
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.9 SEPTEMBER 2015
1637

PAPER Special Section on Optimization and Learning Algorithms of Small Embedded Devices and Related Software/Hardware Implementation

FPGA Hardware with Target-Reconfigurable Object Detector

Yoshifumi YAZAWA†, Tsutomu YOSHIMI†, Teruyasu TSUZUKI†, Tomomi DOHI†, Nonmembers,
Yuji YAMAUCHI††a), Takayoshi YAMASHITA††, and Hironobu FUJIYOSHI††, Members

SUMMARY Much effort has been applied to research on object detec-
tion by statistical learning methods in recent years, and the results of that
work are expected to find use in fields such as ITS and security. Up to
now, the research has included optimization of computational algorithms
for real-time processing on hardware such as GPU’s and FPGAs. Such op-
timization most often works only with particular parameters, which often
forfeits the flexibility that comes with dynamic changing of the target ob-
ject. We propose a hardware architecture for faster detection and flexible
target reconfiguration while maintaining detection accuracy. Tests confirm
operation in a practical time when implemented in an FPGA board.
key words: dynamic reconfiguration of detection target, object detection,
FPGA

1. Introduction

In the field of image recognition, much work is being done
on object detection [1]–[3]. Practical object detection tech-
nology is in demand in various fields, including ITS, se-
curity, and robotics. For computation power required for
real-time processing with high accuracy in such applications
is beyond the capability of general-purpose computers, so
specialized hardware is needed. For that reason, vigorous
research is being done on specialized hardware for object
detection using graphics processing units (GPU) and field-
programmable gate arrays (FPGA) [4]–[9].

Computation time has been an important point in
research on hardware implementation of object detec-
tion technology. Real-time object detection processing
is computation-intensive, and so is difficult to achieve
when using hardware that has even lower performance than
general-purpose computers.

To overcome that problem, an efficient computational
methods and techniques for parallel computation has been
proposed [4], [7], [8]. Zhang et alia focused on window
overlap when the detection window is moved or scaled
during raster scanning and increased the efficiency of fea-
ture calculations by re-using the calculation results for the
regions of overlap obtained in the first round of calcula-
tions [7]. Focusing on the very high computational cost of

Manuscript received December 20, 2014.
Manuscript revised May 14, 2015.
Manuscript publicized June 22, 2015.
†The authors are with SANEI HYTECHS Co., Ltd.,

Hamamatsu-shi, 435–0015 Japan.
††The authors are with Chubu University, Kasugai-shi, 487–

0027 Japan.
a) E-mail: yuu@vision.cs.chubu.ac.jp

DOI: 10.1587/transinf.2014OPP0008

detection window scanning, Prisacariu et alia achieved high-
speed human form detection by parallel computation using
a GPU [4]. Kadota et alia achieved faster HOG feature com-
putation by approximation [8].

On the other hand, there has been little work on flexi-
bility, such as the dynamic reconfiguration of the detection
target. Object detection [1]–[3] is a technique that targets
specific objects, such as humans or vehicles. In doing so,
a single algorithm can be used to detect different objects by
using different training images and suitable parameters. Past
research, however, has taken the approach of optimizing al-
gorithms by using only particular input data and parameters
to achieve higher processing speeds. That approach has re-
sulted in a loss of flexibility, such as for dealing with target
objects that readily change form. If there are changes in
the use environment or the target, the hardware must be re-
designed.

In this paper, we propose a hardware architecture that is
intended to provide detection target flexibility such as shown
in Fig. 1, while maintaining real-time processing perfor-
mance. With that architecture, the target is easily changed
by exchanging previously trained data. For this work, we
adopted the joint HOG feature, which is capable of highly
accurate object detection [10]. The joint HOG features are
calculated and detection is performed on trained data by a
classifier constructed of LUTs. It is thus possible to flexi-
bly change the detection target by replacing the content of
the LUTs. Furthermore, high processing speed is achieved
by using that technique together with pipelining of the cal-
culation stages and parallel processing of windows. Here,
we first describe object detection with joint HOG features in
Sect. 2 and explain the hardware architecture in Sect. 3. Sec-
tion 4 evaluates an FPGA board implementation and Sect. 5
presents an example of system operation. Section 6 con-
cludes this paper.

