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Abstract—Deep learning utilizes a vast amounts of training
data and updates weight parameters so as to minimize the
loss between a predicted probability and a ground truth label.
Generally, we use cross-entropy as the loss function. Although
loss functions for image classification other than cross-entropy
exist, their efficacy has not been adequately investigated. In
this work, we extensively analyze models trained with different
loss functions and clarify the properties of each. Specifically,
we analyze the feature space and explainability as well as
the classification accuracy on various benchmark datasets and
network architectures. For feature space and explainability, we
investigate the effectiveness of each loss function by quantitative
and qualitative evaluations. We then discuss the properties and
improvements of each.

Index Terms—loss function, attention, accuracy, representa-
tions, explainability

I. INTRODUCTION

In computer vision, convolutional neural networks (CNNs)
not only improve image classification but also aim to ex-
plain the classification reasons visually. CNNs can achieve
performances on par with that of human beings by updating
the weight parameters of a network so as to minimize the
loss of vast amounts of training data. While the loss during
is typically computed with cross-entropy, various other loss
functions have been proposed for obtaining excellent feature
representations [1]–[8].

Cross-entropy computes with predicted distribution and a
ground truth label. It considers only the correct class prob-
ability because weight parameters are optimized so as to be
close to the one-hot vector of the ground truth. By minimizing
cross-entropy loss, the correct probability is high and incorrect
probabilities inevitably decrease. Cross-entropy loss plays a
key role in separating each feature and is thus an essential
loss function for image classification.

Center loss [2] and prototype conformity loss (PC loss) [5]
are loss functions related to features utilizing trainable class
centroids prepared in equal number of the classes. Specifically,
center loss minimizes the Euclidean distance so as to keep
each feature close to the correct class centroid in an arbitrary
feature space. By introducing center loss, the feature space
in CNNs inhibits the intra-class variance by gathering the
same class features and improving the classification accuracy.
Feature space applied center loss becomes a large inter-class
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Fig. 1. Feature spaces on CIFAR-10 dataset compressed with UMAP. (a), (b),
and (c) are feature spaces with only cross-entropy loss, cross-entropy loss +
center loss, and cross-entropy loss + PC loss, respectively. (d) is the feature
space with cross-entropy loss + COT.

variance indirectly because of gathering same class features.
As for PC loss, it can pull apart directly between classes by
including the maximization of inter-class distance. PC loss has
been proposed for adversarial training [9], [10] and can obtain
a robust model by pulling apart a margin between features and
the decision boundary. Achieving the best performance with
these two loss functions requires them to be combined with
cross-entropy loss.

Chen et al. [6] proposed complement objective training
(COT) as a training method that maximizes complement
entropy. Complement entropy is the sum of the entropy of
all classes except the correct class. COT flattens incorrect
class probabilities by maximizing complement entropy after
minimizing cross-entropy loss. With this training approach,
COT can lead to excellent classification by feature space that
has a narrower intra-class variance than standard training and
improves the separateness of the inter-class.

Although these loss functions have similar effectiveness,
little is known about their respective benefits and drawbacks.
Moreover, past evaluations have typically focused on clas-



sification accuracy or qualitative demonstrations of feature
representations, while explainability and quantitative investiga-
tion of a feature space are frequently neglected. Since feature
representations compress high-dimensional features to just 2
or 3 dimensions with t-SNE [11] or UMAP [12], it is difficult
to compare appropriately when only qualitative evaluation is
used because the feature spaces of each model exhibit the same
trends (see Fig. 1). In the current work, we fairly train with
these loss functions by utilizing various network architectures
and datasets and then evaluate the trained models in terms
of accuracy, representations, and explainability to determine
the effectiveness of each loss function. Classification accuracy
is the match rate between the predicted class and the ground
truth. For feature representations, we perform not only qualita-
tive evaluation of a feature space compressed with UMAP but
also quantitative evaluation for raw features without any di-
mension reduction methods by using the Calinski & Harabasz
index (Cal.) [13] and Silhouette score (Sil.) [14]. By lever-
aging these metrics, we can interpret models quantitatively.
Explainability visualizes attention maps with Grad-CAM [15],
which we evaluate quantitatively with an insertion/deletion
score [16]. Following these three analyses, we discuss the
properties and effectiveness of each loss function.

