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PAPER

Layered Detection for Multiple Overlapping Objects

Hironobu FUJIYOSHI†a) and Takeo KANADE††,†††, Members

SUMMARY This paper describes a method for detecting multiple over-
lapping objects from a real-time video stream. Layered detection is based
on two processes: pixel analysis and region analysis. Pixel analysis deter-
mines whether a pixel is stationary or transient by observing its intensity
over time. Region analysis detects stationary regions of stationary pixels
corresponding to stopped objects. These regions are registered as layers
on the background image, and thus new moving objects passing through
these layers can be detected. An important aspect of this work derives from
the observation that legitimately moving objects in a scene tend to cause
much faster intensity transitions than changes due to lighting, meteorolog-
ical, and diurnal effects. The resulting system robustly detects objects at
an outdoor surveillance site. For 8 hours of video evaluation, a detection
rate of 92% was measured, which is higher than traditional background
subtraction methods.
key words: object detection, video surveillance, activity recognition

1. Introduction

Recently, automated video surveillance using video un-
derstanding technology has become an important research
topic in the area of computer vision [1]. Within video un-
derstanding technology for surveillance use, detection of
moving objects in video streams is known to be a signif-
icant, and difficult, research problem [2]. Conventional ap-
proaches to moving object detection include temporal differ-
encing [3], [4], background subtraction [2], [5]–[7], and op-
tical flow [8]–[10]. One of the most successful approaches
to date is adaptive background subtraction [6]. The basic
idea is to maintain a running statistical average of the in-
tensity at each pixel – when the value of a pixel in a new
image differs significantly from this, the pixel is flagged as
potentially containing a moving object. One problem of this
approach, along with other conventional approaches to mo-
tion detection is that objects that cease moving within the
image simply disappear from the representation. A robust
detection system should continue to “see” objects that have
stopped and disambiguate between overlapping objects in
the image. For example, a car that comes into the scene and
parks should not be considered as part of the scene back-
ground. However, its stationary pixels should play the role
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of background for detecting the motion of a person getting
out of the car.

We have developed a novel approach to object detec-
tion based on layered adaptive background subtraction. Lay-
ered detection is based on two processes: pixel analysis and
region analysis. Pixel analysis determines whether a pixel is
stationary or transient by observing its intensity value tran-
sitions over time. The technique is derived from the obser-
vation that moving objects under observation cause much
faster intensity transitions than changes due to lighting or
weather. Region analysis outputs a stationary region con-
sisting of stationary pixels as a stopped object. This region
is registered as a layer on the background image, allowing
new moving objects passing through the layer to be detected.

The paper is organized as follows. In Sect. 2, we de-
scribe the algorithm of layered detection based on two pro-
cesses. In Sect. 3, we describe evaluation method based on
time duration and experimental results of 8 hours evaluation,
then show the effectiveness of the layered method.

2. Layered Detection Algorithm

Layered detection is based on two processes: pixel analysis
and region analysis. The purpose of pixel analysis is to de-
termine whether a pixel is stationary or transient by observ-
ing its intensity value over time. Region analysis deals with
the agglomeration of groups of pixels into moving regions
and stopped regions. Figure 1 graphically depicts the pro-
cess. By observing the intensity transitions of a pixel, dif-

Fig. 1 The concept — combining pixel statistics with region analysis to
provide a layered approach to motion detection.
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Fig. 2 Architecture of the detection process. Temporal analysis is used on a per pixel basis to deter-
mine whether pixels are transient or stationary. Transient pixels are clustered into groups and assigned
to spatio-temporal layers. A layer management process keeps track of the various background layers.

ferent intensity layers, connected by transient periods, can
be postulated. Within each pixel, an intensity state is started
from the background value. When a moving object passes
through, the intensity state changes to transient. When the
object stops, the state reverts to a stationary value, which
may differ from the value of the background. Therefore,
it is clear that moving objects and stopped objects can be
detected by keeping track of collections of transient and sta-
tionary pixels.

Figure 2 shows the architecture of the detection pro-
cesses. A key element of this algorithm is that it needs to
observe the behavior of a pixel for some time before deter-
mining if that pixel is undergoing a transition.

2.1 Pixel Analysis

In an outdoor surveillance scenario, it has been observed
that a pixel’s intensity value displays three characteristic
profiles depending on what is occurring in the scene at that
pixel location.

