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1.概要
プロトタイプ学習は，認識に有効な画像中の局所領域を

プロトタイプとして選択し，特徴ベクトルを学習する手法
である．推論時は入力画像とプロトタイプとの認識クラス
を特定するとともに認識の判断根拠となる局所領域を同時
に得ることができる．しかし，データ駆動で獲得したプロ
トタイプは，背景やロゴマークなどの不適切な領域に注目
してしまう問題がある．この問題は医療や自動運転など判
断根拠が重要な分野では深刻である．
本研究では，モデルの信頼性向上を目的として，人の知
見を認識モデルに組み込む Human-in-the-Loop（HITL）
のアプローチを取り入れた手法を提案する．具体的には，
ProtoPFormer[1] をベースに，人間の注目領域や対象物
体の欠損箇所を人の知見として学習時に損失関数として
Human Knowledge Loss（HKLoss）を導入する．これに
より，適切なプロトタイプの選択を誘導し，不適切な領域
への注目を抑制する．
2.ProtoPFormer

ProtoPFormer は，Vision Transformer (ViT) をベー
スにしたプロトタイプ学習を行うモデルである．画像全体
に注目するGlobal Branchと，局所領域に注目する Local
Branchから構成される．推論時は Local BranchではViT
の注目領域をもとに FP Maskを作成し，前景にある対象
物のイメージトークンのみを抽出する．その後，Global
Branchではクラストークンとプロトタイプ Local Branch
では抽出されたイメージトークン とプロトタイプとの類
似度を計算する．次にプロトタイプごとに出力された最
大の類似度を全結合層に入力し，各 Branchごとにクラス
確率を出力する．最後にそれぞれのクラス確率の平均をモ
デルが出力するクラス確率とする．これらの推論時の処理
に加えて，学習時にはモデル全体を学習するための Cross
Entropy Lossと，Local Branch内のプロトタイプを学習
するために式 (1)と式 (2) の損失関数を用いて学習する．
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Lµ
PPC は同じクラスのプロトタイプが類似しているほど大
きな損失を与える．ここで，mc

l は各クラスで使用するプ
ロトタイプの数であり，µはプロトタイプである．tµ は閾
値である．Lσ

PPC はプロトタイプが注目する領域を小さく
する損失である．∑ はプロトタイプの共分散行列の対角
成分の平均であり，tσ は閾値である．
これにより，従来の CNNをベースとした手法と比較し

て高い認識精度を持つ一方で，背景やロゴマークなどへ過
剰に注目してしまう問題が指摘されている．
3.提案手法
本研究では，ProtoPFormer の局所領域に注目をする

Local Branch 内のプロトタイプに対し，人の知見を損失
として導入する．損失を導入する概要図を図 1に示す．
3.1.プロトタイプの選択的誘導
全てのプロトタイプを一律に「人の知見」に近づけると，

全てのプロトタイプが同じ領域に注目し，多様性がなくな
る．これを防ぐため，本手法では画像ごとに，人の知見に
最も近い注目領域を持つプロトタイプの組み合わせを動的
に探索する．探索の方法として，入力画像のラベルに基づ
き，対応するクラスに属するプロトタイプを対象とし，対
象となるプロトタイプから得られる全ての組み合わせから
人の知見との類似度が最大となった組み合わせに含まれる
プロトタイプに対してのみ損失を適用する．これにより，
多様性を維持しつつ，モデルの出力を人の知見へと整合さ
せる．
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図 1 : 提案手法の概要図
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図 2 : 擬似知見生成手順

3.2.Human Knowledge Loss (HKLoss)

HKLoss を式（3）に示す．選択されたプロトタイプの
注目領域 ypred と，人の知見 ytrue との間の二乗誤差を損
失関数とする．
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ここで m は選択されたプロトタイプの数である．この損
失により，プロトタイプの活性化領域が，人間が重要と考
える領域（鳥の頭部，車のライト，製品の欠陥部など）に
収束する．
3.3.擬似的な人の知見の生成
人の知見データが存在しないデータセットに対して，人

