
Visual Explanation for Cooperative Behavior in
Multi-Agent Reinforcement Learning

Hidenori Itaya, Tom Sagawa, Tsubasa Hirakawa, Takayoshi Yamashita, Hironobu Fujiyoshi,
Chubu University

1200 Matsumotocho, Kasugai, Aichi, Japan
{itaya, sagawa, hirakawa}@mprg.cs.chubu.ac.jp, {takayoshi, fujiyoshi}@isc.chubu.ac.jp

Abstract—Multi-agent reinforcement learning (MARL) can
acquire cooperative behavior among agents by training multiple
agents in the same environment. Therefore, it is expected to be
applied to complex tasks in real environments, such as traffic
signal control in a traffic environment and cooperative behavior
of robots. In this study, using the multi-actor-attention-critic
(MAAC) with the actor-critic method as a basis, we introduce
an attention head for the actor that calculates the agent’s action.
In contrast to the critic in MAAC, which shares the attention
head among all the agents, the attention head of the actor in
our method is constructed independently for each agent. This
allows the attention head of the actor to calculate actor-attention
(indicating which other agents are gazed at by each agent) and
to acquire cooperative behavior. We visualize actor-attention to
analyze the basis of agents’ decisions for cooperative behavior.
Using single spread, which is a multi-agent environment for
cooperative problems, we show that the basis of decisions for
cooperative behavior can be easily analyzed. We also demon-
strate that our method efficiently obtains cooperative behavior
considering other agents through quantitative evaluation of the
cooperative behavior.

Index Terms—multi-agent reinforcement learning, attention,
explainability

I. INTRODUCTION

Reinforcement learning (RL) can acquire the optimal be-
havior of an agent in an unknown environment by learning
from the rewards it receives through interactions with the
environment. The deep Q-network (DQN), a method that
combines Q-learning [1] and a deep neural network (DNN),
was proposed in 2015 and achieved a higher score than
human players on the Atari2600 [2]. Since the appearance
of this method, deep reinforcement learning (DRL), which
incorporates deep learning into RL, has become mainstream
and can handle problems with a large number of states, such
as images. Because of this property, RL has been applied to
various tasks such as robot control [3]–[6], automated driving
[7], and video games [8]–[10].

Various systems in the real world can be considered as
multi-agent systems (MAS). An MAS is essentially a system
in which there are multiple agents that recognize situations,
make decisions, and act on their own. Examples include crowd
behavior in a traffic environment or a team game such as
soccer. In a traffic environment such as a road, car drivers and
pedestrians are aware of the situation and act according to their
own judgment. Also, in soccer, players cooperate with each
other for the common goal of scoring points within a team, and

act against each other between their own team and an opposing
team. In these environments, RL for single-agent learning
cannot take into account the relationships between agents,
resulting in a significant performance degradation. Multi-
agent reinforcement learning (MARL) is an RL method that
addresses this problem by training multiple agents simultane-
ously in the same environment. The problems addressed by
MARL can be divided into two categories: “competitive prob-
lems”, in which multiple agents compete, and “cooperative
problems”, in which multiple agents cooperate. Competitive
problems are those in which each agent seeks to achieve its
own goal in an adversarial relationship, such as between its
own team and an opposing team in soccer, while a cooperative
problem is one in which multiple agents cooperate with each
other to achieve a common goal, such as overcoming traffic
congestion in a traffic environment. To solve the cooperative
problem, it is necessary for multiple agents to have a common
goal, and each agent must acquire cooperative behavior by
considering other agents in order to achieve the goal. For
this reason, many studies have been conducted on MARL
for the purpose of acquiring agents’ cooperative policies
[11]–[16]. However, while MARL achieves cooperative policy
acquisition, the reasons for agents’ decisions about cooperative
actions are unclear. This problem is a major obstacle when it
comes to the implementation of MAS using MARL in the real
world. The same problem of explaining the reasons for agents’
decisions exists in RL as well. Prior research on RL has
focused on explainable deep reinforcement learning (XRL),
which is devoted to analyzing the reasons for agents’ decisions
[17]–[27], but these studies have only examined RL for single-
agent learning, and MARL has not been addressed.

