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1. はじめに
自動運転や医療画像解析において，深層学習による物体

検出モデルは，高い性能だけでなく，高い信頼性が要求さ
れる．しかし，深層学習モデルは，その判断根拠がブラッ
クボックスである．このような背景から，物体検出モデ
ルの判断根拠を人間に理解可能な形で示す説明可能な AI
（XAI）が注目されている．物体検出に特化した手法とし
て ODAM[1]が提案されている．ODAMは勾配情報に基
づいて可視化を行うため，入力画像に対する勾配消失や局
所的な勾配ノイズの影響を受けやすいという課題がある．
そこで本研究では，ODAMが抱える勾配依存による課

題を軽減するため，入力画像に関する情報を持たないベー
スライン画像から入力画像に至るまでの過程を考慮できる
勾配計算法である Integrated Gradients[2]を導入する．さ
らに Integrated Gradients における補間画像の生成方法
に起因する積分近似誤差および勾配ノイズの問題に着目す
る．これらを低減するため，勾配変動と空間的変化に基づ
いてサンプリング位置を適応的に制御する機構を導入した
Adaptive IG-ODAMを提案する．
2. Integrated Gradients

XAI において，可視化結果が入力と予測の関係を適切
に反映していることが求められる．既存の勾配ベース手法
は，勾配消失により重要な特徴を捉えられないという感度
の欠如が課題である．この課題に対し，ベースラインから
入力までの直線経路に沿って勾配を積分し，各特徴量の寄
与度を算出する Integrated Gradients が提案されている．
画像タスクでは，ベースラインとして全画素がゼロの画像
が用いられることが多く，経路全体の勾配情報を用いるこ
とで，単一の入力画像の勾配に依存しない忠実な寄与度推
定が可能となる．
一方で，実装上は経路積分を有限個の補間点により近似

するため，図 1に示すように，補間経路を一様にサンプリ
ングした場合には，勾配が急激に変化する区間に十分な補
間点が割り当てられず，積分近似誤差や勾配ノイズが生じ
やすいという課題がある．特に，深層モデルにおいて勾配
が非線形に変化する場合，この近似誤差は可視化結果の忠
実性に影響を及ぼす可能性がある．
また，Integrated Gradientsは主に単一の予測出力を対

象とした設定を想定しており，物体検出のように複数のイ
ンスタンスや出力を同時に扱うマルチインスタンス環境へ
の直接的な適用には，依然として課題が残されている．
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図 1: Integrated Gradientsによる寄与推定と補間経
路上での勾配飽和の例
3. 提案手法: Adaptive IG-ODAM

本研究では，Integrated Gradientsを物体検出の判断根
拠可視化手法である ODAM に導入した IG-ODAM を提
案する．さらに，一様サンプリングに起因する積分近似誤
差や勾配ノイズを低減するため，補間経路上の重要区間に
サンプリング点を適応的に配置する Adaptive IG-ODAM
を提案する．
3. 1. ODAMへの Integrated Gradientsの導入

IG-ODAMは，入力画像とベースライン画像を結ぶ補間
経路全体の勾配情報を用いることで，単一の画像における
勾配に依存する従来手法に見られる局所的な偏りの影響を

低減する．さらに，物体検出特有のマルチインスタンス環
境へ適用するために，IoUに基づく位置的類似度とクラス
スコアの類似度を統合したインスタンスマッチングを導入
する．これにより，補間経路上において同一インスタンス
を一貫して追跡しながら寄与度推定する．
物体 pに対する予測クラススコア s(p)(I)を寄与度推定

の対象とし，ベースライン画像 I ′ から入力画像 I への補
間経路 Iα = I ′ +α(I − I ′)（α ∈ [0, 1]）に沿って経路積分
を行う．物体検出では，補間画像ごとに検出結果の数や順
序が変化するため，単純な対応付けでは同一インスタンス
を追跡できないという問題がある．そこで IG-ODAM で
は，入力画像 I における物体 p の BBox 座標と予測クラ
ススコアから構成される検出結果Dt を基準とし，m番目
の補間画像Xm = Iαm から得られる検出結果集合 ϕ(Xm)
内の各検出Dj,m との間で，位置類似度 sloc およびクラス
スコア類似度 scls を用いた類似度を定義する．

Sim(Dt, Dj,m) = sloc(Dt, Dj,m) · scls(Dt, Dj,m) (1)

各補間画像においては，Sim(Dt, Dj,m)が最大となる検出
結果を対応インスタンス d̂m として選択する．この対応付
けにより，補間経路全体にわたって同一インスタンスを一
貫して追跡しながら，寄与度推定を行うことが可能となる．
特徴マップ Ak に対するチャネル重み w

(p)
k は，補間経

路上の勾配を積分することで式 (2)のように定義される．

w
(p)
k =

∫ 1

0

∂s(p)(Iα)

∂Ak
dα (2)

実装上は，補間経路を一様に分割し，有限個の補間点に基
づく数値積分によって近似することで，インスタンス固有
のヒートマップを生成する．
3. 2. Spatial-Guided Adaptive Sampling

Integrated Gradientsにおける一様サンプリングに起因
する課題に対して，補間経路上のサンプリング点を動的に
再配置する Spatial-Guided Adaptive Samplingを導入し
た Adaptive IG-ODAMを提案する．本手法は，物体検出
モデルの出力が急激に変化する補間区間に重点的にサンプ
ルを配置することで，積分近似誤差および勾配ノイズの低
減を目的とする．図 3に提案手法のモデル図を示す．
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図 3: Adaptive IG-ODAMのモデル構造
Adaptive IG-ODAMでは，補間経路上の連続するサン

