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SUMMARY In this paper, a process is described for but are applicable to other types of targets, or even

analysing the motion of a human target in a video stream. Mov-
ing targets are detected and their boundaries extracted. From
these, a “star” skeleton is produced. Two motion cues are deter-
mined from this skeletonization: body posture, and cyclic motion
of skeleton segments. These cues are used to determine human
activities such as walking or running, and even potentially, the
target’s gait. Unlike other methods, this does not require an a
priori human model, or a large number of “pixels on target”.
Furthermore, it is computationally inexpensive, and thus ideal
for real-world video applications such as outdoor video surveil-
lance.

key words: image skeletonization, human motion analysis, ac-
tivity recognition

1. Introduction

Using video in machine understanding has recently be-
come a significant research topic. Omne of the more
active areas is activity understanding from video im-
agery [7]. Understanding activities involves being able
to detect and classify targets of interest and analyze
what they are doing. Human motion analysis is one
such research area. There have been several good hu-
man detection schemes, such as [8] which use static
imagery. But detecting and analyzing human mo-
tion in real time from video imagery has only recently
become viable with algorithms like Pfinder[10] and
W4[5]. These algorithms represent a good first step
to the problem of recognizing and analyzing humans,
but they still have some drawbacks. In general, they
work by detecting features (such as hands, feet and
head), tracking them, and fitting them to some a pri-
ori human model such as the cardboard model of Ju et
al. [6].

There are two main drawbacks of these systems in
their present forms: they are completely human spe-
cific, and they require a great deal of image-based in-
formation in order to work effectively. For general video
applications, it may be necessary to derive motion anal-
ysis tools which are not constrained to human models,
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to classifying targets into different types. In some real
video applications, such as outdoor surveillance, it is
unlikely that there will be enough “pixels on target” to
adequately apply these methods. What is required is a
fast, robust system which can make broad assumptions
about target motion from small amounts of image data.

This paper proposes the use of the “star” skele-
tonization procedure for analyzing the motion of tar-
gets — particularly, human targets. The notion is that
a simple form of skeletonization which only extracts
the broad internal motion features of a target can be
employed to analyze its motion.

Once a skeleton is extracted, motion cues can be
determined from it. The two cues dealt with in this
paper are: cyclic motion of “leg” segments, and the
posture of the “torso” segment. These cues, when taken
together can be used to classify the motion of an erect
human as “walking” or “running”.

This paper is organized as follows: section 2 de-
scribes how moving targets are extracted in real-time
from a video stream, Sect. 3 describes the processing of
these target images and Sect. 4 describes human motion
analysis. System analysis and conclusions are presented
in Sects. 5 and 6.

2. Real-Time Target Extraction

The initial stage of the human motion analysis prob-
lem is the extraction of moving targets from a video
stream. There are three conventional approaches to
moving target detection: temporal differencing (two-
frame or three-frame) [1], background subtraction [5],
[10] and optical flow (see [2] for an excellent discussion).
Temporal differencing is very adaptive to dynamic en-
vironments, but generally does a poor job of extracting
all relevant feature pixels. Background subtraction pro-
vides the most complete feature data, but is extremely
sensitive to dynamic scene changes due to lighting and
extraneous events. Optical flow can be used to detect
independently moving targets in the presence of camera
motion, however most optical flow computation meth-
ods are very complex and are inapplicable to real-time
algorithms without specialized hardware.

The approach presented here is similar to that
taken in [5] and is an attempt to make background
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subtraction more robust to environmental dynamism.
The notion is to use an adaptive background model to
accommodate changes to the background while main-
taining the ability to detect independently moving tar-
gets.

Consider a stabilized video stream or a station-
ary video camera viewing a scene. The returned im-
age stream is denoted I, where n is the frame num-
ber. There are four types of image motion which are
significant for the purposes of moving target detec-
tion: slow dynamic changes to the environment such
as slowly changing lighting conditions; “once-off” in-
dependently moving false alarms such as tree branches
breaking and falling to the ground; moving environ-
mental clutter such as leaves blowing in the wind; and
legitimate moving targets.

The first of these issues is dealt with by using a
statistical model of the background to provide a mech-
anism to adapt to slow changes in the environment. For
each pixel value p,, in the n'” frame, a running average
D,, and a form of standard deviation o, , are maintained
by temporal filtering. Due to the filtering process, these
statistics change over time reflecting dynamism in the
environment.