Contributions. In this work, we comprehensively evaluate
loss functions that have been used unconsciously by many
researchers thus far. We also investigate not only individual
loss functions but also how they behave when combined with
COT. Our analyses examine the effectiveness of models trained
with each loss function in terms of accuracy, representations,
and explainability, and using the results as a basis, we clarify
the properties of the loss functions and the effectiveness of
various combination that have hitherto been ignored.

II. PRELIMINARIES AND RELATED WORKS

In this section, we define the variables and empirical risk
minimization utilized in this paper. We then describe the loss
functions in II-A and explainability in computer vision in II-B.

Notations. We use a training dataset D := {(xi, yi)}ni=1,
where xi ∈ Rc×h×w is an image and yi ∈ Y :=
{0, 1, . . . ,K − 1} is a ground truth to xi. We denote a model
f : Rc×h×w → RK parameterized by θ that maps xi to a K-
dimension vector. The loss between a predicted distribution
and the ground truth can be computed with the following
cross-entropy loss:

L(f(xi;θ), yi) = − log σyi
(f(xi;θ)), (1)

where σ : RK → [0, 1]K ,
∑K−1

k=0 σk(f(xi;θ)) = 1, and σyi is
the true class probability. To achieve an excellent performance,
we update the weight parameters θ so as to minimize the loss
to training data:

min
θ

E(xi,yi)∈D [L(f(xi;θ), yi)] . (2)

The model trains various images by applying a geometric
transform to the training data xi rather than directly using
it.

A. Loss function for image classification

Image classification in deep learning is typically done by
computed the loss between a predicted probability and the
ground truth label with cross-entropy Eq. (1). Cross-entropy
loss plays a key role in separating features and achieves ex-
cellent classification by minimizing the loss. Recent methods
utilizing CNNs have attempted to improve the classification
performance by training with loss functions into not only
likelihood space but also feature space.

Center loss. Center loss [2] is the loss function that inhibits
intra-class variance by concentrating the same class features
on one point in an arbitrary feature space. Specifically, it
prepares trainable centroids equal to the number of classes and
computes the ℓ2 norm between each feature and the correct
class centroid by

Lcenter =
1

2

n∑
i

∥g(xi)−wc
yi
∥22, (3)

where g : Rc×h×w → Rd is part of f and wc
yi

∈ Rd is the
correct centroid to g(xi). Center loss implicitly introduces the
effect of separate inter-class by inhibiting intra-class variance.

PC loss. PC loss [5] also utilizes trainable centroids but
differs from center loss in that it ncludes the ℓ2 norm between
each feature and incorrect class centroids and between the
centroids from the center loss. PC loss is represented as

Lpc =

n∑
i

{∥g(xi)−wc
yi
∥2 −

1

K − 1

∑
j ̸=yyi

(∥g(xi)−wc
j∥2

+∥wc
yi
−wc

j∥2)}, (4)

where wc
j ∈ Rd indicates an incorrect class centroid. As

aforementioned, although PC loss computes the ℓ2 norm
between centroids, among the centroids separates inevitably
if it can pull apart each feature to an incorrect cluster. Thus,
PC loss can obtain the same effect without its computing.

Complement entropy. Complement entropy is a loss func-
tion utilized in complement objective training (COT) [6]. It is
the sum of entropy to all classes except the correct class and
is represented by

C = − 1

n

n∑
i=1

K∑
j=1,j ̸=yi

pj(xi)

1− pyi(xi)
log

(
pj(xi)

1− pyi(xi)

)
, (5)

where p(xi) := σ(f(xi;θ)). COT maximizes the complement
entropy after minimizing the cross-entropy so that a predicted
distribution and the ground truth can be matched. By minimiz-
ing complement entropy, the predicted distribution becomes
sharp because incorrect class probabilities are flattened. Thus,
CNNs that apply COT lead to accurate classification due
to improvements in the separateness for inter-class. Guided
complement entropy (GCE) [7] is a derivative of COT that
attempts to enhance adversarial robustness.

