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Abstract: Facial part labeling which is parsing semantic components enables high-level facial image analysis, and
contributes greatly to face recognition, expression recognition, animation, and synthesis. In this paper, we propose a
cost-alleviative learning method that uses a weighted cost function to improve the performance of certain classes during
facial part labeling. As the conventional cost function handles the error in all classes equally, the error in a class with a
slightly biased prior probability tends not to be propagated. The weighted cost function enables the training coefficient
for each class to be adjusted. In addition, the boundaries of each class may be recognized after fewer iterations, which
will improve the performance. In facial part labeling, the recognition performance of the eye class can be significantly
improved using cost-alleviative learning.
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1. Introduction

Facial part labeling involves parsing semantic components of
the face such as the mouth, nose, and eyes. This labeling en-
ables high-level facial image analysis, and contributes greatly to
face recognition, expression recognition, animation, and synthe-
sis. Facial point detection and face alignment are major com-
ponents in identifying facial parts. Existing research focuses on
detecting landmarks such as eye and mouth corners, and can gen-
erally be categorized into discriminative and regression meth-
ods [1], [2], [8], [10] or graphical model methods [7], [14]. These
approaches tend to refine each landmark from the initially esti-
mated location. Whereas facial point detection and face align-
ment obtain facial landmarks with high accuracy, post-processing
or human interaction is required to label each pixel with the name
of that facial part. In addition, it is hard to define how many land-
mark positions are necessary. To address this problem, semantic
segmentation approaches have been proposed [3], [9], [11]. Deep
Learning achieves state-of-the-art performance for the labeling of
facial parts [9], [11] and scenes [3]. In particular, the Deep Con-
volutional Neural Network (DCNN) has attracted attention for
applications in computer vision tasks [5], [6]. However, DCNN-
based methods cannot label eye regions correctly, as shown in
Fig. 1. The DCNN trains the network parameters by iteratively
updating according to the error between prediction and ground
truth. If the prior probabilities are biased to a particular class,
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the error in classes with lower probabilities may not be propa-
gated correctly. In Ref. [3], superpixel-based segmentation was
used to reduce the bias and ensure that errors were propagated
appropriately. However, the accuracy is significantly affected by
the superpixel segmentation. A different approach uses a Deep
Belief Network to detect and label all facial part regions at the
same time [9]. Although this method avoids the problems of su-
perpixel segmentation by detecting a larger region, it does require
a complex architecture. These techniques can achieve good per-
formance, but do not solve the training problem for the labeling
of small regions.

In this paper, we consider this problem and propose a training
approach to improve the accuracy of the labeling of small regions.
As the conventional cost function handles the error in all classes
equally, the error in a class with a slightly biased prior probability

Fig. 1 Facial parts labeling based on conventional DCNN. (a) and (d) are
input images, (b) and (e) are the resulting images, (c) and (f) are the
ground truth.
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tends not to be propagated. We propose a cost-alleviative learning
method that weights the cost function using the prior probability
of each class. We describe the details of cost-alleviative learning
in Section 3. We show that the cost weight can control the accu-
racy and convergence speed of certain classes, and compare man-
ually set probabilities with those based on the ratio of facial part
regions in an image. In Section 4, we demonstrate the superiority
of our cost-alleviative learning over the conventional method.

2. Related Work

Conventional applications of facial analysis employ facial
point detection or face alignment as preprocessing techniques to
normalize the facial region. The Active Shape Model (ASM) [1]
is a well-known face alignment approach, and has inspired many
methods [10], [13]. ASM depends on the initial position of the
model, and does not work well in an unconstrained environ-
ment. The Markov Shape Model [7] uses multiple initial shapes
as local line segments and appearances. While these methods
reduce the influence of initialization, they can be time consum-
ing. Discriminative approaches adapt to pose variations and clut-
tered backgrounds, and generally offer reduced computational
cost [2], [8], [14]. The regression ASM detects small patches
related to facial components by boosting the classifiers [2]. As
the detection process for each patch is independent, the matching
process may fail if there are several missing components.

Representations that use pixel-wise label maps provide richer
information and more robustness than facial point detection and
face alignment [12], [15]. For example, the scene parsing ap-
proach in Ref. [15] constructs a topological structure model of
the face image that is robust in unconstrained environments. As
the model is based on rough priors, it is inaccurate for small
face components such as the eyes. A hierarchical approach to
face parsing can improve the accuracy of these small compo-
nents [9]. First, face parts (e.g., upper face, lower face) are
detected, before a second stage detects face components (e.g.,
mouth, eyes) and a final, third stage segments the components
according to pixel-wise labels. This hierarchical structure is con-
structed by heuristic knowledge, and is not easily generalized.
DCNN-based approaches have been successfully applied to scene
labeling tasks [3]. This method also employs a hierarchical struc-
ture that segments and labels superpixels.