The filter is of the form

F(t)y=¢€ a=—— (1)

where 7 is a time constant which can be configured to
refine the behavior of the system. When the a is minus
value, F'(t) will work as an attenuator.

The filter is implemented at the discrete domain:

ﬁnJrl = (1 - a)anrl + apn
Fnt1 = (1 — a)|pny1 — Ppya| + aon (2)
0<a<l)

where a = 7 x f, and f is the frame rate. Unlike the
models of both [5] and [10], this statistical model incor-
porates noise measurements to determine foreground
pixels, rather than a simple threshold. This idea is in-
spired by [4].

If a pixel has a value which is more than 20 from
D, then it is considered a foreground pixel. At this
point a multiple hypothesis approach is used for deter-
mining its behavior. A new set of statistics (p’,0’) is
initialized for this pixel and the original set is remem-
bered. If, after time ¢ = 37, the pixel value has not
returned to its original statistical value, the new statis-
tics are chosen as replacements for the old.

“Moving” pixels are aggregated using a connected
component approach so that individual target regions
can be extracted. Transient moving objects will cause
short term changes to the image stream that will not
be included in the background model, but will be con-
tinually tracked, whereas more permanent changes will
(after 37) be absorbed into the background.
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3. Target Pre-Processing

No motion detection algorithm is perfect. There will
be spurious pixels detected, holes in moving features,
“interlacing” effects from video digitization processes,
and other anomalies. Foreground regions are initially
filtered for size to remove spurious features, and then
the remaining targets are pre-processed before motion
analysis is performed.

3.1 Pre-Processing

The first pre-processing step is to clean up anomalies
in the targets. This is done by a morphological dilation
followed by an erosion. This removes any small holes
in the target and smoothes out any interlacing anoma-
lies. In this implementation, the target is dilated twice
followed by a single erosion. This effectively robustifies
small features such as thin arm or leg segements.

After the target has been cleaned, its outline is ex-
tracted using a border following algorithm. The process
is shown in Fig. 1.

3.2  “Star” Skeletonization

An important cue in determining the internal motion
of a moving target is the change in its boundary shape
over time and a good way to quantify this is to use
skeletonization. There are many standard techniques
for skeletonization such as thinning and distance trans-
formation. However, these techniques are computation-
ally expensive and moreover, are highly susceptible to
noise in the target boundary. The method proposed
here provides a simple, real-time, robust way of detect-
ing extremal points on the boundary of the target to
produce a “star” skeleton. The “star” skeleton consists
of only the gross extremities of the target joined to its
centroid in a “star” fashion.

1. The centroid of the target image boundary (z., y.)

Moving target

" !

binarization Border extraction

v |
Dilation
(twice) Erosion
e —

Fig.1 Target pre-processing. A moving target region is
morphologically dilated (twice) then eroded. Then its border
is extracted.
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Fig.2 The boundary is “unwrapped” as a distance function
from the centroid. This function is then smoothed and extremal
points are extracted.

is determined.
N,
1 b
Te = Fb E Zi,
=1
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where (z.,y.) is the average boundary pixel po-
sition, N is the number of boundary pixels, and
(z4,yi) is a pixel on the boundary of the target.

2. The distances d; from the centroid (z.,y.) to each
border point (z;,y;) are calculated

di = /(2 = e)? + (yi — ye)? (4)

These are expressed as a one dimensional discrete
function d(i) = d;. Note that this function is peri-
odic with period Njp.

3. The signal d(i) is then smoothed for noise reduc-
tion, becoming d(l) This can be done using a
linear smoothing filter or low pass filtering in the
Fourier domain.

4. Local maxima of d(i) are taken as extremal points,
and the “star” skeleton is constructed by connect-
ing them to the target centroid (z.,y.). Local
maxima are detected by finding zero-crossings of
the difference function

(i) = d(i) —d(i — 1) (5)

(3)

This procedure for producing “star” skeletons is illus-
trated in Fig. 2.

3.3 Advantages of “Star” Skeletonization
There are three main advantages of this type of skele-

tonization process. It is not iterative and is, there-
fore, computationally cheap. It also explicitly provides
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Fig.3 Effect of cut-off value ¢. When c is small only gross
features are extracted, but larger values of ¢ detect more extremal
points.

a mechanism for controlling scale sensitivity. Finally,
it relies on no a priori human model.