• An object moving through the pixel displays a profile
that exhibits a step change in intensity, followed by a
period of instability, then another step back to the orig-
inal background intensity. Figure 3 (a) shows this pro-
file.
• An object moving through the pixel and stopping dis-

plays a profile that exhibits a step change in intensity,
followed by a period of instability, then it settles to a
new intensity as the object stops. Figure 3 (b) shows
this profile.
• Changes in intensity caused by lighting or meteorolog-

ical effects tend to be smooth changes that don’t exhibit
large steps. Figure 3 (c) shows this profile.

To capture the nature of changes in pixel intensity pro-
files, two factors are important: the existence of a significant
step change in intensity, and the intensity value to which the

Fig. 3 Characteristic pixel intensity profiles for common events. Moving
objects passing through a pixel cause an intensity profile step change, fol-
lowed by a period of instability. If the object passes through the pixel (a),
the intensity returns to normal. If the object stops (b), the intensity settles
to a new value. Variations in ambient lighting (c) exhibit smooth intensity
changes with no large steps.

profile stabilizes after passing through a period of instabil-
ity. To interpret the meaning of a step change (e.g. object
passing through, stopping at, or leaving the pixel), we need
to observe the intensity curve re-stabilizing after the step
change. This introduces a time-delay into the process. In
particular, current decisions are made about pixel events k
frames in the past. In our implementation k is set to cor-
respond to one second of video. Therefore, although our
algorithms runs in “real-time”, there is a lag of one second.
This delay is more than made up for by the improved quality
of detections, resulting from having knowledge of the future
when making decisions about the “current” frame.

Let It be some pixel’s intensity at a time t occurring k
frames in the past. Two functions are computed: a motion
trigger T just prior to the frame of interest t, and a stability
measure S computed over the k frames from time t to the
present. The motion trigger is simply the maximum absolute
difference between the pixel’s intensity It and its value in the
previous five frames:

T = max
{
|It − I(t− j)| , ∀ j ∈ [1, 5]

}
(1)
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The stability measure is the variance of the intensity
profile from time t to the present:

S =

k
k∑

j=0

I(t+ j)
2 − (

k∑
j=0

I(t+ j))
2

k(k − 1)
(2)

At this point a transience map M can be defined by
the following algorithm for each pixel, taking three possible
values: background=bg; transient=tr and stationary=st.
Background intensity is prepared in advance as a back-
ground image.

if ((M = st or bg) AND (T > Threshold))

M = tr

}

if ((M = tr) AND (S < Threshold)) {

if (I = background intensity)

M = bg

else

M = st

}

Background is updated by an Infinite Impulse Re-
sponse (running average) filter to accommodate slow light-
ing changes and noise in the imagery, as well as to compute
statistically significant step-change thresholds [12].

B(t) = αI(t) + (1 − α)B(t − 1) (3)

The constant α determines how fast the background is al-
lowed to change.

2.2 Region Analysis

Non-background pixels in the transience map M are clus-
tered into regions Ri using a nearest neighbor spatial filter
with clustering radius rc. This process is similar to perform-
ing a connected components segmentation. However, gaps
up to a distance of rc pixels can be tolerated within a com-
ponent. Choice of rc depends upon the scale of the objects
being tracked. A clustered region has one of the following
three states:

• All pixels in region are labeled as transient. The region
must be a moving object.
• All pixels in region are labeled as stationary. The re-

gion must be a stopped object.
• The region contains a mixture of transient and station-

ary pixels. The region may contain both stopped and
moving objects.

Each spatial region R is then analyzed according to the
following algorithm:

if (R = tr) {

R -> moving object

}

elseif (R = st) {

%remove all pixels already assigned

%to any layer

R = R - (L(0) + L(1) + .. + L(j))

%if anything is left, make new layer

if (R != 0) {

make new layer L(j+1) = R

R -> stopped object

}

else {

%R contains a mixture of tr and st

R = R - (L(0) + L(1) + .. + L(j)

SR(i) = spatial_clustering(R)

for (each region SR(i)) {

if (SR = tr) {

SR -> moving object

}

if (SR = st) {

make new layer L(j+1) = SR

SR -> stopped object

}

if (SR = (st + tr)) {

SR -> moving object

}

}

}

Where L(j) is a layer image and j is the number of layer
images that are already registered.