The purpose of our study is to analyze the reasons for
decisions on cooperative behavior considering other agents in
the multi-agent environment. For this purpose, we introduce an
attention head for the actor that calculates the actions of each
agent on the basis of the multi-actor-attention-critic (MAAC)
[13] utilizing the actor-critic method. In the attention head of
the actor, the state of the target agent is Query and the states
of the other agents are Key and Value, and the contribution
values of the other agents to the behavior of the target agent are
calculated. The critic in MAAC uses a single attention head
that is shared among the agents, but our method constructs
the attention head of the actor independently for each agent.
This makes it possible to calculate which other agents to



gaze at for each target agent. In this study, the attention
calculated by the attention head is called actor-attention. By
visualizing the actor-attention, we can analyze the reason
for the judgments about the cooperative behavior calculated
by the actor. We performed an evaluation experiment using
simple spread of the multi particle environment (MPE) [28],
which is a multi-agent environment. By comparing the rewards
in simple spread with the introduction of the attention head
and with the weight sharing the attention head weight, we
show that our method can analyze the reason for judgments
on cooperative behavior without inducing a decrease in reward.
We also show through quantitative evaluation that this method
is useful for acquiring cooperative behavior. We demonstrate
that the method can easily analyze the reason of judgments
for cooperative behavior by using two cooperative scenes in
simple spread as examples. 　

Contributions The main contributions of this paper are as
follows.

• We propose the introduction of an attention head for
actors in the MARL model based on the actor-critic
method. Actor-attention, which indicates whom the target
agent considered when outputting its actions, can be
easily obtained by forward propagation of the model.

• By visualizing actor-attention in the coordination prob-
lem, we can analyze the decision-making of agents that
have acquired cooperative behavior. We conducted ex-
periments using MPE’s simple spread to analyze agents’
decision making for cooperative problems.

Section II of this paper reviews related works and Sec.
III introduces the proposed method. In Sec. IV, we present
experimental results on MPE and discuss the performance of
the proposed method. We conclude in Sec. V with a brief
summary and mention of future work.

II. RELATED WORKS

A. Multi-agent reinforcement learning

The main learning method for MARL is centralized train-
ing decentralized execution (CTDE). CTDE is a method in
which the learning is performed based on global information
(information of all agents) when calculating the gradients of
policy models constructed for each agent, but the agents use
their own policy models for distributed control during testing
and operation. The main CTDE-based MARL methods are
described below.

Foerster et al. proposed counterfactual multi-agent policy
gradients (COMA) [11], in which action values are estimated
using a centralized critic shared among agents and action
selection is performed by distributed actors, each of which
has its own actor. This is one of the earliest methods in which
CTDE was introduced, and it achieved a strong performance
in a video game called StarCraft. Lowe et al. proposed multi-
agent deep deterministic policy gradient (MADDPG) [12],
which is based on deep deterministic policy gradient (DDPG)
[29], a typical DRL method, and extended it to multi-agent
by utilizing a centralized critic. The method achieved a strong

performance on 2D video games. Sunehag et al. designed
a centralized action value function that computes the action
value of each agent and proposed a value-decomposition net-
work (VDN) [30] that learns distributed actors by summing the
action values of each agent. Rashid et al. proposed QMix [14],
a Q-learning-based method that enables learning to consider
multiple agents by utilizing a mixing network that scales each
agent’s action value function (the centralized action value
function) across all agents. Iqbal et al. proposed MAAC [13],
a method that introduces an attention head to the critic of the
actor-critic method. The critic in this method uses the attention
head to calculate the other agent’s contribution from the target
agent’s point of view and then calculates the action value based
on the contribution. It also shares the attention head introduced
in the critique among the agents, which enables learning that
efficiently considers the entire agent.

B. Explainable deep reinforcement learning

Several studies have analyzed the reason for agents’ de-
cisions in DRL. Sorokin et al. proposed the deep attention
recurrent Q-network (DARQN) [17], which implements an
attention mechanism in DQN, a typical DRL method. It
introduces an attention mechanism in the LSTM front layer of
the network that outputs the action value function Q(s, a), thus
enabling attention to be obtained for the action value function
Q(s, a), which is an index for action selection. Manchin et
al. introduced self-attention to proximal policy optimization
(PPO) [31] and aimed to improve the score as well as to
analyze the policy. This method analyzes the agent’s decision-
making for the chosen action by visualizing an attention
map for the policy. Weitkamp et al. proposed a bottom-up
method based on gradient-weighted CAM (Grad-CAM) [32]
for the actor to calculate a policy of asynchronous advantage
actor-critic (A3C) [33] [22]. Grad-CAM is a method that
obtains an attention map by utilizing the response value of
the convolutional layer during forward propagation and the
gradient during backpropagation. It avoids degradation of the
recognition performance by generating the attention map from
the gradient information. Since Weitkamp et al.’s method is
based on Grad-CAM, backpropagation is required to calculate
the attention map. Greydanus et al. obtained a saliency map
in A3C by calculating a perturbed image with a Gaussian
filter applied to the gradient during backpropagation [24]. This
method requires backpropagation to obtain a saliency map
because it is a bottom-up method (similar to Weitkamp et al.’
s). Shi et al. proposed a self-supervised interpretable network
(SSINet) [20] that generates a fine-grained attention mask to
highlight task-related information relevant to agent decision-
making. They generate an attention mask for agents modeled
by an actor network by integrating SSINet in front of the
actor network. Rupprecht et al. propose a tool to visualize
DRL agent’s behavior [21]. They focus on the importance of
understanding the agent’s state recognition of very high or low
reward states, and analyze this by learning a generative model
of the environment and artificially generating new states to
induce the target agent’s behavior. Mott et al. obtained two



