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1.はじめに
深層学習モデルを学習する場合，データを事前に収集・

蓄積して学習するオフライン学習と，蓄積せずに逐次デー
タを入力して学習するオンライン学習の 2つのアプローチ
がある．オフライン学習は，蓄積したデータセットを繰り
返し用いて学習するため高い精度を達成しやすい一方で，
データの蓄積に伴うストレージコストが課題となる．オン
ライン学習は，収集したデータを即座に学習し，学習後は
そのデータを破棄するため，ストレージコストを大幅に削
減できる．しかし，収集したデータに対してリアルタイム
でラベル付けして学習するのは困難である．
これに対して，自己教師ありオンライン継続学習は，逐

次入力するデータに対して自己教師あり学習を行うことで，
ラベルを付与するコストを低減できる．しかし，従来の自
己教師ありオンライン継続学習手法は，2つの課題がある．
(i)パラメータ更新時の勾配に相関が発生し，モデルが特定
のデータに過度に適合することで汎化性能が低下する．(ii)
自己教師あり学習の収束が遅く，収集したデータを破棄す
るまでの短い時間で十分に学習することが困難である．
そこで本研究では，コサイン類似度を使用した学習デー

タの選択によって勾配の相関を抑制し，マルチクロップ対
照損失によって自己教師あり学習の収束速度を改善する自
己教師ありオンライン継続学習手法を提案する．実験によ
り，提案手法が従来手法と比較して分類精度を改善するこ
とを示す．
2.自己教師ありオンライン継続学習
自己教師ありオンライン継続学習 (Self-Supervised On-

line Continual Learning: SSOCL) は，逐次入力されるラ
ベルのないデータであるデータストリームを用いて継続的
に学習するアプローチである．データストリームは，連続
するデータ間に強い相関を持つと共に，時間の経過に伴い
データ分布が変化する非定常性という 2 つの特性がある．
このような特性を持つデータストリームで学習する SSOCL
には 2つの課題がある．
課題 1：パラメータ更新時の勾配の相関．図 1に t 回目の
イタレーションと t+ 1 回目のイタレーションにおけるパ
ラメータ更新時の勾配のコサイン類似度を示す．従来の深
層学習モデルは，サンプル間に相関がないデータで学習を
行うことを仮定しており，勾配の類似度は 0に近い値とな
る．一方で，サンプル間に相関のあるデータで学習を行う
と，勾配の類似度が 1.0に近い値になる．勾配の類似度が
高いと，モデルのパラメータを特定のデータ分布に過度に
適合する方向へ更新するため，汎化性能が低下する．
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図 1: パラメータ更新時の勾配の類似度
課題 2：自己教師あり学習の収束の遅さ．図 2に教師あり
学習と自己教師あり学習の収束速度を示す．図 2より，自
己教師あり学習は，教師あり学習と比較すると学習収束が
遅いことがわかる．これは，データ分布が時間と共に変化
する実世界において，自己教師あり学習の学習が不足する
可能性を示している．
3.提案手法
本研究では，SSOCLにおける 2つの課題に対処する手

法を提案する．提案手法は，勾配の相関に対処するためコサ
イン類似度を用いたデータ選択を行い，自己教師あり学習
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図 2: 教師あり学習と自己教師あり学習の収束速度
の学習収束の遅さに対処するためMulti-Crop Contrastive
Loss (MCC Loss) を導入する．
3.1.学習プロセス
提案手法の学習プロセスを図 3に示す．図 3に示すよう

に，提案手法は，データストリームで観測されたサンプル
を固定サイズのバッファに追加する．その後，バッファか
らランダムにサンプリングしたデータで K 個のミニバッ
チを作成し，学習に使用する．このとき，自己教師あり学
習の収束の遅さに対処するため，損失関数に MCC Loss
を導入する．従来の Contrastive Loss は，1枚の画像に異
なる 2 種類のデータ拡張を加えて得た 2 つのクロップに
対し，それらの特徴量を 1対 1で近づけ，異なる画像から
得たクロップは，遠ざけるように学習を行う．これに対し
て，提案手法で導入する MCC Lossは，3種類以上の異な
るデータ拡張を適用し，得られた各クロップの特徴量をそ
れらの平均特徴量へと同時に近づける．クロップ数を増加
させることで，1回のパラメータ更新においてより多くの
情報を効率的に学習できるため，自己教師あり学習の収束
の遅さを改善することが可能である．

K 個のミニバッチで学習後，バッファ内のサンプル数が
一定数を超えている場合，コサイン類似度に基づいて多様
なサンプルのみをバッファに保持し，冗長なサンプルを削
除する．これにより，提案手法は，データストリームが持つ
相関のある冗長なデータでの学習を防止し，勾配の相関に
対処する．その後，データストリームで観測したサンプル
に対して同様の処理を繰り返す．以下では，MCC Loss と
コサイン類似度によるデータ選択について詳細に説明する．
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図 3: 提案手法の概要
3.2.Multi-Crop Contrastive Loss

自己教師あり学習の収束速度は，クロップ数の増加によっ
て高速化可能であることが知られている [3]．提案手法は，
従来の 2 クロップのみを対象とした Contrastive Loss を
3 クロップ以上に拡張した Multi-Crop Contrastive Loss
(MCC Loss)を導入する．MCC Lossを式 (1)に示す．