プリング点 αm と αm+1 の間における重要度を評価し，重
要度の高い区間を逐次的に細分化する．重要度評価には，
勾配の変動量と予測 BBoxの空間変動の両方を用いる．
まず，勾配変動 gm を式 (3)により定義する．

gm = ∥G(αm+1)−G(αm)∥1 (3)

ここで，G(αm) は補間画像 αm における対象物体の検出
スコアに対する特徴マップの勾配を表す．次に，連続する
補間画像間における予測 BBoxの空間変動 sm を，IoUに
基づいて式 (4) のように定義する．ここで，B(αm) は補
間画像 αm に対する予測 BBoxを表す．

sm = 1− IoU
(
B(αm), B(αm+1)

)
(4)

これらを重み係数 λを用いて統合し，各補間区間の優先度
スコア Rm を式 (5)により算出する．

Rm = λgm + (1− λ)sm (5)
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図 2: DETRによる物体検出結果に対する判断根拠の可視化結果
優先度スコアの高い区間を逐次的に細分化することで，重
要な補間区間にサンプルを集中的に割り当てる．Spatial-
Guided Adaptive Sampling により得られた非一様な M
個の補間点に基づき，物体 p に対するチャネル k の重み
w

(p)
k を台形則に基づき式 (6)のように近似する．ここで，

Gk(αm) は補間画像 αm におけるチャネル k に対応する
勾配を表す．

w
(p)
k ≈

M−1∑
m=1

1

2
[Gk(αm) +Gk(αm+1)] (αm+1 − αm) (6)

最後に，得られたチャネル重みを用いて，インスタンス固
有のヒートマップ H(p) を生成する．ここで，Ak はチャ
ネル k の特徴マップを表す．

H(p) = ReLU

(∑
k

w
(p)
k ◦Ak

)
(7)

4. 評価実験
提案手法の忠実性と空間識別能力を評価するため，比較

実験を行う．判断根拠の忠実性はDeletion / Insertionテス
トのAUCにより評価し，空間識別能力はVisual Explana-
tion Accuracy（VEA）と Energy-based Pointing Game
（EBPG）を用いて測定する．
物体検出モデルには Backbone に ResNet-50 を用いた

DETR を使用し，MS COCO データセット上で Grad-
CAM，Grad-CAM++，D-RISE，ODAMと比較する．な
お，本実験では，勾配変動と空間変動の寄与を等しく考慮
するため，重み係数 λを 0.5に設定する．
4. 1. Deletion, Insertion

Deletion / Insertion テストは，可視化手法がモデル予
測に重要な領域をどの程度正確に特定できるか，忠実度を
評価する指標である．Deletionでは，ヒートマップに基づ
き画素を重要度順にランダム値で置換し，予測スコアの低
下を測定する．Insertion では，ベースライン画像に重要
画素を順次追加し，予測スコアの上昇を測定する．本実験
では，両テストを 100ステップで実施し，信頼度推移から
AUCを算出する．
実験結果を表 1に示す．IG-ODAMは，従来の物体検出

向け可視化手法であるODAMと比較して，Deletion スコ
アを 55.25から 51.48に低減し，Insertionスコアを 15.37
から 18.14 に向上させることで，忠実度の向上を示した．
さらに，Adaptive IG-ODAMは，Deletion スコア 46.48，
Insertion スコア 25.88 と最良の性能を示した．これは，
Spatial-Guided Adaptive Sampling により経路積分に使
用する補間画像が最適化され，積分近似誤差が低減された
ためと考えられる．
4. 2. VEA, EBPG

VEAは物体形状との一貫性を，EBPGは物体領域への
局在精度をそれぞれ評価する指標である．実験結果を表 2
に示す．Adaptive IG-ODAMは，IG-ODAMと比較して，
VEAを +0.0528 ポイント，EBPGを +0.1133 ポイント
向上させ，空間的一貫性および局在精度の双方で性能向上
を示した．これは，Spatial-Guided Adaptive Samplingに
より，補間経路上でモデル出力が大きく変化する区間に重
点的なサンプリングが行われたためである．

表 1: 各手法の Deletion/Insertion評価結果
Method Deletion↓ Insertion↑
Grad-CAM 72.82 11.23
Grad-CAM++ 72.60 11.04
D-RISE 57.57 13.23
ODAM 55.25 15.37
IG-ODAM 51.48 18.14
Adaptive IG-ODAM 46.48 25.88

表 2: VEAと EBPGの評価結果
Method VEA ↑ EBPG ↑
Adaptive IG-ODAM 0.1492 0.3934
IG-ODAM 0.0964 0.2801

4. 3. 定性的評価
図 2に，各手法による可視化結果を示す．IG-ODAMは，

従来手法と比較してノイズが低減され，物体境界をより正確
に捉えている．一方，Grad-CAMおよび Grad-CAM++
では背景や他物体への注目が生じやすく，ODAMではマ
ルチインスタンス環境において注目領域の分散が見られる．
さらに，Adaptive IG-ODAMはインスタンス固有の注目
領域を明確に分離することで，従来手法で見られた注目の
分散を最も効果的に抑制していることがわかる．
5. おわりに
本研究では，物体検出における説明可能性の向上を目的

として，IG-ODAM および Adaptive IG-ODAM を提案
した．IG-ODAMは，Integrated GradientsをODAMに
統合し，補間経路全体の勾配情報とインスタンスマッチン
グにより，マルチインスタンス環境におけるインスタンス
単位の判断根拠可視化を実現した．さらに Adaptive IG-
ODAMでは，勾配変動と予測 BBoxの空間変動に基づく
Spatial-Guided Adaptive Samplingを導入することで，積
分近似誤差およびノイズの削減を達成した．評価実験の結
果，忠実度および空間識別能力の両面で既存手法を上回る
性能を確認した．
今後は，得られたヒートマップを知識蒸留における教師

信号として活用する手法を検討する．
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