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SUMMARY Machine learning is used in various fields and demand for
implementations is increasing. Within machine learning, a Random Forest
is a multi-class classifier with high-performance classification, achieved us-
ing bagging and feature selection, and is capable of high-speed training and
classification. However, as a type of ensemble learning, Random Forest de-
termines classifications using the majority of multiple trees; so many deci-
sion trees must be built. Performance increases with the number of decision
trees, requiring memory, and decreases if the number of decision trees is de-
creased. Because of this, the algorithm is not well suited to implementation
on small-scale hardware as an embedded system. As such, we have pro-
posed Boosted Random Forest, which introduces a boosting algorithm into
the Random Forest learning method to produce high-performance decision
trees that are smaller. When evaluated using databases from the UCI Ma-
chine learning Repository, Boosted Random Forest achieved performance
as good or better than ordinary Random Forest, while able to reduce mem-
ory use by 47%. Thus, it is suitable for implementing Random Forests on
embedded hardware with limited memory.
key words: Boosting, Random Forest, machine learning, pattern recogni-
tion

1. Introduction

Machine learning refers to learning techniques that analyze
data, obtain useful knowledge, rules, and evaluation crite-
ria from it, and perform highly accurate classification. It
has wide ranging applications and has been used in many
fields, including classification, identification, image anal-
ysis, voice recognition, and market prediction. With such
a record, practical implementations of machine learning in
various other fields are also anticipated.

Some typical machine learning techniques include
Neural Networks [1], Boosting [2], Support Vector Ma-
chines [3], and Random Forests [4]. Random Forests is a
multi-class classifier that is resistant to noise, has strong
classification capabilities, and is fast both in training and
classification. For these reasons, it has received much at-
tention in many fields, including computer vision, pattern
recognition, and machine learning [5]–[9]. Random Forests
builds an ensemble of decision trees incorporating a com-
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ponent of randomness. This enables it to control the drop
in generalization performance due to over-training. Since
each decision tree in Random Forests is independent, each
tree can be processed in parallel during learning and clas-
sification. It is thus well-suited to hardware implementa-
tion because processes can be parallelized easily. Random
Forests also incorporates randomness when building deci-
sion trees, so overfitting the learning sample does not oc-
cur. Conversely, it has the disadvantage that many deci-
sion trees are needed to achieve good generalization per-
formance. Increasing the number of decision trees requires
larger amounts of memory. So, in order to implement it on
small-scale hardware, memory use must be reduced. This
research eliminates this bottleneck to implementing a Ran-
dom Forest that is both accurate and compact.

To do so, we propose the Boosted Random Forests
technique, which combines a boosting algorithm with Ran-
dom Forest. The proposed technique trains complementary
discriminators by building decision trees successively. This
makes it possible to build classifiers with fewer decision
trees while still maintaining classification performance.

1.1 Related Works

Random Forest
Random Forest is a multi-class classifier algorithm that in-
troduces randomness through bagging and feature selection
and is easily parallelized. However, to achieve good gener-
alization performance, a large number of trees must be built,
requiring large amounts of memory. Random ferns [11] is a
method that reduces the memory used for decision trees. It
reduces memory use by using the same decision function for
branch nodes at the same level. However, simply reducing
the number of nodes results in a drop in classification perfor-
mance. With Alternating Decision Forests [12], weightings
are updated for successive samples to make classification
of training data easier overall. Nodes at the same level in
each decision tree are also trained in parallel for each level.
As a result, compared to a Random Forest with the same
tree height, it has been shown to achieve better classifica-
tion accuracy. This enables shallower decision trees with
the same accuracy to be built, suggesting that Random For-
est sizes can be reduced by making correlations among de-
cision trees.
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Boosting
Boosting is an ensemble learning algorithm that builds a
classifier sequentially [13]–[17]. Like Bagging, Boosting
is an ensemble learning algorithm that builds a classifier
with higher classification performance by combining weak
classifiers with low performance. Bagging combines clas-
sifiers independently trained using bootstrap sampling. In
contrast, Boosting conducts successive training by adjusting
the weightings for samples so that a training sample that was
misclassified by the previous classifier will be correctly clas-
sified by the next one. By training complementary classi-
fiers, Boosting can achieve higher accuracy with fewer weak
classifiers. In this research, we create interrelation among
the decision tries by treating each decision tree as a weak
discriminator and adjusting the weightings of misclassified
samples when training successive decision trees.

