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Abstract—Domestic service robots (DSRs) are a promising
solution to the shortage of home care workers. However, one of
the main limitations of DSRs is their inability to interact naturally
through language. Recently, data-driven approaches have been
shown to be effective for tackling this limitation; however, they
often require large-scale datasets, which is costly. Based on this
background, we aim to perform automatic sentence generation
of fetching instructions: for example, “Bring me a green tea
bottle on the table.” This is particularly challenging because
appropriate expressions depend on the target object, as well as
its surroundings. In this paper, we propose the attention branch
encoder–decoder network (ABEN), to generate sentences from
visual inputs. Unlike other approaches, the ABEN has multimodal
attention branches that use subword-level attention and generate
sentences based on subword embeddings. In experiments, we
compared the ABEN with a baseline method using four standard
metrics in image captioning. Results show that the ABEN
outperformed the baseline in terms of these metrics.

Index Terms—Novel Deep Learning Methods, Deep Learning
for Visual Perception

I. INTRODUCTION

THE growth in the aged population has steadily increased
the need for daily care and support. Domestic service

robots (DSRs) that can physically assist people with disabil-
ities are a promising solution to the shortage of home care
workers [1]–[3]. This has boosted the need for standardized
DSRs that can provide necessary support functions.

Nonetheless, one of the main limitations of DSRs is their
inability to interact naturally through language. Indeed, most
DSRs do not allow users to instruct them with diverse expres-
sions. Recent studies have shown that data-driven approaches
are effective for handling ambiguous instructions [4]–[7].

Unfortunately, these approaches often require large-scale
datasets, and are time-consuming and costly. The main reason
is the time that is required for human experts to provide
sentences for images. Hence, methods to augment or generate
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Fig. 1. Overview of the ABEN: the ABEN generates fetching
instructions from given input images.

instructions automatically could drastically reduce this cost
and alleviate the burden of labeling from human experts.

Based on this background, we aim to perform automatic
sentence generation of “fetching instructions” (instructions to
the DSR to fetch items). This task involves generating a natural
fetching instruction, given a target object in an image: for
example, “Bring me a green tea bottle on the table.” Such
an instruction often includes a referring expression, such as
“a green tea bottle on the table.” A referring expression is
an expression in which an object is described with regard to
a landmark, such as “table”. This is particularly challenging
because of the many-to-many mapping between language and
the environment.

In this paper, we propose the attention branch encoder–
decoder network (ABEN), which generates fetching instruc-
tions from visual inputs. Fig. 1 shows a schematic diagram of
the approach. The ABEN comprises a visual attention branch
(VAB) and a linguistic attention branch (LAB), to attend both
visual and linguistic inputs. An additional generation branch
is introduced to generate sentences.

The ABEN extends the attention branch network (ABN) [8]
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by introducing multimodal attention branches. In the ABN,
attention maps are output by an attention branch, which
highlights the most salient portions in the image, given a label
to predict. In the ABEN, the attention map given by the VAB
can serve as a visual explanation of the model, which is usually
a black box. Similarly, the attention map provided by the LAB
can serve as an explanation of subword relationships.

The ABEN was inspired by our previous approach, the mul-
timodal ABN (Multi-ABN) [9], and shares its basic structure.
The main differences between the ABEN and the Multi-ABN
include the subword-level attention used in the LAB and BERT
[10]-based subword embeddings used for sentence generation.
A demonstration video is available at this URL1.

The main contributions of this paper are as follows:
• The ABEN extends the Multi-ABN by introducing a

linguistic branch and a generation branch, to model the
relationship between subwords.

• The ABEN combines attention branches and BERT-based
subword embedding, for sentence generation.

II. RELATED WORK

There have been many attempts to construct communicative
robots for manipulation tasks [3]. Recently, in some studies
[6], [7], [11]–[13], linguistic inputs were processed along
with visual information to handle the many-to-many mapping
between language and the environment.

These studies have often used data-driven approaches that
were originally proposed in the natural language processing
(NLP) and computer vision communities. For instance, [12]
proposed a method for predicting target objects from natural
language in a pick-and-place task environment, using a visual
semantic embedding model. Similarly, [13] tackled the same
type of problem using a two-stage model to predict the likely
target from the language expression and the pairwise relation-
ships between different target candidates. More recently, in
a context related to DSRs, [7] proposed the use of both the
target and source candidates to predict the likely target in a
supervised manner. In [6], the placing task was addressed
through a generative adversarial network (GAN) classifier
that predicted the most likely destination from the initial
instruction.

