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1.はじめに
運転者の認知的負担を抑えつつ，走行状況を直感的に理

解できる案内を提供することが，快適な運転ナビゲーショ
ン支援では重要である．このようなナビゲーションシステ
ムの実現においては，車両が運転手に対して運転シーンに
合わせて適切な情報を提示する必要がある．既存システム
は，地図情報に基づいた経路案内や定型的な音声案内が主
流であり，複雑かつ動的に変化する走行環境では，運転手が
直感的に状況を把握することは容易ではない．このような
課題に対し，周囲の状況を踏まえて人間のように案内を行
う Human-like Guidanceに関する研究が注目されている．
本研究では，Human-like Guidanceの実現に向け，視界

情報を基にした環境認識と自然言語生成を統合し，運転手
が直感的に理解可能な案内文を生成することを目標とする．
走行シーンにおける判断対象となる情報は多岐にわたり，
特に時間的変化を伴う環境認識では，情報量の増加が生成
精度や安定性に影響を及ぼす可能性がある．そこで本研究
では，車両の視界情報から得られるオブジェクトの空間的・
時間的関係を時空間シーングラフとして表現し，これを基
に案内文を生成する手法を提案する．さらに，生成したシー
ングラフに対し，Graph Attention Networks(GAT)[1]を
用いて案内に重要な対象を強調しながら情報を統合するこ
とを目指す．そして，推論時に得られる Attentionを可視
化することで，生成された案内文に対する視覚的説明を可
能とする．
2.関連研究
本研究では，車両の視界情報を基に環境を理解し，運転

状況に即した案内文を生成することを目的としている．本
章では，この目的に関連する技術を述べる．
2.1 動画像からのキャプション生成
キャプション生成は，画像または動画像を入力とし，そ

の内容を自然言語による文章として生成するタスクである．
本タスクでは，一般に視覚特徴を抽出するエンコーダと，
抽出された特徴に基づいて文章を生成するデコーダからな
る Encoder-Decoder 構成が採用される．視覚特徴抽出の
手法として，画像を対象とする場合には CNN，動画像を
対象とする場合には 3DCNN や時系列情報を考慮可能な
Transformerベースのモデルが広く用いられる．文章生成
には，Transformerに代表される自己回帰型の言語モデル
が用いられ，Cross-Attention 機構を通じて視覚特徴と単
語列を統合しながら逐次的に自然言語の説明を生成する．
これにより，入力画像や動画像の内容と意味的に整合性の
あるキャプション生成が可能となる．
2.2 シーングラフによる環境理解

Graph Neural Networkを視覚認識へ応用した手法とし
て，画像中のオブジェクトをノードとして表現し，その関
係性をグラフ構造として扱うシーングラフに基づく手法が
提案されている．Graph R-CNN[2]は，物体検出モデルに
よって得られたオブジェクト間の関係をシーングラフとし
て明示的に構築することで，画像の構造的理解が向上する
ことを示している．
3.提案手法
本研究では，走行シーンの動画像から得られるオブジェ

クトの時空間的関係を時空間シーングラフとして構築し，
GAT を用いた Graph-to-Text モデルにより案内文を生
成する手法を提案する．また，Graph Encoder における
Attentionを可視化することで，案内文生成の判断根拠を
視覚的に提示し，モデルの解釈性と信頼性の向上を図る．
提案手法の全体構成を図 1に示す．
3.1 マルチオブジェクトトラッキング
交通シーンには多様なオブジェクトが存在し，その外

観も大きく変化する．従来のシーングラフ構築では，オブ
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図 1: 提案手法のアーキテクチャ
ジェクトをノードとして定義した場合に，この多様な外観
情報を含めることが困難である．そこで本研究では，Open-
Vocabulary 物体検出モデルである YOLO-World[3] を用
いる．YOLO-Worldは画像特徴とテキスト特徴を統合した
クロスモーダル表現により，未学習クラスの zero-shot検
出が可能である．本手法では，テキストで指定したクラス
ラベルを直接ノードのラベルとして利用することで，ノー
ド表現を簡潔かつ解釈可能な形式に統一する．
また，オブジェクト自身の時間的な差分をシーングラフ

