
深層強化学習における報酬関数の自動生成及び自動修正に関する研究
TR24008 鈴木 佳三 指導教授：藤吉 弘亘

1.はじめに
強化学習 (RL)は，エージェントが環境との相互作用を

通じて方策を学習する機械学習手法の一種であり，ロボッ
ト制御やゲーム攻略などの分野で応用が進んでいる．RL
では，環境から与えられる報酬をもとに行動を評価し，報
酬を最大化するように方策を更新する．そのため，報酬関
数の設計はエージェントの学習や性能を左右する重要な要
素である．一方で複雑なタスクでは報酬の設計が難しく，
専門知識や試行錯誤への依存が大きな課題となっている．
この問題に対し，大規模言語モデル (LLM)を用いて報酬
関数を自動生成・修正する Text2Reward (T2R) [1] が提
案されている．これにより，自動で報酬関数を生成できる
一方で，生成された報酬関数が必ずしも実行可能であると
は限らず，環境の仕様と不整合なコードや未定義変数を含
む場合がある．また，報酬関数の修正において人間による
評価やフィードバックを前提としており，設計者の主観や
負担に依存する点が課題として残されている．
本研究では，これらの課題に対処するため，報酬関数の

自動生成および自動修正を安定して実現するフレームワー
クを提案する．提案手法では，LLM が生成した報酬関数
の実行可能性を担保する Auto Debug Moduleと，自動的
に RL結果を分析する Feedback LLMを導入することで，
人間に依存しない報酬関数の生成および改善を目指す．
2.RLにおける報酬設計と従来法

RLにおいて，報酬関数はエージェントの行動を数値的
に評価し，学習の方向性を決定づける重要な要素である．
エージェントは報酬を最大化するように方策を更新するた
め，報酬設計は最終的な方策の性質や学習性能に大きな影
響を与える．
2.1人手による報酬設計
一般的な RLでは，タスクの目的を人間が解釈し，目標

状態への到達や制約条件の遵守などを評価基準として，状
態や行動に応じた報酬を定義する．報酬は単一の項目で与
えられる場合もあるが，多くの場合は複数の評価項目を組
み合わせた加算形式で表現される．この際，各評価項目に
対する重み付けや，疎報酬か密報酬かといった報酬形状を
人手で設定する．これらの設定は探索の容易さや学習の安
定性に強く影響するため，学習曲線やエージェントの行動
例を観察しながら報酬関数を反復的に修正する試行錯誤が
必要となる．専門家はタスク構造や RLアルゴリズムの特
性を踏まえた調整が可能である一方，非専門家にとっては，
どの評価項目をどの程度強調すべきかを判断することが難
しい．その結果，報酬関数の品質に差が生じ，意図しない
行動の誘発や学習の停滞が生じることがある．
2.2従来手法：Text2Reward

T2Rは，LLMを用いて報酬関数を自動生成し，人間の
フィードバックを通じて修正する手法である．図 1 に示す
ように，まず LLMに対して RLタスクの概要や環境情報
を与え，報酬関数のコードを生成させる．生成された報酬
関数を用いて RLを実施し，その学習結果やエージェント
の振る舞いをもとに，人間がフィードバックを与えること
で報酬関数を更新する．

T2R は，従来人手に依存していた報酬設計を自動化す
る可能性を示している．一方で，実際の RLタスクに適用
する際には，生成された報酬関数の実行可能性や，人間に
よるフィードバックの与え方に起因する問題がある．そこ
で，T2Rを用いた事前調査を行い，これらの問題点を明ら
かにする．
2.3事前調査 1：生成関数の実行可能性
本調査では，LLMが生成する報酬関数の実行可能性につ

いて検証する．LLMに対して，ManiSkill2の PushChair-
v1を対象とした報酬関数の生成を依頼し，生成された関数
を実際の RL環境上で実行する．実行時にエラーが発生し

LLM RL agent

RL training

Description: Seems like violent behavior
Feedback: Keep the chair standing

User

Task & Env.
Descriptions

def compute_reward(self, action):
  # get states
  pose = self.agent.pose
  ...
  
