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1.はじめに
言語指示と視覚観測に基づいてロボットの行動を直接生

成する Vision-Language-Action（VLA）モデルが注目さ
れている [1]．VLAは，事前に獲得した世界知識を利用す
ることで未知のタスクにおいても汎化可能である．しかし，
軌道や回り込み方向，速度変化，停止位置などの動作指示に
関する詳細を言語のみで正確に表現することは困難である．
このような言語指示の曖昧さを補うため，視覚的に意

図を与えるスケッチ指示を用いる手法が提案されている．
RT-Sketch[2] は，手描きのスケッチ指示を目標表現として
用いることで，言語目標が曖昧な場合や視覚的外乱が存在
する場合でも，空間的な意図を伝達できる可能性を示した．
そこで，本研究では VLAモデルに対してスケッチ指示

を導入する．従来の言語指示に加えて，スケッチ指示を用
いることで，言語指示による高い汎用性・認識能力を活か
しつつ，動作の具体的な意図を補完し，より人の意図をく
み取ったロボット動作の実現と動作性能の向上を目指す．
2.Vision-Language-Action（VLA）モデル

VLA モデルは，視覚情報と言語指示から環境・タスク
を理解し，ロボットの状態（関節角など）を条件として，
関節角やグリッパなどの行動を直接出力する．これにより
End-to-End な制御を実現する．また，汎用的な理解能力
と高速な動作生成を両立するため，高レベルの解釈・推論
と運動制御を分担させる 2層構造（dual-system）の VLA
も提案されている．

GR00T N1[3]は，視覚・言語モデルと拡散モデルから
なる 2 層構造の VLA である． GR00T N1 の構造を図
1に示す．視覚・言語モデル部分 (System2) では，環境・
指示内容を解釈し，観測画像と言語指示をトークン列とし
て入力することで，視覚言語特徴を抽出する．拡散モデル
(System1) 部分では，ロボットの各関節角度などの状態情
報を実機の構成に合わせた MLP で埋め込み，拡散過程で
用いるノイズ付与済み行動と拡散時刻を Action Encoder
で埋め込む．これらと視覚・言語モデルで得られた特徴量
の cross-attention を求めることで，環境や言語指示を考
慮した行動系列を生成する．System1は 16ステップ先ま
での行動を生成し，高頻度に更新することで滑らかな実機
制御を可能にする．
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図 1: GR00T N1のモデル構造
3.提案手法
本研究では，GR00T N1をベースとし，Diffusion Trans-

former にスケッチ指示を入力することで，意図した軌道・
速度でのロボット動作を実現する．
3.1 スケッチ入力に対応したVLAモデル
モデル構造を図 2に示す．視覚言語特徴とロボットの状

態ベクトルに加えて，スケッチ指示を動作生成の条件情報
として Diffusion Transformer へ入力する．これにより，
従来の言語指示のみでは指定が難しい回り込み方向や通過
経路などを条件情報として動作に直接反映する．
3.2 スケッチ指示
スケッチ指示は画像上の座標 (x, y) を記録する．その

後，変化量（∆x,∆y）および 2次微分 (∆2x,∆2y)を求め，

VLA の入力に用いる．これにより，軌道だけでなく動作
速度についても反映することを実現する．Sketch Encoder
は，スケッチ指示を小規模な MLP で埋め込み，ロボッ
トの状態ベクトルと同様に条件トークンとして Diffusion
Transformerへ入力する．
3.3 デモンストレーションデータによるファインチ
ュー二ング

実機ロボットによるデモンストレーションデータを用い
て GR00T N1 をタスクに適応させる．ファインチューニ
ングでは，視覚情報・言語指示・ロボットの状態・スケッチ
指示を条件として与え，VLMは固定したまま，条件情報
の埋め込み・統合部および Diffusion Transformerを学習
する．学習では，教師データである行動系列を生成するよ
うに，ノイズ予測誤差を最小化してパラメータを更新する．
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図 2: 提案手法のモデル構造
3.4 データセット作成
提案手法を学習・検証するため，RealSense D435 によっ

て撮影したRGB動画とロボットの動作ログを同期して記録
し，各デモデータに対して言語指示とスケッチ指示を付与す
ることでデータセットを作成する．ロボットはMyPalletizer
260-M5（4 軸＋グリッパ）を使用し，各関節角およびグ
リッパ開閉量を時刻情報付きで記録する．データセットの
作成環境を図 3に示す．
各デモデータは観測画像列（30fps）と状態・行動（関節