While these loss functions show good potential in terms
of improving the classification performance, there has been
virtually no detailed but analysis or discussion of their effect.
In this work, we therefore focus on investigating trends related



TABLE I
NETWORK ARCHITECTURE ON EACH DATASET.

Dataset Network architecture
SVHN

ResNet-20, ResNet-56, WRN-28-10CIFAR-10
CIFAR-100

Tiny ImageNet ResNet-18, ResNet-50, WRN-28-10

to the accuracy, representations, and explainability of loss
functions, both individually and combined with COT.

B. Explainability

Research over the past several years has explored how
to visually explain the decision reasons [15]–[22]. Class
activation mapping (CAM) [17] applies the feature maps
output from the last convolution to global average pooling
(GAP) [23] and classifies images by inputting them to a
fully connected layer. Although this approach can effectively
visualize attention maps for each class thanks to utilizing the
response of a convolution layer and the weight at the last fully
connected layer, CAM induces performance degradation. At-
tention branch networks (ABN) [22] achieve an excellent per-
formance by obtaining attention maps during the training and
multiplying them by the features with the attention mechanism.
Gradient-weighted CAM (Grad-CAM) [15] obtains attention
maps utilizing only positive gradients w.r.t. the specific class.
Grad-CAM often leverages the analysis method of CNNs, as
this enables attention maps from various trained models to be
obtained.

In the current work, we obtain attention maps of each
trained model with Grad-CAM so as to analyze the explain-
ability of trained models with various loss functions.

III. INVESTIGATING EFFECT OF VARIOUS LOSS
FUNCTIONS

In this section, we compare and evaluate the loss functions
discussed in II-A from the following three viewpoints:

• Accuracy: the classification performance of the trained
model with an arbitrary loss function.

• Representation: quantitative and qualitative evaluation for
arbitrary feature space.

• Explainability: quantitative and qualitative evaluation of
attention maps.

A. Experimental details

We use SVHN [24], CIFAR-10, CIFAR-100, and Tiny
ImageNet as training datasets. SVHN is a digits classification
benchmark dataset with ten classes including 73,257 images
for training and 26,032 for inference, with images sized
32×32. CIFAR-10 is a natural image dataset with ten classes
including 50,000 images for training and 10,000 for inference,
with images sized 32×32. CIFAR-100 is the same as CIFAR-
10 except for the number of classes and images assigned
to each class. Tiny ImageNet is a general object recognition
dataset with 200 classes including 100,000 images for training
and 10,000 for inference, with images sized 64 × 64. We

train the models using residual networks (ResNet) [25] and
WideResNet [26] on these datasets. Table I lists the network
architectures used for each dataset.

For all datasets and network architectures, we train for 300
epochs with a batch size of 128 (100 epochs are delegated
for pre-training). The optimizer for updating the whole model
utilizes stochastic gradient descent (SGD) with the weight
decay of 1 × 10−4, momentum of 0.9, and learning rate of
0.1. Centroids of center loss and PC loss updated with SGD
have the learning rate and weight decay of 0.5 and 1× 10−4,
respectively. The optimizer for complement entropy uses SGD
with the weight decay of 1 × 10−4, momentum of 0.9, and
learning rate of 0.01. The learning rate of all optimizers is
multiplied by 1/10 at {100, 150} epochs.

B. Evaluation metrics

Classification accuracy of the trained models is computed
by

Acc =
1

n′

n′∑
i=1

1[argmax
j

pj(xi) = yi], (6)

where n′ is the amount of inference data and 1[·] is the
indicator function.