2. Object Detection with Joint HOG Features

Joint HOG features [10] are constructed by using a two-
stage boosting process to combine HOG features [2]. This
improves discrimination because the HOG features that are
effective for detection are selected by boosting. The training
process for joint HOG features is illustrated in Fig. 2. This
method constructs the final classifier by two-stage boosting.
For the boosting, we use Real AdaBoost, in which the weak
classifier outputs real values. First, a pool of joint HOG

Copyright c© 2015 The Institute of Electronics, Information and Communication Engineers

1638
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.9 SEPTEMBER 2015

Fig. 1 Hardware with target-reconfigurable object detector.

Fig. 2 Overview of training of Joint HOG feature and classifier.

feature, which combine two HOG features of different lo-
cations, is created by a one-stage Real AdaBoost with the
HOG feature pool as input. Joint HOG futures can repre-
sent symmetry and continuous edges because they involve
simultaneous observation of multiple HOG features. Next,
two-stage Real AdaBoost is used to select joint HOG fea-
tures from the joint HOG future pool and object detection is
performed by the final classifier.

2.1 HOG Feature

In this paper, we use the Histogram of Oriented Gradients
(HOG) proposed by Dalal et al. as the low-level feature [2].
HOG features are calculated from gradient orientations in
local areas called cells (5 × 5 pixels) converted into his-
tograms. They can capture the shape of an object and are
robust to changes in illumination and local changes in ge-
ometry. The procedure for calculating the HOG features is
described below.

From the brightness L of each pixel, compute the gra-
dient magnitude m and orientation θ with the following for-

mula.

m(x, y) =
√

fx(x, y)2 + fy(x, y)2 (1)

θ(x, y) = tan−1 fy(x, y)

fx(x, y)
(2){

fx(x, y) = L(x + 1, y) − L(x − 1, y)
fy(x, y) = L(x, y + 1) − L(x, y − 1)

(3)

The brightness gradient orientation histogram of each
cell is generated from the calculated gradient magnitude m
and orientation θ. The obtained gradient orientations are di-
vided into 20-degree groups to create the gradient orienta-
tion histogram.

Finally, the features are normalized to each block area
(3 × 3 cells) with the following equation.

v′ =
v j√√√⎛⎜⎜⎜⎜⎜⎝ k∑

i=1

v2i

⎞⎟⎟⎟⎟⎟⎠ + ε
(ε = 1) (4)

Here, v is the HOG feature, v j is HOG feature of the j-
th dimension of the normalization subject, v′ is HOG feature

YAZAWA et al.: FPGA HARDWARE WITH TARGET-RECONFIGURABLE OBJECT DETECTOR
1639

Fig. 3 Co-occurrence of HOG features.

after normalization, k is the number of HOG features in the
block, and ε is a coefficient for preventing division by zero
problems.

2.2 Co-Occurrence Feature

To generate the Joint features, we represent the co-
occurrence of multiple HOG features. Representing co-
occurrence makes it possible to observe several fea-
tures(more than two) at the same time. We explain here how
to combine two HOG features.

First, we calculate binary symbols s that represent de-
tection objects and non-detection objects with the following
equation.

s(V) =

{
1 p · vo > p · θ
0 otherwise

(5)

Here, θ is the threshold value, p is a parity indicating
the direction of the inequality sign, o is the orientation of
gradient, and takes the values p ∈ {+1,−1}. The value of θ
and p are determined so that there error rate is minimized.
V = [v1, v2, · · · vq] is the HOG feature calculated from one
cell, and q is the number of orientation of the gradient in
a cell. By combining the two binary symbols obtained in
this way, we get features j, which represent co-occurrence.
For example, when HOG feature binary symbols s1 = 1 and
s2 = 1 are observed in an input image such as shown in
Fig. 3, the co-occurrence feature j is j = (11)2 = 3. This j
is an index number for a binary representation of combined
features. In this case, there are four values because we are
dealing with combinations of two features.

