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1.はじめに
次世代シーケンサにより単一細胞の遺伝子発現量を計

測できるようになり，細胞ごとの特性解析が可能となって
いる．解析の属人化を避け，効率化するために，深層学習
を用いた single-cell RNA sequencing (scRNA-seq) 解析
手法として，Geneformer[1]やMouse-Geneformer[2]が提
案されている．これらは，それぞれヒトとマウスの遺伝子
発現情報を文章として扱い，Transformerにより学習する
ことで，汎用的な細胞の特徴表現を獲得している．この学
習により獲得した特徴表現を用いることで，細胞型分類や
in silico 摂動などの下流タスクで高い性能を示している．
GeneformerおよびMouse-Geneformerは，いずれも単一
生物種を対象とした事前学習モデルであり，生物種を横断
した解析は困難である．一方，生物種を横断した解析が可
能となれば，マウスで得られた解析結果をヒトの解析に適
用でき，創薬プロセスの短縮や研究効率の向上が期待でき
る．そこで本研究では，ヒトおよびマウスの scRNA-seq
データを統合的に学習する Mix-Geneformer を提案する．
これにより，生物種を横断した解析が可能なモデルの構築
を目指す．
2.深層学習を用いた scRNA-seq解析

scRNA-seq解析は，次世代シーケンサにより細胞を単一
細胞レベルに分離して計測した遺伝子発現量をもとに，細胞
間の多様性や状態変化を解析する手法である．scRNA-seq
解析における課題として，前処理や特徴量設計，細胞型同
定などの解析工程において解析者の判断が介在する場面が
多く，属人的なバイアスが生じやすい．この課題に対し，
解析の自動化と汎用的な特徴表現の獲得を目的とした手法
が提案されている．
深層学習を用いて細胞の特徴表現を学習する手法とし

て，Geneformer[1] および Mouse-Geneformer[2] が提案
されている．これらは Transformer を用いた scRNA-seq
解析手法であり，細胞を文章，遺伝子をトークンとして扱
う点に特徴がある．具体的には，各細胞において遺伝子発
現量上位 2,048個の遺伝子を抽出し，発現量順に整列した
トークン列として細胞文を構成する．両モデルはいずれも
Masked Language Modeling（MLM）による事前学習を
通じて，細胞型分類や in silico摂動などの下流タスクに応
用可能な特徴表現を獲得している．一方で，これらのモデ
ルは単一生物種のデータを用いて事前学習しているため，
生物種を横断した統合解析には至っていない．
3.提案手法：Mix-Geneformer

本研究では，生物種を横断した解析が可能なモデルの実
現を目的として，ヒトおよびマウスの scRNA-seqデータ
を同一の Transformerで学習する scRNA-seq解析モデル
Mix-Geneformerを提案する．ヒトおよびマウスの scRNA-
seqデータを統合して学習することで，生物種に依存しな
い細胞表現の獲得を目指す．
3.1 Mix-Geneformerにおける事前学習

Mix-Geneformer の事前学習では，Masked Language
Modeling（MLM）とSimCSEを組み合わせて用いる．MLM
は，各細胞文内における遺伝子の関係を学習するための自
己教師あり学習である．SimCSE は，ミニバッチ内の細
胞文同士の関係性を捉えるための対照学習である．Mix-
Geneformerの学習方法の概要を図 1に，損失関数を式 (1)
～(3)に示す．
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式 (2)，(3)において，M は一部をマスクしたトークンの
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図 1: Mix-Geneformerの学習方法

集合，sim(·, ·)はコサイン類似度，τ は温度パラメータであ
る．式 (2)のMLM損失 (LMLM)は，マスクしたトークン
を予測する過程を通じて，細胞文内における遺伝子発現順
位の関係性を学習する．式 (3)の SimCSE損失 (LSimCSE)
は，同一の細胞文に対してエンコーダ内の確率的な dropout
により得られる 2つの特徴表現を生成し，それらを正例対
として扱う．各細胞 iに対して，同一エンコーダを 2回通
すことで得られる表現 h