Nonetheless, these methods required large-scale datasets,
which are seldom available in a DSR context because they re-
quire substantial labeling effort from human experts. Datasets
such as RefCOCO [14] or MSCOCO [15] are widely used in
visual captioning, however they are not specifically designed
for robots. The Room-to-Room dataset [4] is a dataset de-
signed for multimodal language understanding for navigation,
however manipulation is not handled. Conversely, a pick-
and-place dataset such as PFN-PIC [12], contains top-view
images only, and does not handle furniture, and is therefore
not suitable for DSRs.

To address this problem, a promising solution involves gen-
erating synthetic instructions to label unseen visual inputs to
augment such datasets. Moreover, such a method enables real-
time task generation in simulators, where DSRs are instructed
to fetch everyday objects in randomly generated environments.

1https://youtu.be/H7vsGmJaE6A

Fig. 2. Left: Typical scene in which the DSR is observing everyday
objects. Right: The camera image recorded from the DSR’s position
shown in the left-hand panel. The blue and green boxes represent the
target (blue glass) and its source (metal wagon). Typical instructions
include “Bring me the blue glass next to the teddy bear” and “Bring
me the blue glass on the same level as the teddy bear on the metal
wagon.”

Most studies use rule-based approaches to generate sen-
tences (e.g. [16]),

however, they cannot fully capture and reproduce the many-
to-many mapping between language and the physical world.
Indeed, handling natural sentences that include referring ex-
pressions is particularly challenging. Conversely, an end-to-
end approach was used in [17] for estimating spatial relations
to describe an object in a sentence. Nonetheless, the set of
spatial relations was limited to six and was hand-crafted.
Unlike these studies, we target an end-to-end approach that
does not require hand-crafted or rule-based methods. In our
previous work [9], we introduced the Multi-ABN, which
generates fetching instructions by using a multimodal attention
branch mechanism [8]. The Multi-ABN is a long short-term
memory (LSTM) that is enhanced by visual and linguistic
attention branches.

This study extends the Multi-ABN by introducing subword-
level attention, which has the benefit of interpretability, unlike
the linguistic attention in [9]. Our approach can model the
relationship between the generated subwords. Furthermore,
unlike most sentence generation methods, our approach gen-
erates sentences via a BERT-based subword embedding [10]
model, which was shown by [7] to perform better than a word
embedding model.

Therefore, the architecture of the ABEN extends the ABN
with multimodal attention. Multimodal attention has been
widely investigated in image captioning. Recent studies in
multimodal language understanding have shown that both
linguistic and visual attention are beneficial for question-
answering tasks [18], [19] or visual grounding [20], [21].
Similarly, [22] introduces an attention method that performs a
weighted average of linguistic and image inputs. In contrast to
these attention mechanisms, attention branches are based on
class activation mapping (CAM) networks [23]. CAM focuses
on the generation of masks that, overlaid onto an image,
highlight the most salient area given a label. In the ABN,
such a structure is introduced through an attention branch that
generates attention maps to improve the prediction accuracy of
the base network. In the ABEN, visual and linguistic attention
maps are generated to mask the visual input and the sequence
of generated subwords.

Subwords have been widely used for machine translation
[24]–[26] as well as being used in most recent language
models such as BERT, ALBERT [27] or XLNet [28]. These
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Fig. 3. Structure of the ABEN. The ABEN comprises an encoder, a decoder, a visual attention branch, a linguistic attention branch, and a
generation branch.
methods achieve state-of-the-art performance in many natural
language understanding tasks. Combining such a method with
the attention branch architecture to enrich sentence generation,
is one of the main novelties of the ABEN. Indeed, traditionally
in robotics, very simple embedding and language models have
been used. For example, recent studies used simple skip-gram
(e.g. [12], [13], [29], [30]).

III. PROBLEM STATEMENT

A. Task description
The study targets natural language generation for DSRs.

Hereinafter, we call this task the fetching instruction gener-
ation (FIG) task. A typical scenario is shown in Fig. 2, in
which the target to fetch is described in the instruction “Bring
me the blue glass on the same level as the teddy bear on the
metal wagon.” This example emphasizes the challenges of the
FIG task, because each instruction should describe the targeted
object uniquely.