Regions that consist of stationary pixels are added as a
new layer over the background. A layer management pro-
cess is used to determine when stopped objects resume mo-
tion or are occluded by other moving or stationary objects.
When an object that is already registered as a layer starts to
move, the layer is deleted by the layer manager. Intensity
values within stationary layered regions are updated by an
IIR filter in the same way that the background is updated.

3. Detection Results

3.1 Example of Analysis

Figure 4 shows an example of the analysis that occurs at
a single pixel. The video sequence contains the following
activities at the pixel:

1. A vehicle drives through the pixel and stops
2. A second vehicle occludes the first and stops
3. A person, getting out of the second vehicle, occludes

the pixel
4. The same person, returning to the vehicle, occludes the

pixel again
5. The second car drives away
6. The first car drives away

As can be seen, each of these steps is clearly visible in the
pixel’s intensity profile, and the algorithm correctly identi-
fies the layers that accumulate.

Figure 5 shows the output of the region-level layered
detection algorithm. The detected regions are shown sur-
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Fig. 4 Example pixel analysis of the scene shown in Fig. 5. A car drives in and stops. Then a second
car stops in front of the first. A person gets out and then returns again. The second car drives away,
followed shortly by the first car.

Fig. 5 Detection result. Here one stopped vehicle partially occludes another, while a person in moving
in the foreground. Displayed on the right are the layers corresponding to the stopped vehicles and the
moving foreground person, together with bitmaps denoting which pixels are occluded in each layer.

rounded by bounding boxes — note that all three overlap-
ping objects are independently detected. Each stopped car
is depicted as a temporary background layer, and the person
is determined to be a moving foreground region overlayed
on them. The pixels belonging to each car and to the person

are well disambiguated.

3.2 Evaluation Method

To measure the performance of a detection algorithm, a
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Fig. 6 Evaluation.

number of criteria are relevant. An object should be de-
tect as soon as possible after it appears. Once the object
is first detected, it should be continuously tracked until it
disappears from view. Occasionally a detected object will
become lost due to low contrast or other factors as it passes
through the field view. We propose an evaluation method
based on measuring time durations (Fig. 6), specifically, the
amount of time an object remains undetected, the amount of
time it remains detected (tracked), and the amount of time it
is lost during its traversal of the field of view. A human op-
erator evaluates video footage to determine these time dura-
tions. The detection rate and the loss rate are then calculated
as:

Detection =
∑

D∑
U +
∑

D +
∑

L
(4)

Loss =
∑

L∑
D +
∑

L
(5)

U : Undetected time duration [s]
D : Detected time duration [s]
L : Loss time duration [s]

In this definition, “U: Undetected” means the undetected
time duration after an object appears until the object is de-
tected. Once the object is detected, an undetected time du-
ration is evaluated as loss time “L:Loss”.

Using this evaluation method, the real peformance of
detection is computed. Note that false positives are not con-
sidered in this evaluation. In case of false positives, we just
count a total number of false positives.

3.3 Experimental Results

On an Pentium III running at 500 MHz, our method can pro-
cess 6 to 9 frames a second (frame size 320 × 240 pixels).
The variation in the frame rate is due to the size and amount
of moving objects. This detection algorithm has been evalu-
ated on eight hours of video tape for which ground-truth la-
beling of moving obects (people and vehicles) was manually

Table 1 Detection rates (loss rate) [%].

MTD Layered method
camera1 camera2 camera1 camera2

Sunny day 58.4 89.9 84.4 94.7
(29.1) (11.2) (10.4) (5.5)

Cloudy day 92.1 93.8 92.7 96.2
(8.5) (6.5) (7.8) (3.8)

Average 83.5 92.0

False positive 18 times 20 times

Fig. 7 Sliding analysing window.

determined. Four hours of data were taken on a sunny day,
and four hours on a cloudy day. Probability of detection was
determined by time duration evaluation as described above.
Sometimes, there are objects which are not detected totally
because of the low contrast. The loss rate does not contain
the case mentioned above in order to evaluate the undetected
time after the object is detected. Therefore, the sum of the
detection rate and the loss rate sometimes exceeds 100%,
because the denominators of Eqs. (4) and (5) are different.