(1)
i および h

(2)
i を正例とし，同一

ミニバッチ内の他の細胞に由来する表現 {h(2)
j }j ̸=i を負例

として対照学習を行うことで，細胞間の特徴表現の類似度
を学習する．
3.2 学習データセット:Mix-Genecorpus-50M

Mix-Geneformer の学習データセットとして，ヒトの
scRNA-seqデータセットである Genecorpus-30Mとマウ
スの scRNA-seqデータセットであるMouse-Genecorpus-
20Mを統合し，約 5,000万細胞から構成するMix-Genecorp
us-50Mを作成した．Genecorpus-30MおよびMouse-Gene
corpus-20Mは，複数の公開データセットを統合しており，
多様な臓器や細胞型を含んでいる．
3.3 事前学習
本研究では，ヒトおよびマウスの scRNA-seqデータを

同一の事前学習データとして扱うことで，生物種を横断し
た解析が可能なモデルの作成を目的とする．事前学習では，
埋め込み特徴を 256 次元とし，6 層の Transformer エン
コーダを用い，MLMおよび SimCSEに基づく対照学習を
組み合わせて学習を行った．MLMでは，細胞文中の一部
のトークンをランダムにマスクし，周辺のトークンから元
のトークンを予測することで，細胞文内における遺伝子間
の関係性の学習を促した．SimCSE による対照学習では，
特徴表現間の類似度に基づく損失を導入することで，各細
胞文同士の類似性を学習させた．事前学習は，バッチサイ
ズ 8，warmup10,000ステップを含む 10エポックで行った．
4.評価実験
本研究では，Mix-Geneformerの評価として，細胞型分

類と in silico摂動実験の 2種類の下流タスクを行う．各実
験において，単一生物種内の評価と，生物種の横断性の評
価を行う．いずれの下流タスクにおいても，事前学習済み
の Transformerに対して 10エポックのファインチューニ
ングを行う．
4.1 細胞型分類による評価
細胞型分類タスクでは，単一生物種内の評価として，事前

学習済みモデルに対してマウスおよびヒトのデータでファイ
ンチューニングし，GeneformerおよびMouse-Geneformer
と細胞型分類精度を比較する．さらに，生物種の横断性を
評価するため，マウスの脾臓データでファインチューニン
グしたモデルをヒトの脾臓データに，ヒトの脾臓データで
ファインチューニングしたモデルをマウスの脾臓データに
適用し，細胞型ごとのモデルの特徴表現を UMAPにより



可視化する．表 1および表 2に，マウスおよびヒトデータ
における分類精度を示す．

表 1: マウスの細胞型分類精度
Organ Types Mouse-GF Mix-GF
Brain 15 96.9 97.6
Heart 11 97.8 97.7
Kidney 18 94.9 95.4
Large intestine 7 93.1 94.6
Limb muscle 9 99.5 99.7
Mammary gland 7 99.0 99.1
Spleen 10 98.7 98.6
Thymus 6 97.0 97.6
Tongue 3 94.9 95.3

表 2: ヒトの細胞型分類精度
Organ Types Human-GF Mix-GF
Spleen 6 98.9 99.0
Brain 6 96.8 97.7
Immune 10 94.4 95.1
Kidney 15 92.8 93.3
Large intestine 16 92.7 93.4
Liver 12 91.1 91.2
Lung 16 93.4 94.3
Pancreas 15 93.0 93.5
Placenta 3 97.9 98.2

表 1および表 2より，マウスおよびヒトのいずれのデー
タにおいても，Mix-Geneformerは従来モデルと同等以上
の分類精度を示した．この結果は，複数の生物種のデータ
を同時に学習に用いることで，細胞型分類に寄与する特徴
を獲得した可能性を示唆している．
また，生物種の横断性を評価した UMAP可視化結果を

図 2に示す．図 2より，可視化対象と異なるデータでファ
インチューニングしたモデルであっても，UMAP上で細胞
型ごとに一定程度クラスタが分離していることを確認した．
このことから，Mix-Geneformerはマウスとヒトのデータ
を同時に学習することで，生物種を横断した解析が可能で
あると示唆される．
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図 2: 生物種の横断性に関する UMAP可視化結果
4.2 in silico摂動実験による評価

in silico摂動実験とは，コンピュータ上で遺伝子の過剰
発現や遺伝子削除を模擬し，細胞状態を目標状態へ近づけ
る上で重要な遺伝子を同定する手法である．in silico摂動
実験の概要を図 3に示す．
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図 3: in silico摂動実験の概要
本実験では，対象遺伝子の順位を変化させることで細胞