We qualitatively evaluate the feature space by compressing
high-dimensional features of an arbitrary layer to 2D with
UMAP. For the quantitative evaluation of the feature space, we
use the Calinski & Harabasz index (Cal.) [13] and Silhouette
score (Sil.) [14], which can quantitatively evaluate raw fea-
tures. Cal. is a metric representing the degree of condensation
of the intra-class and the dispersion of the inter-class, and is
computed by

Cal. =

∑K
k=1 n

′
k × ∥ck − c∥2∑K

k=1

∑n′
k

i=1 ∥gk(xi)− ck∥
× n′ −K

K − 1
, (7)

where c and ck are the centroid of the whole dataset and
the centroid of class k, respectively. Sil. is a metric that
can represent the separation distance of the inter-class, and
is computed by

Sil.(xi) =
b(xi)− a(xi)

max (b(xi), a(xi))
, (8)

where a(xi) is the average intra-class distance and b(xi) is
the average nearest-cluster distance for each feature.

Attention maps are evaluated using an insertion/deletion
score [16] that gradually injects/eliminates a pixel from high
attention. We compute the insertion/deletion score with the
area under the curve drawn for the classification accuracy of
each ratio. Insertion/deletion score are defined within [0, 1],
where a high/low value indicates a good performance.

C. Classification accuracy

Table II lists the classification accuracy on each dataset with
various combinations of loss functions. First, focusing on the
results of ResNet-20/18, we can see confirmed that combining
the center loss or PC loss with cross-entropy loss achieved
equal or better results than using only cross-entropy. For



TABLE II
CLASSIFICATION ACCURACY ON EACH DATASET WITH VARIOUS COMBINATIONS OF LOSS FUNCTION [%]. BOLD SYMBOLS INDICATE THE BEST

PERFORMANCE. Lxent INDICATES THE MODEL WITH CROSS-ENTROPY LOSS.

SVHN CIFAR-10 CIFAR-100 Tiny ImageNet SVHN CIFAR-10 CIFAR-100 Tiny ImageNet
w/o COT w/ COT

ResNet-20/18
Lxent 97.18 95.00 76.58 59.69 97.33 95.19 76.60 59.86

Lxent + Lcenter 97.27 95.32 77.77 60.07 97.36 95.26 77.93 60.28
Lxent + Lpc 97.35 95.21 77.50 60.20 97.31 95.36 77.89 60.70

ResNet-56/50
Lxent 97.56 95.50 77.48 62.91 97.47 95.64 76.60 62.50

Lxent + Lcenter 97.51 95.20 77.79 60.91 97.49 94.78 77.83 61.03
Lxent + Lpc 97.52 95.04 77.51 60.98 97.48 94.57 77.84 61.11

WRN28-10
Lxent 97.33 95.64 78.53 64.30 97.48 95.74 78.40 64.45

Lxent + Lcenter 97.38 95.63 79.84 63.35 97.44 95.58 79.44 63.11
Lxent + Lpc 97.47 95.38 79.91 63.51 97.42 95.80 79.55 63.95

CIFAR-100, there was an accuracy improvement of over the 1
point compared to cross-entropy loss only. We also confirmed
that combining COT with each loss function resulted in higher
accuracy than the results without COT.

Next, focusing on the results of ResNet-56/50, the models
without COT had the highest accuracy compared to when
only cross-entropy loss was used, except for CIFAR-100. In
particular, using center loss or PC loss on CIFAR-10 and Tiny
ImageNet significantly dropped the performance. While center
loss and PC loss showed excellent performances on CIFAR-
100, the results on CIFAR-10 and Tiny ImageNet showed no
improvement in accuracy despite combining with COT.

Finally, for WRN28-10, the model without COT showed a
significant drop in accuracy by including center loss and PC
loss on Tiny ImageNet, whereas the performance on CIFAR-
100 improved. The model with COT also exhibited the same
trends as the results with ResNet-56/50.

These results indicate that datasets for easy classification
(e.g., SVHN) did not benefit much from the loss function
of feature space. In contrast, the datasets with many classes
obtained excellent performances by narrowing the intra-class
variance and improving the separateness of inter-class with
center loss and PC loss. As for Tiny ImageNet, it achieved
a sufficient performance with only cross-entropy when the
model had enough capacity.

