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1.はじめに
強化学習 (RL)は，エージェントが環境との相互作用を

通じて方策を学習する機械学習手法の一種であり，ロボッ
ト制御やゲーム攻略などの分野で応用が進んでいる．RL
では，環境から与えられる報酬をもとに行動を評価し，報
酬を最大化するように方策を更新する．そのため，報酬関
数の設計はエージェントの学習や性能を左右する重要な要
素である．一方で複雑なタスクでは報酬の設計が難しく，
専門知識や試行錯誤への依存が大きな課題となっている．
この問題に対し，大規模言語モデル (LLM)を用いて報酬
関数を自動生成・修正する Text2Reward (T2R) [1] が提
案されている．これにより，自動で報酬関数を生成できる
一方で，生成された報酬関数が必ずしも実行可能であると
は限らず，環境の仕様と不整合なコードや未定義変数を含
む場合がある．また，報酬関数の修正において人間による
評価やフィードバックを前提としており，設計者の主観や
負担に依存する点が課題として残されている．
本研究では，これらの課題に対処するため，報酬関数の

自動生成および自動修正を安定して実現するフレームワー
クを提案する．提案手法では，LLM が生成した報酬関数
の実行可能性を担保する Auto Debug Moduleと，自動的
に RL結果を分析する Feedback LLMを導入することで，
人間に依存しない報酬関数の生成および改善を目指す．
2.RLにおける報酬設計と従来法

RLにおいて，報酬関数はエージェントの行動を数値的
に評価し，学習の方向性を決定づける重要な要素である．
エージェントは報酬を最大化するように方策を更新するた
め，報酬設計は最終的な方策の性質や学習性能に大きな影
響を与える．
2.1人手による報酬設計
一般的な RLでは，タスクの目的を人間が解釈し，目標

状態への到達や制約条件の遵守などを評価基準として，状
態や行動に応じた報酬を定義する．報酬は単一の項目で与
えられる場合もあるが，多くの場合は複数の評価項目を組
み合わせた加算形式で表現される．この際，各評価項目に
対する重み付けや，疎報酬か密報酬かといった報酬形状を
人手で設定する．これらの設定は探索の容易さや学習の安
定性に強く影響するため，学習曲線やエージェントの行動
例を観察しながら報酬関数を反復的に修正する試行錯誤が
必要となる．専門家はタスク構造や RLアルゴリズムの特
性を踏まえた調整が可能である一方，非専門家にとっては，
どの評価項目をどの程度強調すべきかを判断することが難
しい．その結果，報酬関数の品質に差が生じ，意図しない
行動の誘発や学習の停滞が生じることがある．
2.2従来手法：Text2Reward

T2Rは，LLMを用いて報酬関数を自動生成し，人間の
フィードバックを通じて修正する手法である．図 1 に示す
ように，まず LLMに対して RLタスクの概要や環境情報
を与え，報酬関数のコードを生成させる．生成された報酬
関数を用いて RLを実施し，その学習結果やエージェント
の振る舞いをもとに，人間がフィードバックを与えること
で報酬関数を更新する．

T2R は，従来人手に依存していた報酬設計を自動化す
る可能性を示している．一方で，実際の RLタスクに適用
する際には，生成された報酬関数の実行可能性や，人間に
よるフィードバックの与え方に起因する問題がある．そこ
で，T2Rを用いた事前調査を行い，これらの問題点を明ら
かにする．
2.3事前調査 1：生成関数の実行可能性
本調査では，LLMが生成する報酬関数の実行可能性につ

いて検証する．LLMに対して，ManiSkill2の PushChair-
v1を対象とした報酬関数の生成を依頼し，生成された関数
を実際の RL環境上で実行する．実行時にエラーが発生し
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図 2: フィードバック方針の違いによるRLへの影響
た場合は，当該関数を実行不可能と判定し，新たに報酬関
数の生成を行う．この操作を繰り返し，10個の実行可能な
報酬関数が得られるまで試行する．
結果を表 1 に示す．この調査により，LLMが生成した

報酬関数には，未定義の変数や環境に存在しない属性を参
照する記述が含まれる場合が多く，実行可能な関数を得る
ためには複数回の生成が必要であることがわかった．この
ことから，T2Rでは報酬関数生成の段階で実行可能性が十
分に担保されておらず，LLM による生成に不安定性が存
在することが確認できる．

表 1: T2Rにおける報酬関数の実行可能性
LLM 総生成回数 実行可能率 [%]

GPT-4o 36 27.8

GPT-5 38 26.3

2.4事前調査 2：修正方針の違いによるRLへの影響
本調査では，報酬関数の修正時に用いるフィードバック

の違いが与えるRLへの影響について調査する．GPT-5が
生成した報酬関数 (LLM Reward)を異なる 2つの方針で
修正し，それぞれで RLを実施する．一つは安全性や必要
最低限の動作を重視する保守的な修正方針 (defensive) で
あり，もう一方はタスクの達成速度や効率を重視する積極
的な修正方針 (aggressive)である．これらのフィードバッ
クに基づいて報酬関数を修正し，同一条件下で RLを実行
した．RLタスクには，PushChair-v1を用いる．
結果を図 2に示す．aggressiveは最高で 80%程度のタス