2.3 Joint Features

The HOG feature co-occurrence values calculated in
Sect. 2.2 are used to generate Joint features in the first-stage
Real AdaBoost. This captures the relations of cells as well
as the symmetry of object shape and edge continuity.

First, from the features that represent co-occurrence for
cells at two different locations, cm, cn, Real AdaBoost se-
lects those that are effective in discrimination. Here, a set of
N labeled training samples is given as (x1, y1), . . ., (xN , yN),
where yi ∈ {+1,−1} is the class label associated with a train-
ing sample xi. The function for observing HOG feature co-
occurrence in training sample xi is expressed as Jt(xi). Here,
t is the number of training rounds. When feature Jt(xi) = j

is observed, the weak classifier ht(x) of the first-stage Real
AdaBoost is expressed as follows:

ht(x) =
1
2

ln
Pt(y = +1| j) + ε
Pt(y = −1| j) + ε . (6)

Here, ε is a coefficient for preventing division by zero
problems. Pt(y = +1 | j) and Pt(y = −1 | j) are the re-
spective probability density functions (PDFs) for when the
features j that represent HOG feature co-occurrence are ob-
served. The PDFs are calculated with the following equation
from the weights Dt(i).

Pt(y = +1| j) =
∑

i:Jt(xi)= j∧yi=+1

Dt(i) (7)

Pt(y = −1| j) =
∑

i:Jt(xi)= j∧yi=−1

Dt(i) (8)

Dt+1(i) = Dt(i) exp[−yiht(xi)] (9)

Dt(i) is a weight of a training sample xi. The weights
are initialized by D1(i) = 1/N. The PDFs Pt(y = +1 | j)
and Pt(y = −1 | j) are represented by one-dimensional his-
tograms. The distributions are created by calculating the
features that represent co-occurrence from the training sam-
ples x and adding the training sample weights Dt to the
corresponding one-dimensional histogram BIN† numbers j.
Because the BIN numbers j correspond to index numbers
for the features that represent co-occurrence, there are 4
BIN.

Next, we use the PDF to obtain an evaluation value z1

that represents the separation of the distributions with the
following equation:

z1 = 2
∑

j

√
Pt(y = +1| j)Pt(y = −1| j). (10)

Smaller values of z1 indicate greater separation of the
positive class and negative class distributions. The smallest
of z1 is used in the selection of a weak classifier from among
the many candidates in each round.

Finally, the Joint feature Hcm,cn (x), which is the strong
classifier of the first-stage Real AdaBoost, is constructed
with the following equation:

Hcm,cn (x) =
T∑

t=1

hcm,cn
t (x). (11)

The processing described above is applied to all com-
binations of cells to generate as many Joint features as there
are cell combinations. For example, taking a 30 × 60 pixel
input image and a cell size of 5 × 5 pixels, the number of
cell combinations is 72C2 = 2, 556 and 2, 556 Joint features
Hcm,cn (i) can be generated. All of the generated Joint fea-
tures are put into a single pool for input to the second-stage
Real AdaBoost to construct the final classifier as described
below.

†Number of partitions of the histogram.

1640
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.9 SEPTEMBER 2015

2.4 Constructing the Final Classifier from the Second-
Stage Real AdaBoost

First, we input the Joint features Hcm,cn (x) and create posi-
tive class and negative class probability density distributions
W+ and W−. The probability density distribution W+ and W−
is represented by a one-dimensional histogram that is gener-
ated from the training sample weights Dt with the following
equation:

Wk
+ =

∑
i:k∈K∧yi=+1

Dt(i), (12)

Wk
− =

∑
i:k∈K∧yi=−1

Dt(i), (13)

where, t is the number of training rounds, i is the num-
ber of training samples, k is the BIN number of the one-
dimensional histogram, and yi is the class label yi ∈
{+1,−1}. The calculation method of Dt is in the same way
as the first-stage Real AdaBoost. The probability density
distribution Wk

+ and Wk− can be created by calculating the
features from the training samples xi and applying train-
ing sample weights Dt(i) to the BIN numbers k of the one-
dimensional histograms that correspond to the feature val-
ues. The BIN count of the one-dimensional histogram must
be set to a value that is suitable for the number of training
samples. In the work reported here, the one-dimensional
histogram BIN count was set to 64 by experiment at the
second-stage Real AdaBoost. The created probability den-
sity distribution Wk

+ and Wk− is normalized so that the sum of
all of the probability density distributions of each class is 1.

