporal attentions, while the ‘Other’
shows the accuracy for the remaining
166 action classes.

Modified Other All
Before 20.5 59.8 58.6
After 26.3 61.7 60.7

Comparison with Embedding Human Knowl-
edge We compared the performance of ST-ABN
before and after fine-tuning. The backbone net-
work and input frames used in experiment were 3D
ResNet-50 and 32, respectively. We selected eight
target actions that had less than 50% classification
accuracy on both the training and evaluation data,
and modified their temporal attentions. The results
are listed in Table 2. By being fine-tuned the ST-
ABN, the actions with modified temporal attentions
improved by 5.8%, and the actions without such a
process also improved by 1.9%. This result indi-
cates that embedding human knowledge is effective in improving recognition accuracy. Fur-
thermore, modifying temporal attentions in some actions improves the performance of other
action classes that are similar to be modified.

4.3 Evaluation of Attentions
We visualized spatial and temporal attentions through qualitative evaluation.

ST-ABN Figure 3 shows examples of visualized spatial and temporal attentions. For spa-
tial attentions, we visualized the attention maps of each frame as heat maps. The color bar
corresponding to each frame is a color representation of the weight of a temporal attention.

From the visualization results of spatial attentions, they strongly highlight the regions
handling any object and weakly highlight the other regions. From the results of temporal
attentions, large weight outputs correspond to frames with the motion representing the class
of action recognition. These results indicate that the ST-ABN can provide visual explanation
that takes into account both spatial and temporal information simultaneously.

ST-ABN with Embedded Human Knowledge Figure 4 shows the visualization results of



S.NOGUCHI ET AL.: EMBEDDING HUMAN KNOWLEDGE INTO ST-ABN 9

5

0.0

1.0

Before

After

Frame images

Motion frames Motionless frames

Time tLetting [a toy train] roll down a slanted surface

Figure 4: Visualization results from spatial and temporal attentions before and after fine-
tuning. The visualization result before is on top, and the bottom is after. Frame images are
shown in the middle of these results.

spatial and temporal attentions before and after fine-tuning the ST-ABN. Before fine-tuning,
the changes in the color bar of temporal attentions are large regardless of the presence or
absence of motion. In contrast, after fine-tuning, the motion was correctly recognized, and
the changes of it were gradual. This indicates that the introduction of human knowledge into
the ST-ABN enabled the acquisition of the appropriate attention focused on the motion seg-
ment. As for spatial attentions, before fine-tuning, the ST-ABN focuses on moving objects,
whereas after fine-tuning, it focuses on the changed area between frames. Since it some-
times treats the same objects in the different action classes of video, action recognition using
Something-Something v.2 needs to focus on the area changed by the motion, rather than the
object. This means we could obtain better spatial attentions.

4.4 Effect to Spatial Attentions

Table 3: Accuracy of be-
fore and after fine-tuning the
ST-ABN. A checkmark indi-
cates spatial attentions were
inverted. When decreasing
rate of inverting attentions
is greater, the ST-ABN ob-
tained more effective atten-
tions.

(a) Before
invert Top-1 Top-5

58.6 85.5
✓ 27.1 52.7

(b)After
invert Top-1 Top-5

60.7 86.9
✓ 20.1 43.4

We inverted spatial attentions to quantitatively evaluate the
effect of modifying temporal attentions on it. We compared
the recognition accuracy of the ST-ABN with and without in-
verting spatial attentions to confirm the effectiveness of spa-
tial information for each ST-ABN version. The spatial atten-
tions are inverted by

Ms invert(xi) = 1−Ms(xi), (7)

where Ms(xi) represents a spatial attention, and Ms invert(xi)
represents an inverted spatial attention.

Table 3 lists the results of comparing the recognition ac-
curacy of the ST-ABN by reversal of the spatial attentions.
The top-1 and top-5 accuracies of the ST-ABN before fine-
tuning decreased 31.5 and 32.8%, respectively, by inverting
the spatial attentions. In contrast, those accuracies after fine-
tuning decreased 40.6% and 43.6%, which is a higher rate
than before the ST-ABN is fine-tuned. This indicates that
modifying temporal attentions and fine-tuning the ST-ABN
with them has a positive effect on spatial attentions.
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5 Conclusion
We proposed the spatio-temporal attention branch network (ST-ABN) for providing a visual
explanation of video recognition and embedding human knowledge via temporal attentions.
The ST-ABN acquires the importance of spatial and temporal information, which can be ap-
plied to the attention mechanism to improve visual explanation and recognition performance.
Those are further improved by embedding human knowledge. Furthermore, we found that
modifying temporal attentions enables spatial attentions to acquire a more effective gazing
area. Our future work is to extend the ST-ABN for a transformer-based method.
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