  return reward

Reward Function

図 1: Text2Reward

0 1 2 3 4 5 6
Global Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PushChair-v1

LLM Reward T2R (defensive) T2R (aggressive)

図 2: フィードバック方針の違いによるRLへの影響
た場合は，当該関数を実行不可能と判定し，新たに報酬関
数の生成を行う．この操作を繰り返し，10個の実行可能な
報酬関数が得られるまで試行する．
結果を表 1 に示す．この調査により，LLMが生成した

報酬関数には，未定義の変数や環境に存在しない属性を参
照する記述が含まれる場合が多く，実行可能な関数を得る
ためには複数回の生成が必要であることがわかった．この
ことから，T2Rでは報酬関数生成の段階で実行可能性が十
分に担保されておらず，LLM による生成に不安定性が存
在することが確認できる．

表 1: T2Rにおける報酬関数の実行可能性
LLM 総生成回数 実行可能率 [%]

GPT-4o 36 27.8

GPT-5 38 26.3

2.4事前調査 2：修正方針の違いによるRLへの影響
本調査では，報酬関数の修正時に用いるフィードバック

の違いが与えるRLへの影響について調査する．GPT-5が
生成した報酬関数 (LLM Reward)を異なる 2つの方針で
修正し，それぞれで RLを実施する．一つは安全性や必要
最低限の動作を重視する保守的な修正方針 (defensive) で
あり，もう一方はタスクの達成速度や効率を重視する積極
的な修正方針 (aggressive)である．これらのフィードバッ
クに基づいて報酬関数を修正し，同一条件下で RLを実行
した．RLタスクには，PushChair-v1を用いる．
結果を図 2に示す．aggressiveは最高で 80%程度のタス

ク成功率を示したが，defensiveは終始 0%付近で停滞して
いる．この調査により，フィードバック方針の違いによっ
て学習の進行や最終的な性能に大きな差が生じることが確
認された．同じ初期報酬関数を用いた場合であっても，人
間の判断による修正内容の違いがタスク成功率やエージェ
ントの行動に大きく影響する．この結果は，T2Rにおける
報酬修正が人間の熟練度や価値観に強く依存していること
を示しており，非専門家にとって安定した性能向上を達成
することが困難であるという課題を示唆している．
3.提案手法：Auto-Text2Reward

本研究では，図 3 に示すように，報酬関数の自動生成
および自動修正を安定して実現するためのフレームワー
クを提案する．本手法では，Code Generate LLM，Auto



Code Generate
LLM

Your task:
- Write a reward function.

RL task:
- PushChair-v1 (ManiSkill2)
- Use a dual-arm mobile robot.

Goal:
- Push the chair to the marked position.

Available variables and functions:
- base_link.pose.p: world position of the robot
- base_velocity: linear velocity of the robot

Generation Prompt
def compute_reward(self, action):
  # get states
  base_xy = self.agent.base_link.pose
  chair_p = self.root_link.pose.p
  chair_xy = chair_p[:2]
  ...

  # stage reward
  if not in_contact:
    stage_reward += w_stg1 * dict_chair
  ...
  
  return reward

Reward Function

3

RL agent

RL training

Feedback LLM

Auto Debug
Module

Debugging

OK

NG

RL Log

Agent Behavior

RL Summary & Feedback

Error Log

1

2

4

図 3: 提案手法 (Auto-Text2Reward)

Debug Module，Feedback LLM を組み合わせ，T2R に
おける生成段階および修正段階の不安定性の低減を図る．
3.1報酬関数の自動生成
存在しない変数の参照や記述ミスを抑制するために，以下

の手順に従い報酬関数を生成する．まず， 1○の Code Gen-
erate LLMが，RL環境で直接使用可能な変数や関数を明
示したプロンプトを基に，報酬関数を生成する．次に， 2○の
Auto Debug Moduleに生成した報酬関数を渡し，環境に
おいて正常に実行可能であるか検証する．ここでエラーが
発生した場合，Auto Debug Moduleはエラーログを LLM
に共有し，再生成を行うことで実行可能な報酬関数のみを
選別する．正常に実行可能な報酬関数が得られたら， 3○の
実際の RL環境に渡り，RLを実施する．
3.2報酬関数の自動修正
人間の熟練度や判断基準に依存しないように，RLの結