That probability density distribution is used to obtain
the evaluation value z2, which represents the degree of sep-
aration of the distributions.

z2 = 2
∑

j

√
Wk
+Wk
− (14)

Smaller values of z2 indicate greater separation be-
tween the positive and negative class distributions. The min-
imum value of z2 is used to select a single weak classifier
from among the many candidates in each round.

Next, we use the created probability density distribu-
tion Wk

+ and Wk− to calculate the output gt(c) of the second-
stage Real AdaBoost weak classifier. From the values of
the HOG feature co-occurrence j obtained from the train-
ing samples, we calculate one-dimensional histogram BIN
numbers j, and from their corresponding probability den-
sity distributions Wk

+ and Wk− we calculate the weak classi-
fier output gt(c) by using the following equation:

gt(c) =
1
2

ln
Wk
+ + ε

Wk− + ε
. (15)

The c is a serial number that represents combinations
of cells. The ε is a coefficient for preventing division by
zero problems and it is given the same value as used in the

first-stage Real AdaBoost, ε = 0.0000001.
Finally, the following equation is used to construct the

final strong classifier G(c) in the second-stage Real Ad-
aBoost.

G(c) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
1

T∑
t=1

gt(c) > λ

0 otherwise

(16)

The λ is a threshold value of the classifier. The second-
stage Real AdaBoost constructs the classifier by selecting
from the Joint feature pool only the features that are effective
in discrimination.

3. Hardware Architecture

The hardware architecture in Fig. 4 involves four computa-
tional stages from image input to output of the classification
result. The computation blocks are described in Table 1.
Each block makes use of multiple small-capacity memories
to optimize the computation cycle. That greatly reduces the
computation wait time. We avoided a reduction in calcula-
tion accuracy by using a floating point math library. When
designing the hardware architecture, the following objec-
tives shaped the hardware implementation.

• Speed

– Pipeline processing (optimization of each calcula-
tion cycle)

– Parallel computation of multiple windows

• Flexibility

– Dynamic reconfiguration of the detection target
– LUTs of trained data

The hardware implementation is described in detail in the
following sections

Fig. 4 Hardware architecture.

Table 1 Computation block.

Block Function Output

MG Gradient Gradient intensity and orientation
CPHIST Histogram Histograms of orientated gradients

HOGNRM Normalization Normalized histograms
CLSF Classification Classification result

YAZAWA et al.: FPGA HARDWARE WITH TARGET-RECONFIGURABLE OBJECT DETECTOR
1641

Fig. 5 Object detection with joint HOG features.

3.1 Computing HOG Features

The image data is input and the HOG features are calculated
by passing the data through the MG, CPHIST, and HOGRM
modules.

In the MG module, a first-order differential is calcu-
lated from the image intensity and then a gradient vector
(gradient magnitude m and gradient orientation θ) is calcu-
lated. To calculate the gradient for one pixel, the four ad-
jacent pixels above, below, and to the left and right of the
pixel are used. In our work, we did not handle the data pixel
by pixel, but managed the data in quantities of three lines,
including the line above and the line below in a FIFO man-
ner for processing in combination with shift registers. By
doing so, we were able to calculate the luminance gradients
in about as many calculation cycles as for reading the data
for one window.

Next, in the CPHIST module, a histogram of orien-
tated gradients is created from the calculated gradient mag-
nitude m, and the gradient orientation θ for each 5 × 5 pixel
cell. That is calculated by cumulative summing for each
orientation in an array memory. The number of cells × ori-
entations are calculated in the number of cycles for read-
ing the amount of data for about one window. Finally, in
the HOGNRM module, normalization is performed for each
block region. The normalized HOG features are calculated
via the squaring, mean square root, and division operations
in Eq. (4).