attentions (“what” and “where”) by using query-based atten-
tion in their actor-critic-based DRL method [27]. This method
requires significant changes in the network architecture (Key,
Value, etc.) because of the need to generate attention queries.
The method obtains different attentions associated with “what”
/ “where” by generating attention queries.

One XRL method for MARL is presented in the study by
Boggess et al. [34], who proposed a method for generating
linguistic explanations to answer queries about an agent’s
behavior. The method consists of three types of queries and
clarifies the agent’s behavior under certain conditions. In
contrast to Boggess et al.’s method, our study clarifies the
agent’s behavior by using actor attention, which indicates
which other agents were considered when the agent chose its
action, rather than language.

Yang et al. proposed Qattn, which introduces multi-head
attention to the mixing network in QMix [15]. The Q-value
Qtot shared among agents is calculated by calculating the
influence of agent i on the entire environment using multi-
head attention and weighting the Q-value Qi of each agent i.
It is possible to intuitively explain the Q-values acquired by
learning from the Attention weights in StarCraft. In contrast
to the method of Yang et al., our study provides a more
intuitive explanation of the behavior by introducing multi-head
attention to the Actor, which outputs the actions of each agent.
We can also obtain more interpretable Attention weights that
indicate which agents considered whom and to what extent in
the current state of the environment.

In DRL, policies are important clues for solving a given task
and environment. These explanatory methods provide some
approach to these policies to analyze decision making in DRL
agents. Thus, there are many explanatory methods for DRL
for single agents. However, there are relatively few studies on
the decision-making for agents in MARL with multiple agents.
Since strategies are crucial for understanding agent decision-
making in DRL, we believe that strategies are also important
in MARL. In this study, we focus on the cooperative behavior
acquired by agents through MARL and analyze the decision-
making of multiple agents.

III. PROPOSED METHOD

The main challenge in MARL is the coordination prob-
lem, and many methods have thus been proposed to acquire
cooperative behavior among agents. However, the reason for
the agents’ decisions on the acquired cooperative behavior is
unclear in these methods, which represents an obstacle when
it comes to the social implementation of MARL. To address
this, we propose introducing the actor’s attention head, which
calculates the agent’s action, on the basis of the multi-actor
attention-critic (MAAC) [13].

A. Structure of actor

In this section, we describe the structure of the actor in
the proposed method. An overview of the proposed method
is shown in Fig 1. MAAC, on which the proposed method is
based, utilizes an actor-critic structure consisting of an actor

that calculates the policy of an agent and a critic that calculates
the evaluation values for the agent.

As shown in the Fig. 1, the actor in the proposed method
consists of an MLP, an attention head, an MLP actor, and
a policy net. The MLP is a network that extracts features
from the state si, sj of each agent i, j. Here, j is a different
agent than i. The attention head is a network that calculates
the contribution value xi of the other agent j to the target
agent i using the calculated features ei, ej . The MLP actor
is a network that extracts features from the state si of the
target agent i. The policy net is a network that computes the
target agent i’s action ai based on the computed features and
the target agent i’s contribution xi. These networks do not
share the weights of the network among the agents, and the
agents have their own parameters. These structures are utilized
to obtain actor attention, which indicates which other agents
are being gazed at by the agent that has acquired cooperative
behavior. The critic in the proposed method has the same
structure as MAAC, and unlike the attention head of the actor,
it takes as input the state si, sj of each agent i, j and the
action ai, aj of each agent i, j calculated by the actor. Also,
MLPi,MLPj , and Attention head, which extract features from
the agent’s state si, sj in the critic, share network weights
among agents.

B. Attention head in actor

This section describes the processing in the actor’s attention
head in the proposed method.