1.2 Overview of Our Approach

Our objective in this paper is to implement Random Forest
using small-scale hardware. The following two points con-
stitute the contribution of our method.

1. Reduced memory use
Memory use can be reduced by reducing the number of
trees (i.e. nodes) in the Random Forest. To reduce the
number of trees, independent trees are taken as weak
classifiers and a boosting algorithm is introduced so
they complement each other. This makes it possible
to decrease memory use while avoiding a drop in per-
formance.

2. Easily parallelizable algorithm
By using Random Forest as a framework with simple
and easily parallelizable structure, classification can be
parallelized in hardware easily, which is another advan-
tage of this method.

2. Random Forest

Random Forest is an ensemble training algorithm that con-
structs multiple decision trees as shown in Fig. 1. It sup-
presses overfitting to the training samples by random selec-
tion of training samples for tree construction in the same
way as is done in bagging [18], [19], resulting in construc-
tion of a classifier that is robust against noise. Also, random
selection of features to be used at splitting nodes enables fast
training, even if the dimensionality of the feature vector is
large.

2.1 Training Process

In the training of Random Forest, bagging is used to cre-
ate sample sub sets by random sampling from the training
sample. One sample set is used to construct one decision
tree. At splitting node n, sample set Sn is split into sample
sets Sl and Sr by comparing the value of feature quantity xi

Fig. 1 Random Forest structure. Random Forest generates random sam-
pling subsets from the training set. Duplication and omission of selected
samples is permitted. Decision trees are built using these subsets. This is
repeated for the number of trees.

Fig. 2 Classification process for Random Forest. For new input samples,
Random Forest averages from the output leaf node of each tree to compute
class probabilities.

with a threshold value τ. The splitting function of the split-
ting node selects combinations that can partition the most
samples from among randomly selected features {fk}Kk=1 and
threshold {τh}Hh=1 for each class. The recommended num-
ber of feature selections, K, is the square root of the feature
dimensionality. The evaluation function used for selecting
the optimum combination is the information gain, ΔG. The
splitting processing is repeated recursively until a certain
depth is reached or until the information gain is zero. A
leaf node is then created and the class probability P(c|l) is
stored.

2.2 Classification Process

An unknown sample is input to all of the decision trees as
shown in Fig. 2, and the class probabilities of the leaf nodes
arrived at are output. The class that has the largest average of
the class probabilities obtained from all of the decision trees,
Pt(c|x), according to Eq. (1) is the classification decision.

P(c|x) =
1
T

T∑

t=1

Pt(c|x) (1)
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2.3 Number of Decision Trees and Discriminating Perfor-
mance

Random Forest achieves generality by using a large num-
ber of decision trees for ensemble training. However, it is
difficult to obtain the optimum number of trees for training,
so there are many redundant decision trees that consume a
large amount of memory.

3. Boosted Random Forest

Random Forest is robust against noise and has high general-
ity because of random training. However, it requires many
decision trees, as using fewer decision trees reduces perfor-
mance. It therefore cannot maintain generality when im-
plemented on small-scale hardware. For that reason, boost-
ing is introduced to Random Forest. The purpose of using
boosting is to maintain generality even with a small num-
ber of decision trees by using the fact that sequential train-
ing constructs complementary decision trees for the training
samples.

3.1 Training Process

The proposed training algorithm involves one procedure for
when the sample weighting is updated and another proce-
dure for when there is no updating. First, a training sam-
ple of size {x1, y1, w1}, . . . , {xN , yN , wN}, that have a feature
of dimension d and class labels y ∈ M are prepared. The
training sample weight, w, is initialized to 1

N . Sample sets
are created by random sampling from the training sample.
Decision trees are constructed using the sample sets in the
same way as in Random Forest. Proposed algorithm 1 is
described in above.