ク成功率を示したが，defensiveは終始 0%付近で停滞して
いる．この調査により，フィードバック方針の違いによっ
て学習の進行や最終的な性能に大きな差が生じることが確
認された．同じ初期報酬関数を用いた場合であっても，人
間の判断による修正内容の違いがタスク成功率やエージェ
ントの行動に大きく影響する．この結果は，T2Rにおける
報酬修正が人間の熟練度や価値観に強く依存していること
を示しており，非専門家にとって安定した性能向上を達成
することが困難であるという課題を示唆している．
3.提案手法：Auto-Text2Reward

本研究では，図 3 に示すように，報酬関数の自動生成
および自動修正を安定して実現するためのフレームワー
クを提案する．本手法では，Code Generate LLM，Auto
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def compute_reward(self, action):
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  return reward
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図 3: 提案手法 (Auto-Text2Reward)

Debug Module，Feedback LLM を組み合わせ，T2R に
おける生成段階および修正段階の不安定性の低減を図る．
3.1報酬関数の自動生成
存在しない変数の参照や記述ミスを抑制するために，以下

の手順に従い報酬関数を生成する．まず， 1○の Code Gen-
erate LLMが，RL環境で直接使用可能な変数や関数を明
示したプロンプトを基に，報酬関数を生成する．次に， 2○の
Auto Debug Moduleに生成した報酬関数を渡し，環境に
おいて正常に実行可能であるか検証する．ここでエラーが
発生した場合，Auto Debug Moduleはエラーログを LLM
に共有し，再生成を行うことで実行可能な報酬関数のみを
選別する．正常に実行可能な報酬関数が得られたら， 3○の
実際の RL環境に渡り，RLを実施する．
3.2報酬関数の自動修正
人間の熟練度や判断基準に依存しないように，RLの結

果を自動的に分析する Feedback LLMを導入する．RLの
実施後， 4○の Feedback LLMを用いて RLの分析を行う．
ここでは，学習中のタスク成功率や獲得報酬の推移などの
RLログデータ，エージェントの振る舞いを記録した画像列
を入力として受け取り，学習状況やエージェントの振る舞
いを分析する．その後，使用した報酬関数と分析結果を踏
まえ，報酬関数の改善案であるフィードバックを生成する．
これらの分析結果とフィードバックに基づき， 1○の Code
Generate LLMが再び報酬関数を生成する．
4.評価実験
提案手法の有効性を検証するため，報酬関数の実行可能

性と，報酬設計の品質に関する評価実験を行う．
4.1報酬関数の実行可能性
生成した報酬関数の実行可能性を検証するため，Man-

iSkill2のタスクを対象として報酬関数を生成する．事前調
査 1と同様に，LLMにはGPT-5を用いて，10個の実行可
能な報酬関数を生成するまでに要した試行回数を計測する．
結果を表 2 に示す．提案手法は，いずれのタスクにおい

ても従来手法より少ない試行回数で実行可能な報酬関数を生
成しており，プロンプト改善および Auto Debug Module
が報酬関数の実行可能性を向上させていることが確認で
きる．

表 2: 提案手法における報酬関数の実行可能性
タスク 手法 総生成回数 実行可能率 [%]

PushChair-v1
T2R 38 26.3

Ours 14 71.4

OpenCabinetDoor-v1
T2R 72 13.9

Ours 11 90.9

OpenCabinetDrawer-v1
T2R 75 13.3

Ours 14 71.4
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図 4: タスク成功率の推移
4.2報酬設計の品質
生成した報酬関数の品質を検証するため，PushChair-v1

を用いて RLを実施する．比較対象として，専門家設計の
Professional Reward，GPT-5が生成した LLM Reward，
T2Rによって LLM Rewardを保守的および積極的な方針
で修正した T2R (defensive/aggressive)，提案手法によっ
て n回の自動修正を行った Ours (n feedback) を用いる．
各エージェントの学習過程におけるタスク成功率を図 4

に示す．提案手法は，いずれの報酬関数よりも高いタスク
成功率を達成した．また，提案手法による修正を繰り返す
ことで，修正前の報酬関数を用いた学習より性能が向上し
ている．以上より，提案手法は人間を介せず，報酬関数の
自動生成および自動修正を実現したといえる．
5.おわりに
本研究では，RL における報酬設計の困難さに着目し，

報酬関数の自動生成および自動修正を安定して実現するフ
レームワークを提案した．T2R の課題に対し，提案手法
では，生成された報酬関数の実行可能性を担保する Auto
Debug Moduleと，RLの結果を分析してフィードバック
を生成する Feedback LLMを導入した．評価実験より，提
案手法は専門家が設計した報酬関数や従来手法により得ら
れた報酬関数と比較して，エージェントの性能を改善させ
ることが可能であることを確認した．
今後は，RL分析サマリーのさらなる最適化や，動画情

報の導入方法，フィードバック生成頻度の制御，あるいは
軽量な言語モデルとの併用といった観点から，計算効率と
分析精度の両立を検討する．
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