LMCC =
1

Nb

N∑
i=1

b∑
j=1

(
− log

exp(z̄j · zji/τ)∑N
k=1

∑b
l=1 exp(z̄

j · zlk/τ)

)
(1)

ここで，N はクロップ数，bはバッチサイズ，zは各サン
プルの特徴量，τ は温度パラメータ，z̄j はサンプル xj の



表 1: 学習終了時の kNN分類精度 [%]

CIFAR10 CIFAR100 ImageNet100

Seq Seq-bl Seq-im Seq Seq-bl Seq-im Seq Seq-bl Seq-im

MinRed[2] 50.04 51.18 46.41 22.38 23.20 21.26 22.87 22.71 20.46

SCALE[1] 41.41 40.85 41.31 17.49 16.93 17.03 15.46 15.41 15.77

EMP-SSL[3] 57.02 57.32 57.31 27.81 28.40 27.90 22.79 22.01 22.99

Ours 59.71 59.96 58.67 30.41 30.32 30.00 25.81 25.64 25.24
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図 4: 学習過程における kNN分類精度 [%]

平均特徴量を示し，z̄j は式 (2)で求める．

z̄j =
1

N

N∑
i=1

zji . (2)

MCC Loss は，1 枚の画像に対して N 種類の異なるデー
タ拡張を加え，各サンプルの平均特徴 z̄j を計算する．そ
して，各データの特徴量 zji をその平均特徴量 z̄j に同時に
近づける．また，異なるデータの平均特徴 z̄j から各デー
タの特徴量 zl を遠ざけるように学習する．
3.3.コサイン類似度による多様なデータの選択
コサイン類似度を用いたデータ選択の目的は，データス

トリームから多様なデータを選択して学習に利用すること
である．コサイン類似度の計算は，バッファ内サンプル xi

と同時に保存した代表的な特徴量 z̄∗i を用いて計算する．
提案手法のデータ選択は，式 (3)で定式化できる．

x∗
i = arg min

xi∈M
min

xj∈M
Sim

(
z̄∗i , z̄

∗
j

)
(3)

z̄∗i ← αz̄∗i + (1− α) z̄i (4)

ここで，Mはバッファ，x∗
i はバッファに保存するデータ，

z̄∗i は平均特徴 z̄i の指数移動平均であり，x∗
i と z̄∗i をバッ

ファに保存する．リプレイバッファ内で類似度が高いデー
タを削除し，類似度が低く多様なデータを優先してリプレ
イバッファに保持する．
4.評価実験
データストリームで学習した各手法のクラス分類におけ

る分類精度を評価する．
4.1.実験条件
評価には CIFAR10/100，ImageNet100の 3つのデータ

セットを用いて，データストリームの構築を行う．各データ
セットを従来研究 [1]に従って，Seq，Seq-bl，Seq-imデー
タストリームを構築する．Seqは，クラスごとのデータ数
を統一し，データ分布が一定のタイミングで変化する模擬
的なデータストリームである．また，より現実的なデータ
ストリームで評価を行うため，Seq-blはデータ分布の変化
境界を曖昧にし，Seq-im はクラス毎のデータ数を不均衡
にする．これにより，Seq-blは現実世界で発生する環境の
滑らかな変化を，Seq-im はクラス毎の出現頻度の偏りと
いう現実的な不均一性を再現する．
4.2.実験結果
各手法の学習終了時の分類精度を表 1に示す．表 1より，

提案手法は，CIFAR10 で最大 19.11pt，CIFAR100 で最

大 13.39pt，ImageNet100で最大 10.35ptの精度向上を確
認できる．また，MinRed [2] は，Seq-imでの精度低下が
確認できる．これは，クラス毎の出現頻度を不均一にする
ことで，観測回数の少ないクラスに対して学習が収束しな
かったためだと考えられる．一方で，提案手法は，Seq-im
の精度は他のデータストリームと同程度であり，これはよ
り現実的なデータストリームにおいても学習が可能である
ことを示している．
次に，学習過程における分類精度の比較を行う．各手法

の学習過程における分類精度の推移を図 4に示す．図 4よ
り，提案手法の kNN 分類精度は，学習進捗が 20% の時
点において，Seq-CIFAR10 で約 56.0%，Seq-CIFAR100
で約 28.0%，Seq-ImageNet100で約 23.0%である．これ
は，他手法の学習終了時点での精度と同等かそれ以上であ
る．これは，提案手法のMulti-Crop Contrastive Lossに
よって学習収束を高速化したことに起因すると考えられる．
5.おわりに
本研究では，自己教師ありオンライン継続学習における

勾配の相関による性能劣化と学習収束の遅さに対処する手
法を提案した．提案手法は，コサイン類似度によるデータ
選択によって，バッファ内に多様なデータを保持し学習に
用いることで勾配の相関に対処し，MCC Loss を導入する
ことで自己教師あり学習の収束の遅さに対処した．実験結
果より，複数のデータセットにおいて提案手法は，従来手
法よりも高い分類精度を達成することを確認した．今後は，
ImageNet21Kなどより大規模なデータセットを使用して，
より実世界に近いデータストリームを構築し，その有効性
を評価する予定である．
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