For recognition tasks, DCNN updates the network parameters
according to the error obtained from several images. Although
particular classes may be biased in each iteration, the update pro-
cess uses equal prior probabilities for all classes over all itera-

Fig. 2 Structure of DCNN for segmentation. The network consists of successive convolution and pooling
layers followed by a full connection layer. The output layer has label maps for each class.

tions. On the other hand, for semantic segmentation, the errors
for all pixels are calculated and propagated at the same time. In
particular, in the case of facial part labeling, the prior probabili-
ties of each facial part will be different. Whereas a class with a
high prior probability is likely to propagate the error to the next
step, one with a low probability will find convergence difficult,
with a large error that does not occur in the next step. As a result,
the performance for this class will be significantly degraded.

In this paper, we propose a cost-alleviative learning technique
that introduces a new cost function to improve specific classes in
the semantic segmentation task. The cost function is weighted
based on the prior probability of each class. These cost weights
make it possible to alleviate the propagation of error. We now
describe the cost function and the efficiency of the cost weights
in detail.

3. Proposed Method

Figure 2 shows the network structure of DCNN for semantic
segmentation. The network is built of three types of layer: con-
volutional, pooling, and a full connection layer. The convolution
and pooling layers are arranged successively as a deep structure,
and are followed by the full connection layer. The output layer
has label maps for each class. In the training phase, the errors
are calculated as the difference between the response value and
labeled data. The update values are derived from the errors, and
are propagated by back-propagation. The error Ec of output unit
c is defined in Eq. (1).

Ec = −
∑
p∈P

tp log yp (1)

Note that P is the mini-batch size, tp are the labeled data, and yp

is the prediction result. The total training error on one iteration
is computed by adding the errors in all classes. The conventional
cost function treats these errors equally. We set the cost weight
vc for each class c, and define the total training error EM as the
weighted sum in Eq. (2).

EM =
∑
c∈C

Ec · vc (2)

The network parameters W on the t-th iteration are updated using
the gradient of the cost function with a training coefficient η, as
shown in Eq. (3).

Wt+1 =Wt − η∂EM

∂Wt
(3)

From Eq. (2) and our definition that the cost function EM is the
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Table 1 The ratio of each face component in an image.

class Ratio[%]

face 17.51
eyes 0.44
nose 1.08

mouth 0.89
eye glasses 0.06

hat 0.90
hair 10.73

others 68.34

sum of the errors across all classes, Eq. (3) can be written as
Eq. (4).

Wt+1 = Wt − η
(
∂

∂Wt
E0 · v0 + ∂

∂Wt
E1 · v1

+ · · · + ∂

∂Wt
EC · vC

)
(4)

As shown in Eq. (4), the gradient of the cost function is the sum
of the error gradients in all classes, and the errors in each class
are independent. The product of the gradient of the cost function
and the training coefficient η can be considered as the product
of the error gradient for each class and the training coefficient.
Therefore, Eq. (4) becomes:

Wt+1 = Wt −
(
η · v0 · ∂E0

∂Wt
+ η · v1 · ∂E1

∂Wt

+ · · · + η · vC · ∂EC

∂Wt

)
(5)

Both the cost weight of each class vc and the training coefficient
η are constants, but the cost weights are generally different for
each class. As a result, the weighted cost function is equivalent
to changing the coefficient for each class.

Table 1 gives the ratio of each class in the Labeled Face in the
Wild (LFW) dataset. face and hair accounts for 17% and 10% of
the whole image set, respectively, whereas the ratio of nose and
eye regions are small (1.0% and 0.4%, respectively). The cost
weight of each class is defined by Eq. (6) using the prior proba-
bility p(c) computed from the ratios in Table 1.

vc =
C

C − log p(c)
(6)

Note that C is the number of classes. The network parameters are
updated according to the weighted cost function, and the conver-
gence speed of a certain class is adjusted by its cost weight.

4. Experiments

We now demonstrate the performance of the proposed cost-
alleviative learning with the weighted cost function. Although
the LFW dataset has pixel-wise labeled data, there are only three
classes, namely face, hair, and others. To prepare classes with
low prior probabilities, we annotated new pixel-wise labels for
eight classes, i.e., eyes, nose, mouth, sunglasses, hat, hair, face,
and others. We split the dataset into 9,263 training images and
3,970 test images. We augmented the training subset by apply-
ing translation, rotation, and scaling to the images, giving a total
of 185,262 images. Table 2 lists the evaluation network struc-
ture and training parameters. The network has three convolution
and pooling layers and one full connection layer with dropout.