To avoid ambiguity, it is necessary to generate sentences
including referring expressions, because there may be many
objects of the same type. Referring expressions allow the
targeted object to be characterized uniquely with respect to its
surrounding environment. In Fig. 2, the referring expression
“on the same level as the teddy bear on the metal wagon” is
needed to disambiguate the targeted object from others.

This is particularly challenging because appropriate expres-
sions depend on the target itself, as well as its surroundings.
For instance, the target object in Fig. 2 can be described
as “glass near the bear doll” and “blue tumbler glass on
the second level of the wagon”, in addition to many other
candidate expressions. Therefore, it is necessary to handle the
many-to-many mapping between language and the physical
world.

The FIG task is characterized by the following:
• Input: RGB image of an observed scene.
• Output: the most likely generated sentence for a given

target and source.
The inputs of the ABEN are explained in detail in Section IV.

We define the terms used in this paper as follows:

• Target: an everyday object, e.g., bottles or fruit, that is
to be fetched by the robot.

• Source: the origin of the target, e.g., furniture, such as
shelves or drawers.

In the FIG task, we assume that the two-dimensional bound-
ing boxes of the target and the source are defined in advance.
Furthermore, referring expressions related to depth perception
(e.g., “behind” or “in front”) are not addressed because no
three-dimensional information is available.

The evaluation of the generated sentences is based on
several standard metrics—BLEU [31], ROUGE [32], ME-
TEOR [33], and CIDEr [34]—that are commonly used for
image captioning studies. Although they are imperfect, by
using several metrics, we may overcome their limitation and
assess better the quality of the sentences. In [33], BLEU and
METEOR were reported to have a correlation of 0.817 and
0.964, respectively, with human evaluation. Furthermore, these
metrics also allow us to compare our approach to existing
methods.

A simulated environment (see Fig. 2) is used to collect the
image inputs. Indeed, because we aim to generate sentences in
a wide range of configurations, using a simulated environment
is effective for addressing these situations at a low cost.
Moreover, using a simulation has the advantage that the
experimental results can be reproduced.

As the simulated robot platform, we use a standardized
DSR, namely Human Support Robot (HSR) [35]. Our sim-
ulator is based on SIGVerse [36], [37], which is an official
simulator for HSR that provides a three-dimensional environ-
ment based on the Unity engine.

In the data collection phase, HSR [35] navigates in proce-
durally generated environments with everyday objects. There-
after, RGB images of target and source candidates are recorded
using the camera, with which HSR is equipped.

IV. PROPOSED METHOD

A. Novelty
To generate fetching instructions, the ABEN extends the

Multi-ABN [9] by introducing a subword generation architec-
ture using BERT [10] embedding in addition to subword-level
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TABLE I
DIFFERENCE BETWEEN (A) TYPICAL WORD-TOKENS WITH

PRE-PROCESSING FOR RARE AND/OR MISSPELLED WORDS AND
(B) SUB-WORD TOKENIZATION.

Expression (a) (b)
topright object topright, object top, right, object
sprayer <UNK> spray, er
grayis bottle <UNK> , bottle gray, is, bottle

attention. For this purpose, as shown in Fig. 3, the ABEN
comprises an encoder (base network), a decoder, a VAB, and
a LAB. The following characteristics of the ABEN should be
emphasized:

• Unlike the ABN [8], which comprises a base network
coupled with attention and perception branches, the
ABEN follows an encoder–decoder structure (i.e., there
is no perception branch) based on an LSTM network.

• Unlike the Multi-ABN, fetching instructions are gener-
ated from a sequence of subwords with BERT encoding.

• The ABEN introduces the novel structures of linguistic
attention branches and generation branches to allow a
subword-level attention mechanism. Hence, the ABEN
attention is fully interpretable, unlike that of the Multi-
ABN which uses latent-space linguistic attention.