The scale of features which can be detected is di-
rectly configurable by changing the cutoff frequency ¢
of the low-pass filter. Figure 3 shows two smoothed
versions of d(i) for different values of ¢: ¢ = 0.01 x N,
and ¢ = 0.025 x N. For the higher value of ¢, more
detail is included in the “star” skeleton because more of
the smaller boundary features are retained in d(i). So
the method can be scaled for different levels of target
complexity.

An interesting application of this scalability is the
ability to measure the complexity of a target by ex-
amining the number of extremal points extracted as a
function of smoothing.

Other analysis techniques [5], [6], [10], require a pri-
ori models of humans — such as the cardboard model
in order to analyze human activities. Using the skele-
tonization approach, no such models are required, so
the method can be applied to other objects like ani-
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Fig.4  Skeletonization of different moving targets. It is clear
the structure and rigidity of the skeleton is significant in
analyzing target motion.

mals and vehicles (see Fig.4). It is clear that the struc-
ture and rigidity of the skeleton are important cues
in analysing different types of targets. However, in
this implementation, only human motion is considered.
Also, unlike other methods which require the tracking
of specific features, this method uses only the object’s
boundary so there is no requirement for a large number
of “pixels on target”.

4. Human Motion Analysis

One technique often used to analyze the motion or gait
of an individual target is the cyclic motion of skeletal
components [9]. However, in this implementation, the
knowledge of individual joint positions cannot be de-
termined in real-time. So a more fundamental cyclic
analysis must be performed.

Another cue to the gait of the target is its posture.
Using only a metric based on the “star” skeleton, it is
possible to determine the posture of a moving human.

4.1 Significant Features of the “Star” Skeleton

For the cases in which a human is moving in an up-
right position, it can be assumed that the lower ex-
tremal points are legs, so choosing these as points to
analyze cyclic motion seems a reasonable approach. In
particular, the left-most lower extremal point (1) is
used as the cyclic point. Note that this choice does not
guarantee that the analysis is being performed on the
same physical leg such as a right/left leg at all times.
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Fig.5 Determination of skeleton features. (a) 6 is the angle
the left cyclic point (leg) makes with the vertical, and (b) ¢ is
the angle the torso makes with the vertical.
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Fig.6 Skeleton motion sequences. Clearly, the periodic
motion of 6, provides cues to the target’s motion as does the
mean value of ¢,,.

However, it is not necessary that the same leg are de-
tected at all times, because the cyclic structure of the
motion will still be evident from this point’s motion. If
{(xf,y7)} is the set of extremal points, (I, 1, ) is chosen
according to the following condition:

(lasly) = (27,97) + 2] = min x} (6)

b yi<ye

Then, the angle (I,1,) makes with the vertical 6 is
calculated as

lp —2
0 =tan ! ——=< 7
- (7)
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Figure 5 (a) shows the definition of (I,1,) and 6.

One cue to determining the posture of a moving
human is the inclination of the torso. This can be ap-
proximated by the angle of the upper-most extremal
point of the target. This angle ¢ can be determined in
exactly the same manner as 6. See Fig.5 (b).

Figures 6 (a)—(b) show human target skeleton mo-
tion sequences for walking and running when the cutoff
frequency ¢ was set as 0.001. Figures 6 (¢)—(d) show the
values of 6, for the cyclic point. These data were ac-
quired in real-time from a video stream with frame rate
8 Hz. This value is not a constant in this technique but
depends on the amount of processing which is required
to perform motion analysis and target pre-processing.

Note that in Fig. 6 (c), there is an offset in the value
of 6,, in the negative direction. This is because only the
leftmost leg (from a visual point of view) is used in the
calculation and the calculation of 6 is therefore biased
towards the negative. There is also a bias introduced
by the gait of the person. If s/he is running, the body
tends to lean forward, and the values of 6,, tend to re-
flect this overall posture. Another feature which can
clearly be observed is that the frequency of the cyclic
motion point is clearly higher in the case of the run-
ning person, so this can be used as a good metric for
classifying the speed of human motion.

15
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Comparing the average values ¢,, in Figs. 6 (e)—(f)
show that the posture of a running target can easily
be distinguished from that of a walking one using the
angle of the torso segment as a guide.

4.1.1 Cycle Detection

Figures 6 (c)—(d) display a clear cyclical nature in 6,,.
To quantify these signals, it is useful to move into the
Fourier domain. However, there is a great deal of signal
noise, so a naive Fourier transform will not yield useful
results — see Fig.7 (b). Here, the power spectrum of
0, shows a great deal of background noise.