A conceptual diagram of the calculations performed in
the CLSF module is shown in Fig. 5. From the HOG fea-
tures calculated by the HOGNRM module, the combina-
tions of cells that are most suitable for detection are used
in Real AdaBoost. The process up to the output of the clas-
sification result is shown in Fig. 6. We were able to design
the processing performed by the various modules to have
about the same computation time. Thus, the process can
be pipelined so that calculations can be performed without
waiting for the output of subsequent modules.

Fig. 6 Pipeline processing.

Fig. 7 Examples of multiple models.

3.2 Raster Scanning

The proposed method is able to detect a target object from
an image using a raster scan. By changing the scale of the
window, objects of different sizes can be detected. How-
ever, since the computational cost increases when process-
ing multiple scales, we can adjust the scale parameter, if
necessary.

Together with the joint HOG classifier, we imple-
mented a raster scanning circuit and a scaling circuit
(Fig. 8). First, the input image data that is stored in exter-
nal memory is copied to internal FPGA memory. That is
done to simplify external memory access that involves cam-
era input, detection, and host transfer. The copied images
are raster scanned and normalized to provide a constant de-
tection window size. Next, the normalized image is input to
the joint HOG classifier.

Furthermore, the joint HOG classifier and the scaling
circuit are configured separately. That facilitates paralleliza-
tion and enables the window size to be changed without af-
fecting computation speed. Normalizing the image for each
window also makes it possible to minimize fluctuations in
the use of hardware resources.

3.3 Dynamic Target Reconfiguration

We have implemented hardware that allows the detection

1642
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.9 SEPTEMBER 2015

Fig. 8 Object detection process.

object to be easily changed by simply replacing the train-
ing data rather than changing the program. In the proposed
method, cell size is fixed and the hardware is designed so
that the number of blocks within a window can be changed.
Changing the number of blocks makes it possible to use a
detection window size for detecting features and classifi-
cation that is suitable even for detection targets that have
greatly different aspect ratios, such as human and vehicles.

This approach also makes it possible to apply multiple
models for a single target. The appearance of human and ve-
hicles varies greatly according to their orientation (Fig. 7).
By loading training data for each of various object orien-
tations into the hardware, it becomes possible to detect a
target that is observed from various directions. In addition,
the proposed hardware can detect different targets simulta-
neously.

The target can also be changed easily by exchanging
the trained data. In this way, classification can be done with
feature combinations that are optimum for the target by ex-
changing LUTs.

4. Evaluation

The proposed hardware was described in Verilog HDL for
logic design. The design was tested by logic simulation and
confirmed to produce the same output as a software imple-
mentation of the algorithm. Therefore, we confirm that there
is no reduction in detection performance due to the hard-
ware implementation. The design was then implemented in
an FPGA board and the operation from camera input to de-
tection result output was confirmed.

4.1 Software Processing Time

For comparison of performance, we measured the detection
processing time for the hardware implementation and the
same joint HOG software implementation. The measure-
ment environment was a Core 2 Duo processor running at
2.33 GHz with 1.95 GB of RAM. The detection parameters
and processing times are presented in Table 3.

4.2 Image Processing FPGA Board

The Altera Cyclone III FPGA image processing board that
we used is shown in Fig. 9. The detection calculations were
performed for the image data input via a camera link. That
includes raster scan processing for each detection window in
one frame of image data. HOG feature calculations and clas-
sification are performed for each window, and both the de-
tection results and the image data are transferred to the per-
sonal computer over a USB link. On the personal computer

Table 2 Training parameters.

cm, cn Cell combinations

p Code for determining inequality sign
θ Threshold for binaries HOG features

Pt(y = +1 | j), Pt(y = −1 | j) First-stage PDF
W+,W− Second-stage PDF

Table 3 Parameters and processing time.

Input image 640 × 480

Normalized detection window size (pixels) 40 × 80
Detection window (cell) 6 × 12

Number of scans (pixels) 20
Scaling factor 0.1

Number of scalings 5
Number of windows 2940

Processing time 77.30 ms (about 13 FPS)

Fig. 9 PC application and image processing FPGA board.

Table 4 Implementation results.