として表現する場合，検出オブジェクトをフレーム間で一
貫して追跡する必要がある．本手法では追跡アルゴリズム
である BoT-SORT[4]を用い，各オブジェクトに一貫した
IDを付与する．これにより，シーングラフ構築時に時間方
向の解析が可能となる．
3.2 時空間シーングラフの構築
動画像が与えられたとき，前述したマルチオブジェクト

を行い，検出オブジェクトの位置・クラス情報・追跡情報
を用いて時空間シーングラフ Gを式 (1)として構築する．

G = {V ,E} (1)

ここで，V はノード集合，E はエッジ集合である．
ノード集合 V の定義：　各フレーム t におけるノード集
合 V t を，マルチオブジェクトトラッキングによって得ら
れた検出オブジェクトの集合として，式 (2)のように定義
する．

V t = {vti | (Bt
i , c

t
i, id

t
i) ∈ Dt} (2)

ここで，Dt はマルチオブジェクトトラッキングの出力を
表し，B はオブジェクト毎の境界ボックス座標，cはクラ
スラベル，idは ID化されたトラッキング情報を示す．
エッジ集合Eの定義：　同一フレーム内のオブジェクト間
の関係性を空間的エッジ Espatial として式 (3)のように定
義する．

Espatial = {((vti , vtj), wt
ij)}, wt

ij =∥ B̃t
i − B̃t

j ∥2 (3)

ここで，wt
ij はエッジに対する重みを示し，オブジェクト

間のユークリッド距離を付与する．これにより，フレーム
毎のオブジェクト間の動的変化をグラフ内に表現する．
続いて，時系列方向におけるオブジェクト間の関係性と

して時系列エッジ Etemporal を式 (4)のように定義する．
Etemporal = {((vti , vt+1

j )) | idti = idt+1
j } (4)

この処理では，前後のフレームでトラッキング IDが一致
するノードに対してエッジが接続される．
最終的に，エッジ集合 E は式 (5)となる．

E = Espatial ∪Etemporal (5)

3.3 シーングラフへのAction埋め込み操作
案内文生成では，シーンの状況だけでなく，自車の行動

Action（右折・直進など）を考慮することが重要である．
本手法では，ナビゲーション時に与えられる Actionをテ
キスト形式として入力し，埋め込み層を通して Action特
徴を得る．そして，得られた Action特徴を前段で生成さ
れたシーングラフ内のすべてのノード特徴へ統合する．事
前にシーングラフに Actionを埋め込むことで，Actionに
基づいて着目すべきノードが強調されるような効果を図る．



表 1: 各モデルで生成された案内文の精度結果
Method

5 frame 10 frame 15 frame
B-1 B-4 M R B-1 B-4 M R B-1 B-4 M R

3DCNN 0.568 0.322 0.575 0.643 0.551 0.292 0.538 0.617 0.519 0.268 0.515 0.601
3DResNet 0.459 0.197 0.446 0.559 0.448 0.173 0.439 0.547 0.457 0.180 0.449 0.534

VTN 0.583 0.337 0.578 0.565 0.412 0.142 0.378 0.537 0.379 0.099 0.377 0.471
ViViT 0.524 0.266 0.538 0.592 0.540 0.285 0.551 0.603 0.549 0.274 0.559 0.611
Ours 0.610 0.363 0.635 0.668 0.617 0.382 0.646 0.675 0.631 0.388 0.649 0.677

※ B-1：BLEU-1, B-4：BLEU-4, M：METEOR, R：ROUGE 　
3.4 Graph-to-Textモデル
本研究では，時空間シーングラフから文章の生成を行う

Graph-to-Textモデルを提案する．Graph-to-Textモデル
は，グラフの特徴抽出を行う Graph Encoderと文章生成
を行う Text Decoder で構成される．Graph Encoder で
は，空間方向と時系列方向に分けて Attention を適用し，
特徴抽出を行う Spatial Temporal GAT (ST-GAT) を構
築する．Text Decoderでは，Graph Encoderにより抽出
されたグラフ特徴量から，Transformer Decoderを用いて
文章の生成を行う．また，モデルの推論時，最終層におけ
る各エッジに対する Attentionスコアをグラフ上に可視化
することで，モデルの判断根拠の解釈を可能とする．
4.データセット
ナビゲーションタスクには，走行車両の車載カメラ映像と