の知見を用いたい場合は，図 2に示す二段階の手順を用い
て，擬似的な人の知見を生成する ．第一段階として，LLM
である Geminiに対し，データセット内のクラス名を入力
として与え，そのクラスの特徴を 3～5個のテキストとし
て出力する．第二段階では，出力されたテキストと画像と
の対応付けを行うために CLIPを用い，テキスト記述に対
応する画像内の注目領域を特定する．これらの手順によっ
て得られた注目領域を「擬似的な人の知見」として学習に
導入する．
4.データセット
本研究では CUB-200-2011，MVTec，Stanford-Cars，

Stanford-Dogsの 4つのデータセットを用いた．また，人
の知見として，CUB-GHA，欠陥部分のセグメンテーショ
ンマスクを利用，人の知見がないデータセットにおいては擬
似的な人の知見の生成手法を用いて，人の知見を導入した．
5.評価実験
提案手法の適用による認識精度の変化，および可視化結

果に基づく定性的な評価を行った．
5.1.定量的評価
各データセットにおける精度比較結果を表 1に示す．CUB

およびMVTecにおいて，8ポイント以上の大幅な精度向上
を確認した．これは，識別において重要な「局所的な特徴」
への誘導が成功したことを示している．また，Stanford-
Carsにおいては，既存手法と比較して 12ポイント以上の
大幅な精度向上を確認した．対して，Stanford-Dogsにお
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図 3 : MVTecにおける注目領域の比較

いては，既存手法と比較して 0.18 ポイントの僅かな精度
向上が見られた．

表 1 : 従来手法と人の知見を加えた際の精度比較 [%]

データセット 既存手法 提案手法 追加実験

CUB-200 81.19 89.78 81.52

MVTec 89.28 97.42 95.83

Stanford Cars 87.94 99.89 99.86

Stanford Dogs 80.71 80.89 78.48

5.2.定性的評価と可視化
CUB-200，MVTec，Stanford-Cars，Stanford-Dogsに

おける注目領域の比較結果を図??，3，4，5に示す．実験
に使用したモデルのプロトタイプは各クラス 10個である
ため，1 つの入力画像に対して 10 個の可視化結果を生成
した．図??では，提案手法の注目領域が既存手法と比べ局
所的になり，人の知見に近づいたことが確認できた．図 3
では，物体全体に注目する既存手法に比べ，提案手法は局
所的な注目をした．図 4では，既存手法の注目領域に多様
性がなく，提案手法では様々なパーツに注目した．図 5で
は，提案手法と既存手法で差異が見られなかった．
6.考察
実験結果から，データセットによって提案手法の効果

が異なることがわかった．CUB-200，MVTec，Stanford-
Carsにおいては，注目領域が局所的になり，さらに多様性
を持ったことで，提案手法が精度向上をもたらした．一方
で，Stanford-Dogsにおいては，大きな精度向上は見られ
なかった．これは提案手法と既存手法の注目領域に差異が
見られなかったため，生成された擬似的な人の知見が局所
的な領域に集中せず，全体に注目したことで，提案した損
失が機能しなかったためと考えられる．
7.結論
本研究では，LLMと CLIP を活用した低コストな擬似

的な人の知見の生成手法と人の知見を損失として導入する
HKLossを ProtoPFormer に導入する手法を提案した．実
験により，提案手法が車種識別等において強力な正則化と
して機能し，大幅な精度向上をもたらすことを確認した．
今後の展望として，Stanford-Dogsをはじめとした様々な
データセットに対応するため，LLMと CLIPを用いた擬
似的な人の知見の生成手法の精度向上が考えられる．
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図 4 : Stanford-Carsにおける注目領域の比較
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図 5 : Stanford-Dogsにおける注目領域の比較
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