Total number of LE 17,419 (15%)

Total number of registers 11,306 (9%)
Number of internal memory bits 1,046,647bit (26%)

Operating frequency 70MHz

Processing time 93.95 ms (about 10 FPS)
Processing time (two parallel operations) 46.98 ms (about 20 FPS)

side, the received detection coordinates are subjected to win-
dow integration processing by mean shift clustering [11] and
the window coordinates are displayed. The LUT data shown
in Table 2 can also be over-written by the computer via the
USB connection.

4.3 Implementation Results

The target results produced by the Cyclone III FPGA (for
one detection circuit) and the processing time for one frame
(2,940 windows) are shown in Table 4. The software pro-
cessing time is 77.30 ms, while that of the hardware is 93.95
ms. Thus, the hardware implementation is about 1.2 times

YAZAWA et al.: FPGA HARDWARE WITH TARGET-RECONFIGURABLE OBJECT DETECTOR
1643

slower. The proposed hardware executes at a high speed be-
cause it is capable of pipeline processing. However, the pro-
posed circuit can be implemented as many times as the hard-
ware resources allow. Therefore, higher processing speeds
can be achieved by parallel processing. When two parallel
processes are used, for example, we confirmed that the de-
tection computation can be done at approximately 20 fps,
which is faster than the software processing.

5. Example of Operation

An example training image database is shown in Fig. 10.
The organization of the database is shown in Table 5. Nega-
tive samples were collected randomly from the background

Fig. 11 Examples of detection results using implemented hardware.

Fig. 12 Update detector by retraining.

images. We conducted an operation test in which the data
obtained by pretraining was read into the internal memory
of the FPGA and detection was performed. An example of

Fig. 10 Training image database.

1644
IEICE TRANS. INF. & SYST., VOL.E98–D, NO.9 SEPTEMBER 2015

Table 5 Image database content.

Object class Positive samples Negative samples

Human 2,054 6,258
Vehicles 710 8,860

the operation is presented in Fig. 11. The test showed that
it is possible to dynamically change the detection target by
exchanging the trained the data. Because it is possible to
transfer the data to the hardware at high speed, the target
can be changed easily.

Replacement of the training data is also effective for
detector optimization. An example of the operation and ex-
periments on detecting human forms in a different scene is
presented in Fig. 12. The training results presented in Ta-
ble 5 are used for the scene shown in Fig. 12, but there are
errors in detection in the part of the image that includes tree
branches in the background. It was possible to greatly re-
duce the detection errors by adding negative samples that
include the tree branches and retraining (Fig. 12 (b)).

6. Conclusion

We have proposed here a hardware detector that uses joint
HOG features. Easy reconfiguration of the detection target
is made possible by exchanging the trained data in the inter-
nal LUT of the FPGA. We implemented the proposed sys-
tem in an FPGA board and confirmed the ability to switch
the target between human and vehicles. This detector can
perform the computation for one frame of image data in a
practical time, but we plan to increase processing speed and
reduce size in further development.

References

[1] D.M. Gavrila, “Pedestrian Detection from a Moving Vehicle,” Euro-
pean Conference on Computer Vision, pp.37–49, 2000.

[2] N. Dalal and B. Triggs, “Histograms of Oriented Gradients for
Human Detection,” Computer Vision and Pattern Recognition,
pp.886–893, 2005.

[3] P.F. Felzenszwalb, R.B. Girshick, D. McAllester, and D. Ramanan,
“Object Detection with Discriminatively Trained Part Based Mod-
els,” Pattern Analysis and Machine Intelligence, vol.32, no.9,
pp.1627–1645, 2009.

[4] V. Prisacariu and I. Reid, “fastHOG - a Real-Time GPU Implemen-
tation of HOG,” Tech. Rep. 2310/09, Department of Engineering
Science, Oxford University, 2009.

[5] B. Bilgic, B.K.P. Horn, and I. Masaki, “Fast Human Detection
with Cascaded Ensembles on the GPU,” Intelligent Vehicles Sym-
posium’10, pp.325–332, 2010.

[6] K. Mizuno, Y. Terachi, K. Takagi, S. Izumi, H. Kawaguchi, and M.
Yoshimoto, “An FPGA Implementation of a HOG-based Object De-
tection Processor,” Information Processing Society of Japan Trans-
actions on System LSI Desin Methodlogy, vol.6, pp.42–51, 2013.