D. Representation in feature space

CIFAR-100 or Tiny ImageNet are not suitable for visualiza-
tion because of the many classes and few data in each class.
Therefore, we visualize the feature space compressed with
UMAP on CIFAR-10. The quantitative evaluation compares
all datasets because it can compute using raw features without
any dimensional reduction.

First, we discuss the compressed feature space with UMAP,
as shown in Fig. 2. These visualized results are the compressed
features output at the last convolution layer of ResNet-20. In a
nutshell, we confirmed visually that the feature space narrowed
the intra-class variance by introducing center loss or PC loss.
As mentioned above, there were no major differences with and
without COT exhibited a slightly larger inter-class variance

than the vanilla result. As shown in Fig. 2, it was difficult to
qualitatively observe the effect that separates among features
incorporating PC loss.

Next, we discuss the quantitative evaluation of the feature
space. Focusing on the results of Sil. listed in Table III, we can
see that introducing center loss and PC loss improved the score
on all datasets. Center loss and PC loss scores are comparable
regardless of the dataset. We confirmed that increasing the
network capacity results in the same class features being
gathered despite only cross-entropy loss. The results of Cal.
listed in Table IV showed the same as the trends as Sil.. We
presume that Cal. and Sil. are weakly correlated because both
had high scores. Moreover, the scores of both Cal. and Sil.
decreased with an increase in the number of classes. This
phenomenon suggests that it is difficult to obtain excellent
feature space on such a highly complex dataset.

Although the results of the qualitative evaluation in Fig. 2 do
not indicate any major differences, the quantitative evaluation
revealed significant differences. This demonstrates that utiliz-
ing both quantitative and qualitative evaluations can provide
provide deep insights into the feature space, since only the
2D-plane compressed high-dimension features are difficult to
determine excellent representations for.

E. Explainability for attention maps

We visualize the attention maps with Grad-CAM for the
models trained on Tiny ImageNet and evaluate them qualita-
tively. Datasets other than Tiny ImageNet are quantitatively
evaluated with only insertion/deletion scores, as the image
sizes are small image sizes and the classification target is
included in the center of the image.

The attention maps of ResNet-18 obtained with Grad-CAM
are shown in the Fig. 3. Attention maps obtained by center loss
and PC loss had greater attention to local regions than those
with only cross-entropy loss. The attention maps obtained with
and without COT are almost identical. Fig. 3(a) shows an
image where the classification target occupies almost the entire
image, and the model with cross-entropy loss widely attended
to the classification target. Although center loss and PC loss
could both attend to the local area of the classification target,
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Fig. 2. Visualized feature space of each loss function on inference data of CIFAR-10. These features have been compressed to 2 dimensions with UMAP.
Top and bottom examples are for feature space without and with COT, respectively.

TABLE III
QUANTITATIVE EVALUATION RESULTS OF FEATURE SPACE WITH SILHOUETTE SCORE. THIS SCORE DEFINES A RANGE OF [−1, 1], AND A HIGHER VALUE

IS BETTER. BOLD SYMBOLS INDICATE THE BEST RESULT.

SVHN CIFAR-10 CIFAR-100 Tiny ImageNet SVHN CIFAR-10 CIFAR-100 Tiny ImageNet
w/o COT w/ COT

ResNet-20/18
Lxent 0.544 0.377 0.063 0.003 0.684 0.465 0.065 0.004

Lxent + Lcenter 0.862 0.790 0.255 0.032 0.877 0.793 0.242 0.032
Lxent + Lpc 0.874 0.788 0.254 0.026 0.868 0.792 0.256 0.037

ResNet-56/50
Lxent 0.556 0.391 0.085 0.020 0.677 0.484 0.090 0.023

Lxent + Lcenter 0.889 0.794 0.330 0.036 0.873 0.801 0.294 0.047
Lxent + Lpc 0.887 0.801 0.327 0.038 0.858 0.787 0.334 0.044