に仮想的な摂動を与え，摂動後の特徴表現と目標状態の特
徴表現間の類似度を算出する．その上で，目標状態への変化
が大きい遺伝子を重要遺伝子として特定する手順で実験を
行う．評価指標には，cosine shift（↑）および p value（↓）
を用いた．cosine shiftはコサイン類似度の変化量であり，
正の値が大きいほど目標状態へ近づくことを意味する．ま
た，p value は統計的有意性を評価する指標であり，本研
究では p < 0.05を統計的に有意とする．
本研究では，単一生物種内の評価として，マウスの心臓

疾患データでファインチューニングしたモデルを用い，マウ
スにおける心臓疾患状態から正常状態へ変化させる in silico
摂動実験を行う．また，生物種間の横断性の評価として，マ
ウスの心臓疾患データでファインチューニングしたモデル

をヒトの心臓疾患データに適用し，心臓疾患状態から正常
状態へ変化させる in silico摂動実験を行う．前者の実験は
遺伝子の削除，後者の実験は遺伝子の過剰発現による実験
を行っている．これらの実験において，Mix-Geneformer
が重要と判定し，実際の生物実験で有効性が確認された遺
伝子の一部を表 3に，摂動前，摂動後，および目標状態に
おける細胞の特徴表現を UMAPにより可視化した結果を
図 4に示す．
表 3: in silico摂動実験で確認された有効遺伝子の一部

使用モデル 遺伝子名 cosine shift p value
マウス ALDOB 0.011 1.56E-2
マウス ALDH3B2 0.011 9.03E-3
ヒト　 MTRNR2L11 0.202 0.0
ヒト　 NAP1L6 0.035 1.66E-03
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図 4: in silico摂動実験における UMAP可視化
表 3，図 4 から，マウスおよびヒトデータでファイン

チューニングしたモデルの両者ともに，摂動後の細胞の特
徴表現は摂動前と比較して目標状態に近づいた．cosine shift
の摂動前後の変化は，図 4(a)においては約 0.43，図 4(b)
においては約 0.05 であり，定量的，定性的評価ともに in
silico 摂動実験の成功を確認した．一方で，ヒトデータで
ファインチューニングしたモデルでは，UMAP によるク
ラスタ間の分離がより明瞭であり，摂動前後における細胞
の特徴表現の変化量も大きいことを確認した．これは，マ
ウスデータで学習したモデルをヒトデータに適用する際に，
生物種の違いに起因するドメインギャップが存在する可能
性を示唆している．この差異を解消するには，マウスとヒ
ト間でのデータ正規化や，種間の関係性学習のための損失
を定義する必要があると考える．
5.おわりに
本研究では，ヒトおよびマウスの scRNA-seqデータを同

一のTransformerで事前学習するモデルMix-Geneformer
を提案した．細胞型分類タスクにおいて，Mix-Geneformer
は従来モデルと同等以上の精度を示し，同一種内における
性能の有効性を確認した．また，生物種の横断性の評価と
して，UMAPによる特徴表現の可視化を行った結果，異な
る生物種でファインチューニングしたモデルであっても，一
定程度のクラスタ構造が保持されることを示した．in silico
摂動実験においても同様の傾向を確認し，マウスデータで
ファインチューニングしたモデルでもヒトの in silico 摂
動実験が可能である．一方で，同一種のデータでファイン
チューニングを行った場合と比較すると性能に差が見られ
ることから，生物種の差異が結果に影響する可能性が示唆
される．以上より，Mix-Geneformerは生物種を横断した
scRNA-seq解析が可能である一方で，種間差異をより適切
に扱うための学習手法の設計が今後の課題である．具体的
には，生物種の差異に起因する影響の緩和，ヒトおよびマ
ウス以外の生物種への拡張が挙げられる．
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