Table 2 Network structure and training parameters.

layer

input gray 100 × 100

# of filters (size) 32 (7 × 7)
1st convolution activation function maxout

pooling (size) maxpooling (2 × 2)

# of filters (size) 64 (6 × 6)
2nd convolution activation function maxout

pooling (size) maxpooling (2 × 2)

# of filters (size) 128 (6 × 6)
3rd convolution activation function maxout

pooling (size) maxpooling (2 × 2)

# of units 1,000
4th full connection activation function sigmoid

dropout 0.5

output # of units 8 × 100 × 100

training parameters batch size 10
learning rate 0.1

Fig. 3 Labeling accuracy of each facial part.

We employed maxout [4] and sigmoid activation functions in the
convolution layer and full connection layer, respectively. The in-
put images were 100 × 100 pixels in size, and the output units
were 100 × 100 × 8. We set the mini-batch size to 10 and applied
a training coefficient of 0.1.

4.1 Face Part Labeling with Cost-alleviative Learning
We compared the recognition performance of our method with

that of conventional DCNN. The cost function of our method
includes weights for each class. The cost weights of the eyes,
mouth, nose, face, and hair were found to be 0.78, 0.8, 1.0, 1.05,
and 1.05, respectively. Figure 3 shows the recognition perfor-
mance after 1 million iterations. The recognition rates for face
and hair are 98% and 78%, respectively. This is similar to the
performance of conventional DCNN. Whereas the DCNN recog-
nition rates for eyes and mouth are 49% and 78%, our method
significantly improves these to 83% and 89% for each class. Our
approach also improves the average recognition rate by about 5%.

Figure 4 illustrates the recognition performance during the
training phase to demonstrate the behavior of the proposed cost
function. The permanence of the face class does not influence
the cost weight of the eye class, and is quite similar to that in
the conventional method. The weight increases rapidly at first,
and converges after about 100,000 iterations. In contrast, the eye
class is not well recognized until the face region recognition has
converged. The performance of the eye class increases gradually
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Fig. 4 Recognition rate of face and eye classes on each iteration.

Fig. 5 Recognition rate of each class at each cost weight.

after 100,000 iterations, but remains at about 50%. The weighted
cost function alleviates the error, and significantly improves the
performance in earlier iterations.

4.2 Evaluation of Cost Weight Values
We define the cost weight from the prior probability of each

class in Eq. (6). We now demonstrate the recognition behavior
with manually set cost weights. We vary the cost weight of the
eye class from 0.6 to 1.6, and train the network over 1 million iter-
ations. Figure 5 shows the recognition performance of each class.
The recognition performance decreases when the cost weight of
the eye class takes values larger than 1. However, the recogni-
tion performance is improved when the cost weight of the eye
class is set at around 0.8, but gradually worsens with smaller cost
weights. Thus, a smaller cost weight for the eye class (around
0.8) can improve the recognition performance. In Eq. (6), it is
possible to set the cost weight of eyes to 0.78, which is almost
the same as in this manual definition.

5. Discussion

Figure 6 shows the precision and recall curves of the eye and
face classes. In addition, the results of face part labeling at each
iteration are shown in Fig. 7. In the conventional method, the eye
class exhibits high precision, but a low recall rate. This indicates
that the class occupies a small region and is correctly labeled, but
the labeled region is quite small. The eye class could not be la-
beled well because it is difficult to determine the boundary. While
the recall rate gradually increases, many iterations are needed to
obtain better performance. Our cost-alleviative learning achieves
high precision and recall rates in fewer iterations by applying a

Fig. 6 Precision and recall curves of eye and face classes.

Fig. 7 Facial labeling results after different numbers of iterations. (a) is the
input image, (g) is the ground truth, (b)–(f) are given by the proposed
method and (h)–(l) are given by the conventional method. (b) and (h)
are at 100,000 iterations, (c) and (i) are at 200,000 iterations, (d) and
(j) are at 300,000 iterations, (e) and (k) are at 400,000 iterations, and
(f) and (l) are at 500,000 iterations.

small cost weight for the eye class. As a result, it is easy to deter-
mine the boundaries, leading to a high precision rate. Moreover,
the recall rate converges after fewer iterations. The face region
retains high recall and precision rates, and does not influence the
cost weight of the eye class. Thus, cost-alleviative learning en-
ables an efficient improvement in recognition performance and
convergence rate.

6. Conclusion

We have proposed a cost-alleviative learning method that uses
a weighted cost function to improve the recognition performance
of certain classes during semantic segmentation. The weighted
cost function enables the training coefficient for each class to be
adjusted. This alleviates the error in classes that occupy small re-
gions, making it possible to achieve convergence for such classes.
In addition, the boundaries of each class may be recognized after
fewer iterations, which will improve the performance. In facial
part labeling, the recognition performance of the eye class can be
significantly improved using cost-alleviative learning. In future
work, we will apply the weighted cost function to scene parsing
or other semantic segmentation tasks.
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