対応する案内文のペアからなるデータセットが必要となる．
本研究では案内文生成に特化したデータセットを CARLA
Simulatorを用いて独自に作成する．撮影には 8つのマッ
プを用い，撮影条件は以下の通り設定する．

• フレームレート：10 fps

• 天候条件：ClearNoon, WetNoon

• 撮影範囲：交差点約 50m手前から交差点通過直後
案内文のアノテーションは手動で実施し，注目対象に基づ
いた案内文を作成する．作成したデータセットは，合計 160
シーン，計 10,219フレームで構成される．各シーンには，
前述した案内文，進行方向における動作情報が含まれる．
5.評価実験
評価実験を通じて提案手法の有効性を検証する．本実験

では，ベースライン手法との比較，入力フレーム数が 5フ
レーム，10フレーム，15フレームにおける異なるフレー
ム長が案内文の生成精度に与える影響について分析する．
評価には，BLEU，METEOR，ROUGEを用いる．
5.1 ベースライン手法
ベースライン手法として動画像から直接特徴量を抽出す

る手法を用いる．具体的には，提案手法におけるシーング
ラフを構築する過程と Graph Encoderを Video Encoder
に置き換える．本実験では，CNNおよび Transformerを
ベースとした，3DCNN，3DResNet，Video Transformer
Network (VTN)，Video Vision Transformer (ViViT)を
用いる．
5.2 実験条件
学習設定は，学習率 1.0× 1.0−4，エポック数 100，バッ

チサイズ 32，Dropout 率 0.3 とする．学習の最適化アル
ゴリズムには AdamW を用いる．これらの設定は，提案
手法およびベースライン手法の全てのモデルで統一する．
5.3 定量的評価
提案手法およびベースライン手法の各モデルで生成され

た案内文の精度について定量的評価によって比較を行う．評
価結果を表 1に示す．結果より，提案手法は全てのフレーム
数において他の手法を上回る精度を達成しており，フレー
ム数が増加するほどより顕著に精度が向上していることが
確認できる．
5.4 定性的評価
提案手法およびベースライン手法の各モデルで生成され

た案内文について定性的に評価する．各手法における案内
文生成結果の例を図 2に示す．結果より，Groud Truthと
同様の “yellow car” を中心とした案内文を生成できてい
るものは提案手法のみであり，最も適切な説明となってい

る．ベースライン手法においては，最も動作の変化が大き
い “black car”もしくは画像内に存在しないオブジェクト
を注目しており，不適切な説明となっている．

Input image (𝑡 = 1)

Input image (𝑡 = 15)

Ground truth：
Straight ahead following the yellow car.

Action：
Straight

3DCNN：
Straight ahead following the black car.

3DResNet：
Straight at the intersection, following the white car.

VTN：
Straight ahead, following the red car currently.

ViViT：
Straight at the intersection where the black car is 
located.

Ours：
Straight ahead in the direction where the yellow car is
heading.

図 2: 各手法における案内文生成結果
次に，提案手法における案内文生成において，推論時の

Attentionを時空間シーングラフ上に可視化する．Atten-
tionの可視化結果を図 3に示す．結果より，グラフ上では
“black car” に着目しており，生成案内文の着目している
オブジェクトと一致する．また，エッジはオブジェクト間
の関連度として解釈することができる．したがって，モデ
ルが生成した案内文の判断根拠をグラフを通して視覚的に
説明可能であることを示している．

Action：right

Output text：
Turn right at this 
intersection, following    
the black car in front.

Input image (𝑡 = 4) Scene Graph and Attention Visualization ( 𝑡 = 4)

図 3: Attentionの可視化結果
6.おわりに
本研究では，車両の視界情報から動的な環境を理解し，

運転手に直感的な案内文を生成する手法を提案した．走行
シーンのオブジェクト関係を時空間シーングラフとして表
現し，Graph-to-Text モデルにより案内文生成を行った．
また，GATによる重要情報の強調と Attention 可視化に
よる判断根拠の提示を実現した．評価実験では，提案手法
が CNNや Transformerベースの Video Encoder を用い
たベースライン手法よりも高い精度を示し，特に長期間の
情報統合において有効性が確認された．さらに，定性的評
価および Attention可視化から，モデルが適切な対象に注
目し案内文を生成していることを確認した．
今後の課題として，より複雑な環境や多様な運転シナリ

オへの適用とその有効性の検証が挙げられる．
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