Fig. 2 shows the structure of the attention head introduced
in the actor. The input to the attention head is the state feature
ei of the target agent i as Query and the state feature ej of the
other agent j as Key / Value. The attention head is composed
of Scaled dot product, Softmax, and Dot product. Scaled dot
product is a module that calculates the inner product between
Query and Key and scales it by the number of dimensions.
Softmax is a function that converts the value calculated by
the Scaled dot product to a value between 0 and 1, and then
converts it to attention. In our study, this attention is called
actor-attention attactor. Dot product is a module that weights
values using actor-attention attactor.

The actor-attention attactor at the attention head in the actor
is calculated by

attactor = softmax
(
ei · eTj /

√
dim

)
. (1)

where softmax(·) is the softmax function, ei, ej are the
features of agents i, j, and dim is the number of dimensions
of feature e.

IV. EXPERIMENTS

In this section, we present our evaluation of the proposed
method and analysis of the reasons for multi-agent decisions
using actor-attention for cooperative problems. The following
three evaluations were performed.

• A comparison of the performance of the proposed method
with the introduction of the attention head and network
weight sharing in the actor by reward.
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Fig. 1: Overview of the proposed method.
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Fig. 2: Structure of attention head for actor.

• An evaluation of the quantitative measures of cooperative
behavior.

• An analysis of the reasons for decisions about cooperative
behavior using actor-attention.

A. Multi-agent environment for cooperative problems

For these evaluations, we utilize simple spread of the multi
particle environment (MPE) [35], which is a cooperative
problem in a multi-agent environment. As shown in Fig. 3,
simple spread is a task in which multiple agents move toward
multiple landmarks that are the goals. In this task, each agent
and each landmark is randomly generated, and the goal is to
reach the landmarks while avoiding collisions between agents.
In this experiment, the number of landmarks was set to 3
(black) and the number of agents to 3 (red / green / blue).
Each agent has five possible actions: “Stop”, “Up”, “Down”,
“Right”, and “Left”. The reward design is a negative number
of distances to the nearest landmark from the agent and a
negative reward (−1) in the case of a collision. The episode
is assumed to end after 25 steps.

B. Comparison of performance using reward

We compare the reward values in simple spread using a
model trained on 100,000 episodes, from two points of view:

：Landmark

：Agent

Fig. 3: Example of simple spread task.

the introduction of the attention head and the network weight
sharing in the actor of the proposed method.

Table I shows a comparison by average reward value
between 100 episodes with the introduction of the attention
head in the actor and critic. Here, no-head is a model in which
neither the actor nor the critic has an attention head, a-head
and c-head are models in which one of them has an attention
head, and ours is a model in which both of them have an
attention head (which is the proposed method).

As we can see, the difference in average reward between a-
head and no-head is 0.1, indicating that there is no difference
in reward value. The difference of the average reward between
c-head and ours is 0.07, which also confirms that there is
no difference in the reward value. On the other hand, c-head
and ours, which introduces the attention head to the critic,
shows higher average rewards than no-head. These results
suggest that the introduction of an attention head to the critic
contributes significantly to the improvement of accuracy. Al-
though the introduction of the attention head to the actor does
not contribute significantly to the improvement of accuracy,
it is considered that actor-attention can be acquired without
inducing a decrease in accuracy when used in combination
with the introduction of the attention head to the critic.

Next, we compared the performance of the proposed method
when sharing the network weights in the attention head and
MLP. Table II shows a comparison of the average reward
values among 100 episodes when sharing the network weights



TABLE I: Comparison of mean reward by introduction of
attention head. We evaluated the models with the highest
reward values out of the 100,000 episodes trained.

Method Attention head Mean rewardactor critic
no-head –1.96
a-head ✓ –2.06

c-head (MAAC) ✓ –1.59
ac-head (ours) ✓ ✓ –1.66

TABLE II: Comparison of the mean reward over 100 episodes
with sharing weights of the network in the proposed method’s
actor. We evaluated the models with the highest reward values
out of the 100,000 trained episodes.

Method Actor weight sharing Mean rewardMLP Att. head
no-share –1.66

mlp-share ✓ –2.61
head-share ✓ –2.58

mlp-head-share ✓ ✓ –2.61

in the proposed method’s actor. Here, no-share is a model
without weight sharing in the actor (proposed method), mlp-
share and head-share are models with MLP or attention head
weight sharing in the actor, and mlp-head-share is a model
with both MLP and attention head weight sharing in the
actor. As we can see, the mean reward is significantly lower
for mlp-share, head-share, and mlp-head-share with shared
network weights compared to no-share. Actor is a mechanism
to calculate the actions of each agent, and the target to be
paid attention to differs from agent to agent. Therefore, our
method, which does not share network weights between MLP
and attention head, is considered to be the most accurate.