3.1.1 Node Splitting

The flow of the proposed method is illustrated in Fig. 3.
The splitting function selects combinations of randomly-
prepared features and thresholds that have the highest in-
formation gain. The information gain ΔG is computed by

ΔG = E(Sn) − |Sl|
|Sn|E(Sl) − |Sr |

|Sn|E(Sr), (2)

where Sn is sample set at node n, Sl is sample set at left
child node, Sr is sample set at right child node, and E(S) is
entropy computed by

E(S) = −
M∑

j=1

P(c j) log P(c j). (3)

In calculating the information gain, the samples are priori-
tized by largest weight and the probability of class c j, P(c j),
is calculated using the weight of sample i, wi computed us-
ing

Algorithm 1 Proposed method
Require: Training samples {x1, y1, w1}, . . . , {xN , yN , wN };

xi ∈ X, yi ∈ {1, 2, . . . ,M}, wi

Init: Initialize sample weight wi:
w(1)

i ⇐ 1
N .

Run:
for t = 1 : T do

Make subset St from training samples.
ΔGmax ⇐ −∞.
for k = 1 : K do

Random sampling from feature fk .
for h = 1 : H do

Random sampling from threshold τh.
Split Sn into Sl or Sr by fk and τh.
Compute information gain ΔG:
ΔG = E(Sn) − |Sl |

|Sn |E(Sl) − |Sr |
|Sn |E(Sr).

if ΔG > ΔGmax then
ΔGmax ⇐ ΔG

end if
end for

end for
if ΔGmax = 0 or reach a maximum depth then

Store the probability distribution P(c|l) to leaf node.
else

Generating a split node recursively.
end if
if Finished training of decision tree then

Estimate class label ŷi:
ŷi = arg max

c
Pt(c|l).

Compute error rate of decision tree εt:

εt =

N∑

i:yi�ŷi

w(t)
i /

N∑

i=1

w(t)
i .

Compute weight of decision tree αt:
αt =

1
2 log (M−1)(1−εt )

εt

Update weight of training sample wi,t+1:

w(t+1)
i =

⎧⎪⎪⎨⎪⎪⎩
w(t)

i exp (αt) if yi � ŷi
w(t)

i exp (−αt) otherwise.
end if

end for

P(c j) =
∑

i∈S∧yi=c j

wi /
∑

i∈S
wi, (4)

where, S is the sample set that arrived at node. A leaf node is
created when recursive splitting has developed the decision
tree to a certain depth or when the information gain of a
sample set that has reached a node is zero. The leaf node
stores the class probability P(c) obtained with Eq. (4).

3.1.2 Decision Tree Weighting

In the same way as for multi-class boosting [17], [20], the
decision tree weight, αt, is calculated by

αt =
1
2

log
(M − 1)(1 − εt)

εt
, (5)

where, εt is the error rate of the decision tree and M is the
number of classes. The expected value for the successful
classification rate in random classification is 1

M . If the clas-
sification error rate exceeds 1− 1

M , the value of α is negative
in Eq. (5) and the decision tree is discarded. The training
sample is classified by the constructed decision trees and
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Fig. 3 Training algorithm of the proposed method. In the training pro-
cess, successive decision trees are built with a boosting algorithm that adds
weightings to the training samples. This enables generalization perfor-
mance to be maintained while using a small number of decision trees. In the
classification process, as with Random Forest, class probabilities are calcu-
lated by averaging the output leaf nodes for the unknown sample from each
of the trees. However, care must be taken in totaling the weights from each
tree.

the error rate is calculated from the weights of the incor-
rectly classified samples as

εt =

N∑

i:yi�ŷi

w(t)
i /

N∑

i=1

w(t)
i . (6)

3.1.3 Updating Training Sample Weights

Decision trees that easily correct classification of the sam-
ples that have been incorrectly classified in the next step are
constructed by making the weights of incorrectly classified
samples large as

w(t+1)
i =

⎧⎪⎪⎨⎪⎪⎩
w(t)

i exp (αt) if yi � ŷi

w(t)
i exp (−αt) otherwise,

(7)

Table 1 Data sets.