To emphasize the major cyclic component, an au-
tocorrelation is performed on 6,, providing a new signal
R;.

1 N
EEES TP

=1

R; (8)

where N is number of frames. This is shown in

Fig. 7 (c).

This autocorrelation process introduces a new
source of noise due to the bias (or DC component) of
the 0,, signal. When low frequency components are au-
tocorrelated, they remain in the signal and show up in
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Fig.7 Process for detecting cyclic motion.



118

the power spectrum as a large peak in the low frequen-
cies with a degeneration of 6[dB/oct] in the case of
Fig.7(d). To alleviate this problem, a high frequency
pre-emphasis filter H(z) is applied to the signal before
autocorrelation. The filter used is:

H(z)=1-az""! (9)

with a chosen empirically to be ~ 1.0. This yields the
figure shown in Fig.7 (e).

Finally, Fig. 7 (g) shows that the major cyclic com-
ponent of the cyclic point can be easily extracted from
the power spectrum of this processed signal.

5. Analysis

This motion analysis scheme has been tried on a
database of video sequences of people walking and run-
ning at outdoor. There are approximately 20 video se-
quences in each category, with pixles on target ranging
from = 50 to = 400 caused by the distance from cam-
era to the target. The targets are a mixture of adults
and children. The end-to-end process of MTD, target

(b) running

Fig.8 Target skelton for walking and running.
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pre-processing, and motion analysis was performed on
an SGI O2 machine containing an R10000 175 MHz pro-
cessor. Figure 8 shows examples of detected region by
the MTD and its skelton for walking and running.

Figure 9 shows histograms of the peaks of the
power spectrum for each of the video streams. It is
clear from Fig. 9 (a) that the low frequency noise would
cause a serious bias if motion classification were at-
tempted. However, Fig.9 (b) shows how effective the
pre-emphasis filter is in removing this noise. It also
shows how it is possible to classify motion in terms of
walking or running based on the frequency of the cyclic
motion. The average walking frequency is 1.75 [Hz] and
for running it is 2.875[Hz]. A threshold frequency of
2.0 [Hz] correctly classifies 97.5% of the target motions.
Note that these frequencies are twice the actual footstep
frequency because only the visually leftmost leg is con-
sidered. Another point of interest is that the variance
of running frequencies is greater than that of walking
frequencies, so it could be possible to classify different
“types” of running such as jogging or sprinting.

For each video sequence, the average inclination ¢

Walking
B Running

Cyclic motion histogram

1.25 1.875 25 3.125 3.75
Frequency [Hz]
{a) Autocorrelation + DFT

o[
Walking

8 B B Running 7
g
g
2 6r T
g
]
B
2 4T J
ES
O

2F 4

0o * ; S

0 0.625 1.25 1.875 2.5 3.125 375
Frequency [Hz]
(b) Pre-emphasis + Autocorrelation + DFT
Fig.9 Histogram of cyclic motion frequency peaks. (a) The

bias in ), often produces a frequency peak which is significantly
higher than the peak produced by cyclic motion. (b) The pre-
emphasis filter effectively removes this noise.
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Fig.10 Average inclination histogram of torso for
classification.

of the upper extremal point (or torso) was determined.
These values are shown in Fig. 10. It can be seen that
the forward leaning of a running figure can be clearly
distinguished from the more vertical posture of a walk-
ing one. A threshold value of 0.15 [rads] correctly clas-
sifies 90% of the target motions.

6. Conclusion

Analyzing human motion for video applications is a
complex problem. Real-world implementations will
have to be computationally inexpensive and be appli-
cable to real scenes in which targets are small and data
is noisy. The notion of using a target’s boundary to an-
alyze its motion is a useful one under these conditions.
Algorithms need only be applied to a small number of
pixels and internal target detail, which may be sketchy,
becomes less important.

This paper presents the approach of “star” skele-
tonization by which the component parts of a target
with internal motion may easily, if grossly, be extracted.
Further, two analysis techniques have been investigated
which can broadly classify human motion. Body incli-
nation can be measured from the “star” skeleton to de-
termine the posture of the human, which derives clues
as to the type of motion being executed. In addition,
cyclic analysis of extremal points provides a very clean
way of broadly distinguishing human motion in terms
of walking and running and potentially even different
types of gait.

In the future, this analysis technique will be ap-
plied to more complex human motions such as crawl-
ing, jumping, and so on. It may even be applied to the
gaits of animals.
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