B. Input and Subword Tokenization
Fig. 3 shows the network structure of the ABEN. For a

scene i, let us define our set of inputs xi as:

xi = {xv(i), xsrc(i), xtarg(i), xrel(i)}. (1)

For readability, we omit the index i so that xi is simply written
as x. Given this, the inputs are defined as follows:

• xv: the input scene as an RGB image.
• xtarg: the cropped image of the target in xv
• xsrc: the cropped image of the source in xv

• xrel: the relational features between xv , xtarg, and xsrc.
xrel comprises the position and size features of (a) the target
relative to the source, (b) the target relative to the full image,
and (c) the source relative to the full image. Each of these
relations is characterized by:

rl/m =

[
xl
Wm

,
yl
Hm

,
wl

Wm
,
hl
Hm

,
wlhl

WmHm

]
, (2)

where xl, yl, wl, and hl denote the horizontal and vertical
positions and the width and height, respectively, of the compo-
nent l. Wm and Hm denote the width and height, respectively,
of the component m. Consequently, the relation features are
defined as xrel = {rtarg/src, rtarg/v, rsrc/v} with dimension
15.

In contrast to most methods for sentence generation, BERT-
based subword embeddings, instead of classic word-based
embedding, are used as the ground truth. BERT was pretrained
on 3.5 billion words and is therefore robust against data
sparseness regarding rare words. In our previous work on mul-
timodal language understanding, we introduced BERT-based
subword embedding; this was one of the earliest applications
of BERT in robotics [7]. It has been reported that BERT-
based subword embedding functioned better than simple word-
based embedding for the PFN-PIC dataset [12]. In many NLP

Fig. 4. Architecture of the visual attention branch.

studies, BERT and other Transformer-based approaches have
been applied successfully to challenging tasks. For domain
adaptation, we can additionally fine-tune a BERT-based model
that is pre-trained on a large-scale dataset.

Furthermore, subword tokenization [38] is robust against
the misspelling words. Indeed, a matching is still possible in
subword units. As illustrated in Table I, a the word ‘grayish’
misspelled as ‘grayis’ can still be matched with the subword
’gray’ which is impossible with classic word embedding. As
a result, the subword tokenization and generation handle more
word variations because there is no need to perform stopword
replacement or stemming (e.g., for conjugated verbs).

C. Structure
1) Encoder: The encoder transforms visual information

into a latent space feature that is later decoded as a sentence
by the decoder. The inputs of the encoder are the target xtarg,
source xsrc and relation features xrel as illustrated in Fig. 3.
A feature xf is generated by the encoder. To do so, the target
and source images are both encoded by a convolutional neural
network (CNN). In this study, we use ResNet-50 [39] as
the backbone neural network. The encoding process involves
extracting the output of the 36th layer of ResNet-50, which is
followed by a global average pooling (GAP) and a flattening
process for dimension reduction. Feature xf is then obtained
as the concatenation of the two encoded visual features with
the relation feature xrel.

2) Decoder: The decoder generates a sequence of latent-
space features H = {h1,h2, . . . ,hK}, for each step k, from
the encoded feature xf by using a multi layer LSTM. These
latent-space features allow the linguistic attention and genera-
tion branches to predict a sequence of subwords corresponding
to the fetching instruction. For that purpose, each cell of the
LSTM, at step k, is initialized with the embedding vector
of the previous subword predicted yk−1, as well as a visual
feature vk obtained from the VAB. Feature vk is described
below with the VAB structure. Thereafter, the hidden state of
the LSTM propagates as shown in Fig. 3 and the output hk

is generated for each step k.
3) Visual Attention Branch: Fig. 4 shows the structure of

the VAB. The VAB used in this study is based on the method
proposed in [9]. From the VAB, informative regions of features
extracted from the image xv are emphasized to predict the
subword yk. Similarly to the encoder, the input xv is processed
by the 36th layer of ResNet-50 and generates feature maps
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Fig. 5. Architecture of the linguistic and generation branches. The
output of the LAB is obtained from Equation (6) which is represented
as ‘}’.

vf . These feature maps have a dimension 7 × 7 × 512
and are input to the VAB after being processed with 2 × 2
average pooling. The visual feature maps are encoded through
four convolutional layers before being processed by a GAP.
The likelihood Pv(yk) of the current subword yk is then
predicted. In parallel, a visual attention map is created by
an additional convolution and sigmoid normalization of the
third convolutional layer of the visual attention branch. This
attention map focuses selectively on certain parts of an image
related to the predicted sequence. The VAB outputs visual
features vk that are weighted by the attention mask. A cross-
entropy loss Lv is minimized by the VAB.