果を自動的に分析する Feedback LLMを導入する．RLの
実施後， 4○の Feedback LLMを用いて RLの分析を行う．
ここでは，学習中のタスク成功率や獲得報酬の推移などの
RLログデータ，エージェントの振る舞いを記録した画像列
を入力として受け取り，学習状況やエージェントの振る舞
いを分析する．その後，使用した報酬関数と分析結果を踏
まえ，報酬関数の改善案であるフィードバックを生成する．
これらの分析結果とフィードバックに基づき， 1○の Code
Generate LLMが再び報酬関数を生成する．
4.評価実験
提案手法の有効性を検証するため，報酬関数の実行可能

性と，報酬設計の品質に関する評価実験を行う．
4.1報酬関数の実行可能性
生成した報酬関数の実行可能性を検証するため，Man-

iSkill2のタスクを対象として報酬関数を生成する．事前調
査 1と同様に，LLMにはGPT-5を用いて，10個の実行可
能な報酬関数を生成するまでに要した試行回数を計測する．
結果を表 2 に示す．提案手法は，いずれのタスクにおい

ても従来手法より少ない試行回数で実行可能な報酬関数を生
成しており，プロンプト改善および Auto Debug Module
が報酬関数の実行可能性を向上させていることが確認で
きる．

表 2: 提案手法における報酬関数の実行可能性
タスク 手法 総生成回数 実行可能率 [%]

PushChair-v1
T2R 38 26.3

Ours 14 71.4

OpenCabinetDoor-v1
T2R 72 13.9

Ours 11 90.9

OpenCabinetDrawer-v1
T2R 75 13.3

Ours 14 71.4

0 1 2 3 4 5 6
Global Step 1e6

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

PushChair-v1

Professional Reward
LLM Reward

T2R (defensive)
T2R (aggressive)

Ours (1 feedback)
Ours (2 feedbacks)

図 4: タスク成功率の推移
4.2報酬設計の品質
生成した報酬関数の品質を検証するため，PushChair-v1

を用いて RLを実施する．比較対象として，専門家設計の
Professional Reward，GPT-5が生成した LLM Reward，
T2Rによって LLM Rewardを保守的および積極的な方針
で修正した T2R (defensive/aggressive)，提案手法によっ
て n回の自動修正を行った Ours (n feedback) を用いる．
各エージェントの学習過程におけるタスク成功率を図 4

に示す．提案手法は，いずれの報酬関数よりも高いタスク
成功率を達成した．また，提案手法による修正を繰り返す
ことで，修正前の報酬関数を用いた学習より性能が向上し
ている．以上より，提案手法は人間を介せず，報酬関数の
自動生成および自動修正を実現したといえる．
5.おわりに
本研究では，RL における報酬設計の困難さに着目し，

報酬関数の自動生成および自動修正を安定して実現するフ
レームワークを提案した．T2R の課題に対し，提案手法
では，生成された報酬関数の実行可能性を担保する Auto
Debug Moduleと，RLの結果を分析してフィードバック
を生成する Feedback LLMを導入した．評価実験より，提
案手法は専門家が設計した報酬関数や従来手法により得ら
れた報酬関数と比較して，エージェントの性能を改善させ
ることが可能であることを確認した．
今後は，RL分析サマリーのさらなる最適化や，動画情

報の導入方法，フィードバック生成頻度の制御，あるいは
軽量な言語モデルとの併用といった観点から，計算効率と
分析精度の両立を検討する．
参考文献
[1] T. Xie, et al., “Text2Reward: Reward Shaping with Lan-

guage Models for Reinforcement Learning”, ICLR, 2024.

研究実績
[1] 鈴木佳三 等, ”MaskDP による事前学習のマルチドメイン拡
張”, 日本ロボット学会学術講演会, 2024.