角・グリッパ）から構成され，両者を対応付けることで，学
習時に同一時刻の各データの参照を可能にする．タスクは
ピックアンドプレースとし，「青色のキューブを白色のカッ
プに入れる」といった基本的な指示から，「青色のキューブ
を茶色のカップの前を通って手前側から白色のカップに入
れる」などの複雑な指示まで 16通り設定する．タスクを
表す言語指示を各デモデータに付与し，さらに同一な配置
に対しても，複数経路のスケッチ指示を作成する．また，
1つのモデルでスケッチ指示の有無の評価を行うため，ス
ケッチ指示を含むデータと含まないデータの 2種類を学習
用に各 300 セット，評価用に 30セット用意する．

図 3: データセットの作成環境
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図 4: 定性的評価：スケッチ経路の妥当性

4.評価実験
作成したデータセットを用いた提案手法の実験を行い，

スケッチ指示を用いない場合と用いる場合で比較を行う．
学習条件はバッチサイズ 4，学習ステップ 100000，最適化
手法 AdamW，学習率 1e-4 とする．定量的評価として実
機制御を行った際のタスク成功率を比較し，定性的評価と
して動作結果を観察することで，経路・速度の妥当性を確
認する．
4.1 定量的評価
実機制御におけるタスク成功率を用いて，スケッチ指示

の有無による性能差を比較する．ここでタスク成功とは，
物体（青色キューブ）を把持し，指示された目標カップに
投入できた場合である．カップに投入出来なかった場合や，
目標カップに投入できた場合でも，他のカップへの接触や，
指示された経路で動作しなかった場合はタスク失敗とする．
タスク 1は直線的に移動するシンプルな経路，タスク 2は
回り込む経路，タスク 3ではより遠回りの経路や他のカッ
プ位置も考慮した経路とする．各タスクについてスケッチ
指示あり／なしの条件でそれぞれ 20回ずつ検証する．

表 1: 実機実験におけるタスク成功回数
タスク 1 タスク 2 タスク 3

スケッチあり 20/20 17/20 3/20

スケッチなし 16/20 8/20 0/20

表 1より，全てのタスクにおいて，スケッチ指示を用い
た場合の成功回数が向上した．これにより，スケッチ指示
が軌道の意図（直線移動や回り込み方向）を明示し，スケッ
チ指示なしの場合よりも正確な動作を実現できていると言
える．一方で，タスク 3ではスケッチ指示を用いた場合で
も成功回数が 20回中 3回のみであった．タスク 3は，遠
回り経路や他のカップ位置の考慮といった複数の制約を同
時に満たす必要があり，タスク 1・2と比較して要求される
軌道の多様性が高い．このため，学習データにおけるタス
ク 3のバリエーション不足や，スケッチ表現の分解能（点
列密度・速度情報）不足により，モデルが安定して意図通
りの回避・経路選択を生成できなかったと考えられる．
4.2 定性的評価
経路の差が分かりやすい設定としてタスク 4を用意し，

動作を観察することでスケッチ指示の有無による挙動の差
を確認する．まず，スケッチなし条件では，把持から投入

までの一連の動作において，目標へ向かう途中で手先が迷
うように揺らぐ，直線的に接近して他のカップへ接触する，
あるいはカップ手前で停止位置が定まらないといった挙動
が観察された．特にタスク 4 のような回り込み動作では，
回り込み方向の選択が安定せず，目標カップへ到達できな
い例が見られた．一方でスケッチあり条件では，移動方向
や回り込み方向が明確となり，目標へ向かう経路が安定す
る傾向が確認できた．
次に，経路の妥当性について評価する．入力したスケッ

チ指示に対して，手先の移動経路が沿っているかを確認す
る．図 4に，可視化したスケッチと，物体把持後からゴー
ルまでの実機の経路の対応例を示す．この結果から，スケッ
チ指示に沿う経路で動作する様子が確認できた．また，近
い経路でスケッチ指示の密度（150ステップと 300ステッ
プ）を変えて入力した場合の動作速度の変化も確認できた．
5.おわりに
本研究では，言語指示に基づく VLA モデルにスケッチ

指示を時系列の条件情報として入力し，軌道・速度といっ
た具体的な動作意図を行動生成へ反映する手法を提案した．
評価では，オフライン指標（MSE）において提案手法の
誤差が増加した一方，実機ではスケッチ指示に沿う経路で
動作する傾向や，スケッチ指示の点列密度の違いに応じた
速度変化が確認できた．今後は，スケッチ指示パターンご
とのデータ不足を解消するためのデータ拡充，タスク追加
を行い，より高い汎化性能の獲得を実現する．また，別の
VLA モデルやロボット実機を使った実験を行い，更なる
動作性能の向上を目指す．
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