Data set Training Tests Class Feature dimensions
Pendigits 7,494 3,498 10 16

Letter 10,000 10,000 26 16
Satellite 4,435 2,000 6 36

Spam base 3,221 1,380 2 57
Iris 75 75 3 4

where ŷi is estimated class label using

ŷi = arg max
c

Pt(c|l). (8)

After updating the training sample weights, the weights are
normalized to N. Constructing the decision trees and updat-
ing the training sample weights in that way is repeated to
obtain T decision trees and T weighted decision trees. Af-
ter all decision trees have been constructed, the decision tree
weights are normalized.

3.2 Classification Process

An unknown sample is input to all of the decision trees as
shown in Fig. 3, and the class probabilities that are stored
in the arrived-at leaf nodes are output. Then, the outputs
of the decision trees, Pt(c|x), are weight-averaged using the
decision tree weights as

P(c|x) =
1
T

T∑

t=1

αtPt(c|x). (9)

The class that has the highest probability ŷ is output as the
classification result by

ŷ = arg max
c

P(c|x). (10)

4. Experimental Results

To show the effectiveness of the proposed method, the num-
ber of nodes are compared for the proposed method and
the conventional method at the same level of generalization
ability. For the proposed method, we investigated proce-
dures with and without sequential sample weight updating.

4.1 Data Set

The evaluation experiments used five data sets, Pendigits,
Letter, Satellite, Spam base, and Iris, from those published
by the UCI Machine Learning Repository [21] as a set of
machine training algorithm benchmarks. The data sets are
described briefly in Table 1.

4.2 Training Parameter

In this experiment, the depth of the decision trees for train-
ing parameters was fixed at 5, 10, 15, and 20. We compared
the minimum value of the miss rate by changing the num-
ber of decision trees. The number of candidates for the split
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function was 10 times the square root of the number of fea-
ture dimensions.

4.3 Experimental Results

The error ratio for each data set of the conventional Random
Forest (RF) and for the proposed method (Boosted Random
Forest with or without sample weight updating, BRF, BRF
w/o updating) are shown in Tables 2, 3, and 4 respectively.

For Pen, Letter, Satellite, Spam base data sets which
have enough number of training samples, the miss rate of the
proposed method was lower than that of the Random Forest
when the number of depth for decision trees was shallower.
In contrast, when the number of depth for decision trees was
deeper, the miss rate of the proposed method was equal to
or lower than that of the Random Forest. It is clear that the
classification performance of the Boosted Random Forest
with updating sample weight is superior. For Fig. 4 shows
the miss rate for each depth in the case of the “Pendigits”
data set. From Fig. 4, we realized that the Random Forest
requires more depth in order to obtain a higher classifica-
tion performance than the proposed method. In contrast,
the proposed “Boosted Random Forest” method does not re-
quire more depth because it has been trained by choosing the
split function with difficult training samples at upper nodes,
which have a heavier sample weight.

For Iris data set which has small number of training
samples, there is no significant changes between the Ran-
dom Forest and the Boosted Random Forest for classifica-
tion performance. This is because 5 of depth is enough for
representing diversity of the training samples in small scaled
problem.

4.4 Memory Usage for Decision Trees

For the implementation of decision trees on small-scale

Table 2 Error rate by Random Forest [%].

Depth Pen Letter Satellite Spam Iris Average
5 8.38 22.95 13.05 6.88 2.67 10.79

10 3.97 7.25 9.95 5.58 2.67 5.88
15 3.66 6.40 9.30 5.14 2.67 5.43
20 3.69 6.20 9.10 4.71 2.67 5.27

Table 3 Error rate by Boosted Random Forest w/o updating [%].