C. Quantitative evaluation of cooperative behavior

In this study, we define cooperative behavior as behavior
in which an agent does not move to the nearest landmark
and cedes a landmark to another agent. As a quantitative
evaluation of the cooperative behavior, the number of cooper-
ative behaviors (the number of times the target agent moved
from its initial position to a location other than the nearest
landmark) during 100 episodes is evaluated in simple spread.
In this evaluation, landmarks are set at a certain distance apart,
and rule-based control is utilized in which agents other than
the target agent move to the nearest landmark. Similarly, the
number of episodes in which conflicts between agents occur
is also compared.

Table III shows the number of cooperative actions among
100 episodes, and Table IV shows the number of episodes
in which collisions of agents occurred among 100 episodes.
Here, target agent is the agent to be evaluated and our is
the proposed method. As we can see in Table III, ours
increases the number of cooperative actions for each target
agent compared to MAAC, with a total improvement of 56
times for the three agents. Moreover, as shown in Table IV,

TABLE III: Number of cooperative actions in 100 episodes

Method Target agent Sumred green blue
maac 50 63 69 182
ours 72 85 81 238

TABLE IV: Number of episodes in which collision of agent
occurred in 100 episodes

Method Target agent Sumred green blue
maac 27 24 22 73
ours 19 23 19 61

the proposed method reduces the number of collisions by
12 times compared to MAAC. In other words, compared to
MAAC, the proposed method is better able to acquire collision
avoidance behavior. These results demonstrate that introducing
the attention head to the actor can promote the acquisition of
cooperative behavior as well as collision avoidance behavior.

D. Analysis of reasons for judging cooperative behavior using
actor attention

Finally, we analyze the reasons for agents’ cooperative
behavior by visualizing actor-attention in the simple spread
environment. Examples of actor-attention visualization are
provided in Fig. 4, where (a) (Scene 1) shows a scene in which
the Red agent cooperates with the Blue agent and (b) (Scene
2) is a scene in which the Green agent performs a cooperative
action against the Red agent.

1) Scene 1: Red is located in the middle of the two
landmarks in Fig. 4(a). Red gazes more strongly at Blue than
at Green throughout steps 1–4. In step 2, Red gazes more
strongly at the approaching Blue (0.85) and moves to the upper
landmark in steps 3–4. Similarly, Blue gazes more strongly
at Red than at Green through steps 1–4, and moves to the
lower landmark. On the other hand, Green gazes more strongly
at Blue than at Red throughout steps 1–4 and moves to the
nearest landmark. These results suggest that Red and Blue are
cooperating to reach the landmark without collision by gazing
at each other because the landmarks they are aiming for are
close. By gazing at the nearest agent (Blue), Green recognizes
that Blue is moving away from the landmark that Green is
aiming at and moves to the nearest landmark.

2) Scene 2: From step 1 in Fig. 4 (b), Red and Green have
the same agent with the nearest landmark. Red gazes at both
Green and Blue to the same extent and moves to the nearest
landmark. On the other hand, Green gazes strongly at Red in
steps 1 and 2 and moves to a distant landmark. Blue gazes
at both Red and Green to the same extent and moves to the
upper landmark throughout steps 1–4. From these results, we
can assume that Green recognizes that Red is moving toward
the same landmark and cedes the landmark to Red.

In our study, we analyzed the reason for the cooperative
behavior of multi-agents by visualizing actor-attention and
showed the analysis in simple spread.
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Fig. 4: Visualization of actor-attention in simple spread: The border indicates the color of the target agent. The thickness
of the arrows between agents indicates the degree to which the target agent is gazing at the other agents. The thicker the line
is, the more the target agent is gazing at the agent. The values plotted on the arrows are actor-attention values.



V. CONCLUSION

In this study, we proposed a method of introducing an
attention head to an actor that calculates the agent’s behavior
based on the multi-actor-attention-critic (MAAC) using the
actor-critic method. We obtained actor-attention, which indi-
cates to which of the other agents the agent pays attention,
by introducing an attention head to the actor. By visualizing
actor-attention, we have realized the analysis of the reason
for agents’ decisions for cooperative behavior in a multi-
agent environment. We performed experiments using MPE’s
simple spread to analyze the reasons for MARL agents’
decisions on cooperative behavior. In addition, our quantitative
evaluation of the cooperative behavior showed that the pro-
posed method is effective in acquiring cooperative behavior.
This method requires the state of all agents to be known for
the selection of an agent’s action due to the calculation of
actor-attention. We are therefore planning to develop a MARL
method that does not require this information, and to conduct
experiments in other environments.
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