WRN28-10
Lxent 0.616 0.445 0.104 0.018 0.748 0.582 0.108 0.019

Lxent + Lcenter 0.862 0.812 0.349 0.053 0.883 0.818 0.362 0.051
Lxent + Lpc 0.871 0.791 0.362 0.052 0.866 0.822 0.361 0.050

they were not able to provide an adequate explanation for their
decision-making process. The image in Fig. 3(b) includes an
object other than the classification target, and the classification
target itself is extremely small. All models trained with each
loss function could perform classification correctly, especially
since they all focused locally on the appropriate area by
center loss or PC loss, and therefore improved explainability.
Fig. 3(c)–(e) show more interesting results in that they are
misclassifications or unconfident samples with only cross-
entropy. For the models without COT, we can see in Fig. 3(c)
that they induced misclassification due to focusing on wide
regions of the image. In contrast, center loss or PC loss
led to accurate classification thanks to focusing only on the
characteristic regions of the classification target. The results
in (d)(e) show the same trend. In Fig. 3(c), the classification

target could be appropriately focused on by combining COT
with PC loss.

Fig. 4 shows attention maps of ResNet-18 and WRN28-
10. The attention maps with only cross-entropy loss tended
to focus on the whole classification target, the same as with
ResNet-18. Although center loss, PC loss, and COT all encour-
aged focusing on the local area, they were unable to capture
the characteristics of the target. Interestingly, the classification
result or confidence score of each data is adequate thanks to
the correct by the benefit of large-scale network architecture,
despite different attention areas to the target. Moreover, local
attention maps that have inappropriate attention regions to the
target induced misclassification.

The quantitative evaluation results of the attention maps
are listed in Table V. As we can see, the results with



TABLE IV
QUANTITATIVE EVALUATION RESULTS OF FEATURE SPACE WITH CALINSKI & HARABASZ INDEX. THIS SCORE IS DEFINED WITH A VALUE GREATER THAN

0, AND A HIGHER VALUE IS BETTER. BOLD SYMBOLS INDICATE THE BEST RESULT.

SVHN CIFAR-10 CIFAR-100 Tiny ImageNet SVHN CIFAR-10 CIFAR-100 Tiny ImageNet
w/o COT w/ COT

ResNet-20/18
Lxent 12420.282 2666.847 72.687 22.855 22939.190 3363.283 72.644 22.855

Lxent + Lcenter 53209.170 15588.983 226.769 46.636 54516.244 14269.112 220.540 47.130
Lxent + Lpc 54939.280 15218.744 227.184 46.568 52848.282 14280.560 227.568 47.974

ResNet-56/50
Lxent 12994.215 2847.820 87.742 30.635 22127.795 3617.251 88.059 31.741

Lxent + Lcenter 59083.890 14513.632 295.858 52.465 55486.307 12893.707 271.807 50.010
Lxent + Lpc 57367.503 14410.582 294.515 52.711 57315.224 12698.176 291.533 51.320

WRN28-10
Lxent 17127.821 3549.024 96.0172 30.834 32332.632 5931.204 94.714 31.643

Lxent + Lcenter 53761.992 16395.141 321.329 53.119 55713.822 15607.673 317.700 50.218
Lxent + Lpc 57868.697 16096.414 319.900 52.903 54049.729 16046.791 319.667 50.626

TABLE V
INSERTION/DELETION SCORES ON EACH DATASET. BETTER ATTENTION MAPS HAVE HIGHER/LOWER INSERTION/DELETION SCORES. BOLD SYMBOLS

INDICATE THE BEST SCORE ON EACH DATASET.