4) Linguistic Attention Branch: Fig. 5 shows the network
structure of the LAB. The LAB takes, as input, the last N
outputs of the LSTM as a linguistic context ck. The parameter
N is fixed and is described in the experimental section. We
define a linguistic context ck as follows:

ck = {hk−N−1,hk−N , · · · ,hk−1}, (3)

where hk is the LSTM output at step k. The linguistic context
ck has dimension N × d, where d is the dimension of the
LSTM hidden state. Thus, the LAB aims to produce an
attention map of dimension 1×N that weights each component
of ck. To this end, ck is processed by three one-dimensional
convolutional layers enhanced by batch normalization (BN)
and ReLU. Thereafter, the subword yk is predicted from the
following fully connected (FC) and softmax layer. In parallel
the attention map ak is obtained by connecting the second
convolutional layer to a convolutional layer with size 1×1,
followed by BN and Sigmoid functions. The attention map ak
has dimension 1×N and can be expressed as:

ak = {wk−N−1, wk−N , · · · , wk−1}, (4)

where each parameter wk is the weight of the corresponding
hidden state hk. The output lk of the LAB is the weighted
linguistic context given by:

lk = {ok−N−1,ok−N , · · · ,ok−1}, (5)

where ok can be expressed as:

ok = (1 + wk)hk. (6)

Similarly to the VAB, a cross-entropy loss Ll is minimized
based on the likelihood Pl(yk) of the predicted subword.

TABLE II
PARAMETER SETTINGS OF THE ABEN

Opt. Adam ( Learning rate = 1.0× 10−4,
method β1 = 0.7, β2 = 0.99999 )

Backbone CNN ResNet-50
LSTM 3 layers, 768-dimensional cell
N 10

Generation Branch FC: 768, 768
Batch size 32

5) Generation branch: Fig. 5 shows the structure of the
generation branch, which builds the sequence of subwords
that compose the fetching instruction. The inputs hk and lk
are concatenated and processed by FC layers, from which the
likelihood of the next subword pg(yk) is predicted. A cross-
entropy loss Lg is minimized in the generation branch.

6) Loss functions: The global loss function LABEN of the
network is given by:

LABEN = Lv + Ll + Lg, (7)

where Lv , Ll, and Lg denote cross-entropy losses based on
the VAB, LAB, and generation branch, respectively. Using L
as a generic notation for Lv , Ll and Lg , the cross-entropy loss
is expressed as follows:

L = −
∑
n

∑
m

y∗nm log p(ynm), (8)

where y∗nm denotes the label given to the m-th dimension of
the n-th sample, and ynm denotes its prediction. It should be
emphasized that the same labels are used for Pl(yk) in the
LAB and for Pg(yk) in the generation branch.

V. EXPERIMENTS

A. Dataset
The dataset was collected in simulated home environments

as described in Section III. The robot patrolled the envi-
ronment automatically and collected images of designated
areas. The environment was procedurally generated with ev-
eryday objects and furniture. Each image collected was labeled
automatically with the bounding boxes of the sources and
targets extracted from the simulator. These images were then
annotated by three different labelers due to the limited size of
the dataset. Each of them was instructed to provide a fetching
instruction for each target. It should be noted that each image
may contain multiple candidate targets and sources. Overall,
we collected a dataset of 2,865 image–sentence pairs from 308
unique images and 1,099 unique target candidates. The dataset
is available at this URL2.

Standard linguistic pre-processing was performed on the
instructions. The characters were converted to lowercase, and
sentence periods were removed. Stopword replacement and
stemming were not performed because subword tokenization
and generation were able to handle word variations.

The dataset was split into 80%, 10%, and 10% parts for the
training, validation, and test sets, respectively. After removing
invalid samples, we could obtain 2,295 training samples, 264
validation samples, and 306 test samples. Because there was
no overlap between the training, validation, and test sets, the
test set was considered to be unseen.

2https://keio.box.com/s/cbup2rttf1gkf487sgad34fqn01wa5r0



6 IEEE ROBOTICS AND AUTOMATION LETTERS. PREPRINT VERSION. ACCEPTED JULY, 2020

TABLE III
QUANTITATIVE RESULTS OF FIG. THE RESULTS ARE THE AVERAGE OVER 5 TRIALS. FOR READABILITY, THE METRICS ARE MULTIPLIED

WITH 100. “ABEN W/O BBSE” USES SIMPLE SKIP-GRAM INSTEAD OF BERT-BASED SUBWORD EMBEDDINGS. “ABEN (SS)” AND
“ABEN (TF)” USE SCHEDULED SAMPLING AND TEACHER FORCING, RESPECTIVELY.