Depth Pen Letter Satellite Spam Iris Average
5 8.18 22.75 12.95 6.81 2.67 10.67

10 3.92 7.50 10.05 5.58 2.67 5.94
15 3.66 6.20 9.40 5.07 2.67 5.40
20 3.72 6.10 9.10 4.64 2.67 5.24

Table 4 Error rate by Boosted Random Forest [%].

Depth Pen Letter Satellite Spam Iris Average
5 3.72 11.45 10.70 4.57 2.67 6.62

10 2.55 5.00 8.35 4.13 2.67 4.54
15 2.69 4.55 8.25 3.77 2.67 4.38
20 2.66 4.40 8.20 3.55 2.67 4.76

hardware, less memory is better. Therefore, in this section
we compare the amount of memory needed for each method.
For each node, the total memory of a split function is 11
bytes, of which the selected feature dimension is 1 byte, the
threshold is 2 bytes, and the pointer for a child node is 8
bytes. For each leaf node, total memory is estimated by the
number of class bytes. Thus, we estimate the amount of
memory B required for decision trees by

B =
T∑

t=1

(Ns,t × 11 + Nl,t × M), (11)

where the number of trees is T , number of split nodes is
Ns,t, number of leaf nodes is Nl,t and number of classes is M.
Figure 5 shows the amount of memory for each method with
minimum error rate and the reduction ratio of the proposed
method compared to the Random Forest.

The amount of memory required by the proposed
“Boosted Random Forest” method is significantly reduced
while maintaining the higher classification performance.
Due to sequential training, the Boosted Random Forest con-
sists of complementary decision trees that enable the final
classifier to be constructed in favor of those instances mis-
classified by previous decision trees.

Fig. 4 Generalization error of Pendigits. (a) Shows the miss rates for
numbers of trees with depth 5, while (b) shows miss rates for trees of depth
20. The blue lines show results for Random Forest, the green lines for
Boosted Random Forest without updating the weightings, and the red lines
for Boosted Random Forest.
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Table 5 Computational cost for training and classification process.

Training time [msec/tree] Classification time [μsec/sample]
Random Forest 13.88 23

Boosted Random Forest w/o updating 41.66 33
Boosted Random Forest 14.04 29

Fig. 5 Amount of memory and reduction rate. The left axis shows mem-
ory use for each of the methods to achieve comparable classification rates,
while the right axis shows reduction rates.

4.5 Computational Cost for Decision Trees

Table 5 shows computational cost for training and classifi-
cation process. The training time means the average time of
constructing a decision tree. The classification time means
the average time for computing a final classification score
of decision trees. From Table 5, we see that the processing
time of the proposed method for training takes more time
than the conventional Random Forest, because the proposed
method needs an extra process for updating weights. On the
other hand, the processing time of the proposed method for
classification process is less than that of the conventional
Random Forest. This is because the proposed method can
construct efficient decision trees by introducing boosting al-
gorithm into training.

5. Conclusion

We have proposed a Boosted Random Forest in which a
boosting algorithm is introduced to a conventional Random
Forest. With a conventional Random Forest, decision trees
are built independently, so classifiers cannot be built to com-
plement each other. Thus, if the performance of each deci-
sion tree in the Random Forest is limited, classification per-
formance drops. In contrast to this, the Boosted Random
Forest maintains a high classification performance, even
with fewer decision trees, because it constructs complemen-
tary classifiers through sequential training by boosting. Ex-
perimental results show that the total memory required by
the Boosted Random Forest is 47% less than that of the con-
ventional Random Forest. For the Letter data set, which
used the most memory in these experiments, and imple-
menting on the Cyclone III FPGA EP3C120 image process-
ing board from Altera Corp., Random Forest used approxi-

mately 66% of the total RAM of 3,888 KB, while Boosted
Random Forest could be implemented using approximately
24% of memory. Random Forest can also process in paral-
lel, so implementations can replicate hardware resources as
many times as is permissible to increase speed through par-
allel processing. It is thus suited to implementation in low-
memory, small-scale hardware applications such as embed-
ded systems. Our future work includes experimental evalu-
ation for image recognition problems that are currently dif-
ficult to classify.
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