SVHN CIFAR-10 CIFAR-100 Tiny ImageNet SVHN CIFAR-10 CIFAR-100 Tiny ImageNet
w/o COT w/ COT

Insertion score
Lxent 0.585 0.545 0.385 0.386 0.552 0.544 0.392 0.390

Lxent + Lcenter 0.275 0.234 0.267 0.302 0.259 0.231 0.260 0.308
Lxent + Lpc 0.339 0.233 0.263 0.298 0.300 0.227 0.272 0.314

Deletion score
Lxent 0.258 0.422 0.267 0.419 0.238 0.439 0.265 0.413

Lxent + Lcenter 0.514 0.710 0.322 0.495 0.413 0.726 0.319 0.492
Lxent + Lpc 0.457 0.721 0.328 0.489 0.424 0.696 0.317 0.494

Difference between insertion score and deletion score
Lxent 0.327 0.123 0.118 -0.033 0.314 0.105 0.127 -0.023

Lxent + Lcenter -0.239 -0.476 -0.055 -0.193 -0.154 -0.495 -0.059 -0.184
Lxent + Lpc -0.118 -0.488 -0.065 -0.191 -0.124 -0.469 -0.045 -0.180

only cross-entropy loss had the best performance across all
results. We found that uncomplicated data (e.g., small image
sizes) had significantly lowered insertion/deletion scores due
to incorporating center loss or PC loss. This trend implies
that their attention maps are difficult to classify and have low
explainability with only these regions because of too much
local attention. We conclude that both center loss and PC loss
provided average attention maps of the correct class for easily
classifiable data because they narrow the intra-class variance
of features.

IV. DISCUSSION

The experiment in Section III clarifies that the loss function
directly pulling away inter-class features (e.g., PC loss) does
not significantly improve classification accuracy or feature
representations. Indeed, PC loss is at risk for training collapse
due to divergence of the loss, since the loss is maximized to
pull apart the inter-class. We therefore trained PC loss by mul-
tiplying it by an extremely small coefficient, but unfortunately
this coefficient reduced the positive effect of pulling apart the
inter-class, and the PC loss thus performed as poorly as the
center loss.

Moreover, we found that directly flattening incorrect class
probabilities by maximizing the complement entropy (e.g.,
COT) resulted in no significant benefit in terms of accuracy,

representations, or explainability. COT does not presuppose
that incorrect class probabilities decrease, although it does
aim to maximize complement entropy. In other words, COT
has difficulty pulling apart inter-class variance because it
simply flattens the probabilities of all incorrect classes. We
therefore conclude that it is important to flatten incorrect class
probabilities by considering the correct class probability (e.g.,
GCE [7]).

In terms of explainability, both center loss and PC loss
can improve the classification accuracy or the explainability
of its decision-making process for images including multiple
objects or small targets. As mentioned earlier, the effects of
PC loss and COT for maximizing inter-class distance are
insufficient. Therefore, we expect that if it is possible to
inject a powerful effect into them, we can obtain excellent
attention maps capturing specific features, which is extremely
important in fine-grained image classification. We leave this
improvement to future work.

V. CONCLUSION

In this paper, we examined the accuracy, representations,
and explainability of cross-entropy loss, center loss, PC loss,
and COT. Experimental results demonstrated that the feature
representations and explainability could be significantly im-
proved by minimizing the intra-class variance. In particular,
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Fig. 3. Attention maps of trained ResNet-18 with each loss function on Tiny ImageNet. Left-most images are input images, and attention maps in sky blue
and orange dashed lines indicate the results on models trained with and without COT, respectively. Attention maps in each group are (left to right) Lxent,
Lxent + Lcenter, and Lxent + Lpc.

center loss and PC loss both lead to improved accuracy and
better attention maps for images including multiple objects or
small targets. However, we also observed that they degrade ex-
plainability because of too much local attention to images that
include the classification target in the center. Loss functions
that directly pull apart inter-class features do not perform well
in the current design. Overall, our findings suggest that these
loss functions are suitable for fine-grained image classification.
Furthermore, we should extensively investigate more loss
functions (e.g., hinge loss and binary cross-entropy loss) and
network architectures (e.g., DenseNet and MobileNet) rather
than only the four types of loss functions targeted in this paper.
In future works, we plan to not only carry out fine-grained
datasets but also reveal the nature of more loss functions and
network architectures.
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