Evaluation metric
Method BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE METEOR CIDEr
VSE [40] 43.9±1.5 29.7±1.3 19.0±1.7 11.5±1.8 35.7±1.2 14.3±0.7 21.3±4.2
Multi-ABN [9] 49.1±0.9 35.4±1.8 24.0±2.3 16.0±2.4 37.8±1.4 19.9±1.1 27.5±5.0
ABEN w/o BBSE 58.2±1.4 38.5±1.7 23.7±2.6 13.9±2.1 42.8±1.2 17.9±0.6 38.0±2.7
ABEN (SS) 61.8±2.8 46.6±3.3 34.0±3.1 24.7±2.9 47.7±1.4 22.0±1.5 54.5±6.8
ABEN (TF) 60.2±1.9 45.1±1.8 33.5±2.2 24.9±2.4 48.2±1.3 22.8±1.7 57.6±4.6

Fig. 6. Training and validation losses for 100 epochs.

B. Parameter settings
The parameter settings of the ABEN are shown in Table II.

We used Adam as the optimizer, with a learning rate of
1×10−4. The dimension of the BERT-based embedding vector
was 768. We used a three-layer LSTM in the decoder (see
Fig. 3) where each cell had a dimension of 768. The parameter
N which characterizes the size of the linguistic context ck was
set to 10. More specifically, we considered the 10 previous
output of the LSTM to infer the linguistic attention map ak. As
a result, in the early steps (k < 10), the linguistic context ck
was initialized with the output of the encoder xf for all hidden
states that were not available. The generation branch had two
FC layers, each of which had 768 nodes. Each dimension of
xrel was standardized so that its mean and standard deviation
became 0 and 1, respectively. The visual inputs xtarg, xsrc
and xv were resized as 224 × 224 × 3 images before being
input to ResNet-50.

We trained the ABEN with the aforementioned dataset. The
training was conducted on a machine equipped with a Tesla
V100 with 32 GB of GPU memory, 768 GB RAM and an
Intel Xeon 2.10 GHz processor. The ABEN was trained for
100 epochs, which was sufficient for loss convergence in pilot
experiments.

C. Quantitative results
Table III shows the quantitative results, where standard

metrics scores, used in image captioning, are reported. We
conducted five experimental runs for each method. The table
shows the mean and standard deviation for each metric. The
BLEU-N column shows the standard BLEU score based on
N-grams, where N ∈ {1, 2, 3, 4}. The CIDEr score was
averaged over the same N-grams as BLEU. Additionally, we
used ROUGE-L [41] which is based on the longest common
subsequence. ROUGE-L did not use N-grams. METEOR

was computed from unigrams only, but endows a paraphrase
dictionary.

We compared the ABEN with two baseline methods: visual
semantic embedding (VSE) [40] and Multi-ABN [9]. Based
on the standard method for model selection in deep neural
network (DNN), we selected the best model as the one that
maximized the METEOR score of the validation set. This
is because METEOR has a paraphrase dictionary, which is
more suitable for handling natural language. Fig. 6 depicts
the training and validation loss of a typical run.

The results show that the ABEN outperformed the Multi-
ABN and VSE for all four metrics. In particular, the CIDEr
score was drastically improved by 30.1 points relative to the
Multi-ABN and by 36.3 points relative to, VSE on average.
Additionally, the t-test showed that the difference from VSE
was statistically significant for all the metrics (p < 0.001).
The difference from the Multi-ABN was also statistically
significant (p < 0.05). Therefore, the ABEN significantly
outperformed these baseline methods for the FIG task.

We conducted an ablation study on word embedding. In the
ablation, we compared simple skip-gram and BERT-based sub-
word embedding. In the table, “ABEN w/o BBSE” uses simple
skip-gram instead of BERT-based subword embedding. The
BERT-based subword embedding has better performance than
skip-gram. The t-test showed that the results were statistically
significant (p < 0.001) for all the metrics except BLEU-1.

Additionally, we tested two approaches in training: teacher
forcing (TF) and scheduled sampling (SS) [42]. We adopted
the standard SS setup with a linear decay ε = (max_epoch−
epoch)/max_epoch, where ε is the probability of using the
label for training.