[7] L. Zhang and R. Nevatia, “Efficient Scan-Window Based Object De-
tection Using GPGPU,” Visual Computer Vision on GPU (in con-
junction with CVPR), pp.1–7, 2008.

[8] R. Kadota, H. Sugano, M. Hiromoto, H. Ochi, R. Miyamoto, and
Y. Nakamura, “Hardware Architecture for HOG Feature Extrac-
tion,” Proceedings of the 2009 Fifth International Conference on
Intelligent Information Hiding and Multimedia Signal Processing,
pp.1330–1333, 2009.

[9] M. Hahnle, F. Saxen, M. Hisung, U. Brunsmann, and K. Doll, “FP-
GA-Based Real-Time Pedestrian Detection on High-Resolution Im-
ages,” IEEE Workshop on Embedded Vision, pp.629–635, 2013.

[10] T. Mitsui and H. Fujiyoshi, “Object Detection by Joint Features
based on Two-Stage Boosting,” Workshop on Visual Surveillance,
pp.1169–1176, 2009.

[11] D. Comaniciu and P. Meer, “Mean Shift: A Robust Approach To-
ward Feature Space Analysis,” Pattern Analysis and Machine Intel-
ligence, vol.24, no.5, pp.603–619, 2002.

Yoshifumi Yazawa joined SANEI HYTECHS Co., Ltd.

Tsutomu Yoshimi joined SANEI HYTECHS Co., Ltd.

Teruyasu Tsuzuki joined SANEI HYTECHS Co., Ltd.

Tomomi Dohi joined SANEI HYTECHS Co., Ltd.

Yuji Yamauchi received the Ph.D. from
Department of Computer Science, Chubu Uni-
versity in 2012. From 2012 to 2014 he was a
post-doctoral fellow at the Chubu University. In
2011, he was a visiting student at Robotics In-
stitute, Carnegie Mellon University. He was a
Fellowship of the Japan Society for the Promo-
tion of Science from 2010 to 2012. His research
interests include computer vision and pattern
recognition. He is a member of the IEEE and
the IPSJ.

Takayoshi Yamashita received his Ph.D.
degree from Department of Computer Science,
Chubu University, Japan in 2011. He worked in
OMRON Corporation from 2002 to 2014. He
is a lecturer of the Department of Computer
Science, Chubu University, Japan since 2014.
He current research interests include object de-
tection, object tracking, human activity under-
standing, pattern recognition and machine learn-
ing. He is a member of the IEEE and the IPSJ.

http://dx.doi.org/10.1007/3-540-45053-x_3
http://dx.doi.org/10.1109/cvpr.2005.177
http://dx.doi.org/10.1109/tpami.2009.167
http://dx.doi.org/10.1109/ivs.2010.5548145
http://dx.doi.org/10.2197/ipsjtsldm.6.42
http://dx.doi.org/10.1109/cvprw.2008.4563097
http://dx.doi.org/10.1109/iih-msp.2009.216
http://dx.doi.org/10.1109/cvprw.2013.95
http://dx.doi.org/10.1109/iccvw.2009.5457478
http://dx.doi.org/10.1109/34.1000236

YAZAWA et al.: FPGA HARDWARE WITH TARGET-RECONFIGURABLE OBJECT DETECTOR
1645

Hironobu Fujiyoshi received his Ph.D. in
Electrical Engineering from Chubu University,
Japan, in 1997. From 1997 to 2000 he was
a post-doctoral fellow at the Robotics Institute
of Carnegie Mellon University, Pittsburgh, PA,
USA, working on the DARPA Video Surveil-
lance and Monitoring (VSAM) effort and the
humanoid vision project for the HONDA Hu-
manoid Robot. He is now a professor of the
Department of Computer Science, Chubu Uni-
versity, Japan. From 2005 to 2006, he was a

visiting researcher at Robotics Institute, Carnegie Mellon University. His
research interests include computer vision, video understanding and pattern
recognition. He is a member of the IEEE and the IPSJ.