Table 1 shows detection rates by MTD and layered de-
tection. MTD is the standard adaptive background subtrac-
tion method described in [11]. Note that MTD does not have
the capability to continue detecting stopped objects. Fail-
ures of MTD and layered method under sunny conditions
are mainly due to loss of contrast in shadowed areas. This
is one reason why cloudy day perfomance is better for both
cameras.

On the other hand, in this situation, our method can de-
tect additional objects that MTD cannot because the thresh-
old value for a motion trigger T of Eq. (1) can be set to a
low value for detecting a small change in intensity over time.
Although we may get some false positives due to the more
sensitive threshold value, our method can suppress those
false positives because the method distinguishes whether the
pixel is stationary or transient by analyzing the variance of
the intensity profile from t − K to the present as shown in
Fig. 7.

There are 20 false positives with layered detection and
18 with MTD. Most of these occured on a sunny day, be-
cause there are false positives on the front windows of ve-
hicles due to reflection of the sun. However, this is not a
problem, because it is possible to eliminate these false posi-
tives at the next stage of tracking or classification [11].

3.4 Detection in Shadow Area

There are failures of layered detection under sunny condi-
tions due to loss of low constrast in shadow area. This is



2826
IEICE TRANS. INF. & SYST., VOL.E87–D, NO.12 DECEMBER 2004

Fig. 8 Changes of motions trigger value over the time.

because the value of motion trigger T is small. In our im-
plementation at the experiment described in Sect. 3.3, the
threshold value for the motion trigger was set to constant
value. If the value is set as bigger than the value of mo-
tion trigger, the motion of a object in shadow area can not
be distinguished as a transient pixel. To improve detection
performance in shadow area, we use adaptive thresholding
based on intensity changes in the past frames. The inten-
sity changes is calculated as a variance of intensity by the
following equation:

S t =

K
k∑

i=1

I(t−i)
2 − (

K∑
i=0

I(t−i))2

K(K − 1)
(6)

The variance in the past K frames is used to set a
threshold value Tht which distinguishes whether the pixel
is transient or stationary. For each pixel in the image, the
threshold Tht has to be calculated at every frame as follows:

Tht =

{
4 · S t Tt−1,≤ Tht−1

Tht−1 , Tt−1 > Tht−1

Figure 8 (a) shows values of motion trigger and thresh-
old at a pixel in shadow area and (b) shows outside of the
shadow area. In shadow area, the intensity becomes small,
so the motion of a object from 120th to 130th frames can
not be detected by thresholding using fixed value. On the
other hand, the motion can be detected by threshloding by
variance, because the threshold value is chosen to adapt the
intensity changes in past frames. In the case of outside of
shadow area, we see that the motion of a object from 180th

Fig. 9 Example of detection result in shadow area.

Table 2 Detection rates in shadow area [%].

MTD Layered method
fixed value variance

55.5 65.6 75.2

to 220th frames is detected, because there is no problem of
low contrast.

Figure 9 shows an example of detection result in
shadow area. Table 2 shows detection results of layered
method with adaptive thresholding by variance. Note that
the detection rate is not high because the rate is evaluated
only in shadow area. It is clear that the detection perfor-
mance in shadow area is improved, because the adaptive
thresholding by variance can adapt small changes in inten-
sity at each pixels.

4. Conclusions

This paper has presented a new method for detecting re-
gions of multiple overlapping objects from a real-time video
stream. Layered detection is based on two processes: pixel
analysis and region analysis. Pixel analysis determines
whether a pixel is stationary or transient by observing pixel
intensity over time. Region analysis outputs a stationary
region consisting of stationary pixels as a stopped object.
Then the region is registered as a layer on the background
image. Therefore, a moving object passing through the layer
can be detected as an independent object. The resulting sys-
tem robustly detects objects in an outdoor surveillance site.
For 8 hours of video evaluation, a detection rate of 92% was
measured which is higher than traditional background sub-
traction methods.

Layered detection has two main advantages; it detects
objects robustly because of doing a time series analysis at
each pixel to detect motion, and it detects multiple over-
lapping objects independently by using a layer management
scheme.

However, in case there are some vehicles parked in the
initial background image, it might lead to wrong detection
result when the vehicles move away. Choosing the initial
background image is not carefully investigated yet in this
paper, and this will be our next work. We will try to elimi-
nate such wrong detection regions caused by the initial back-
ground by using texture analysis which will recognize the
continuity of neighbor pixels on the edge of the mis-detected
region.
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