In the table, the results of these approaches are shown as
"ABEN (SS)" and "ABEN (TF)". The t-test showed that the
p-values for all the metrics are p > 0.1. Therefore, there was
no statistically significant difference between teacher forcing
and scheduled sampling. This indicates that TF did not cause
the performance to deteriorate significantly in this task.

D. Qualitative results
For more insight into the performance of the ABEN, we

analyzed the generated sentences qualitatively, as shown in
Fig. 7. The top panels of the figures show the input scenes,
and the middle and bottom tables show the reference sentences
(Ref1, Ref2, and Ref3) and the sentences generated by the
ABEN and the Multi-ABN. In the input image, the targets and
sources are highlighted by green and blue boxes, respectively.
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Fig. 7. Three typical samples of qualitative results. Top figures show input images with bounding boxes of targets and sources. Middle row
tables show three reference sentences annotated by labelers. Bottom tables show sentences generated by the Multi-ABN and ABEN.

Fig. 8. Two typical qualitative results for linguistic attention. The blue
and green boxes represent the source and the target. The predicted
words are shown in the red boxes, and the attention values are
overlaid in blue. In the left case (a), “ grean”, “tea” and “plastic”
were attended for predicting “bottle”. In the right case (b), “between”
and “bottle” were attended for predicting “and”.

The left-hand sample in Fig 7 shows a sentence that was
generated successfully, semantically and syntactically, by the
ABEN, in contrast to that generated by the Multi-ABN.
Indeed, the target can be uniquely identified from the sentence
“go to the shelf and take the yellow toy”, which is a valid
fetching instruction. Conversely, the sentence generated by the
Multi-ABN, refers somehow to the source (‘shelf’) and the
target (‘toys’, ‘yellow’) but is incorrect syntactically. Such a
sentence would require additional review by a human expert in
the targeted use case of generating datasets of image–sentence
pairs. Furthermore, the sentence generated by the ABEN is
totally different from the reference sentences; this suggests
that the many-to-many mapping between language and the
environment was captured successfully.

Similarly, the second sample in the middle column illus-
trates the successful generation of a referring expression,
which was used to disambiguate the source. The ABEN
generated the sentence “fetch a pink cup on the left-hand

table” to refer to the target. In particular, the source was
described correctly (“on the left-hand table”) even though
the scene contains another similar source. Conversely, the
baseline method generated “please catch a the cup on the left-
cup small table”, which included erroneous syntax about the
source (“left-cup” instead of “left-hand”). Additionally, over-
generation appeared, as the phrase “a the”.

The right-hand sample illustrates ambiguity about the tar-
get. In this scene, there were three bottles. Therefore, the
sentence should include referring expressions to determine
the target uniquely. The sentence generated by the ABEN
was able to disambiguate the target, which was referred to
as “green tea plastic bottle”. However, the source description
was incomplete. Indeed, a more exhaustive source description
such as “on the top of the white wagon”, could be expected.
Nonetheless, this fetching instruction remains understandable
to human experts. Conversely, the baseline method generated
a sentence that was syntactically incorrect but also ambiguous.
The target was simply referred to as “bottle”, from which the
target cannot be identified.

Additionally, we analyzed the relationship between the sub-
words in the sentence generation process through the linguistic
attention maps shown in Fig. 8. The lower part illustrate
the salient subwords that were used to predict the subword
marked with a red frame. In Fig. 8(a), to predict “bottle”, the
most salient subwords were “green”, “tea”, and “plastic”. In
Fig. 8(b), to predict the subword “and” in the sentence, the
most salient words were "bottle" but also “between”. These
results indicate that the ABEN handles subword relationships
in a representation that is understandable to humans.

Overall, these results emphasize that the ABEN generates
more natural sentences than the baseline method, through
the contribution of our proposed LAB architecture and the
subword generation strategy.
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VI. CONCLUSIONS

Most data-driven approaches for multimodal language un-
derstanding require large-scale datasets. However, building
such a dataset is time-consuming and costly. In this study,
we proposed the ABEN, which generates fetching instruc-
tions from images. Target use cases include generating and
augmenting datasets of image–sentence pairs.

The following contributions of this study can be empha-
sized:

• The ABEN extends the Multi- ABN by introducing a
linguistic branch and a generation branch, to model the
relationship between subwords.

• The ABEN combines attention branches and BERT-based
subword embedding for sentence generation.

Future studies will investigate the application of the ABEN
to real-world settings.
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