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AFRの構造化枝刈りへの適用におけるスコア集約手法の改良に関する研究
TR24006 小林　亮太 指導教授：藤吉 弘亘

1.はじめに
大規模言語モデル（LLM）は高い性能を示す一方，数十

億のパラメータによる膨大な計算コストとメモリ使用量が
実用化の障壁となっている．モデルサイズを軽量化するた
めの代表的なアプローチとして冗長なパラメータ（重み）
を削除する枝刈りがある．
枝刈りは非構造枝刈りと構造化枝刈りに大別される．非

構造枝刈りは重み単位で独立に削除するため高い精度の維
持を達成するが，削除位置が不規則なため推論の高速化に
は寄与しない．一方，構造化枝刈りはニューロン単位で重
みを削除するため高速化が容易だが，削除の自由度が低い
ため性能劣化を招くという課題がある．
本研究では，非構造枝刈り手法であるAdaptive Feature

Retention (AFR)を構造化枝刈りに適用することで，重み
単位の重要度（枝刈りスコア）の評価を活かして，モデル
サイズの削減と推論の高速化を目指す．AFR を構造化枝
刈りに適用する際には，重み単位の枝刈りスコアをニュー
ロン単位に集約する必要がある．このとき，単純平均によ
る集約では「符号情報の喪失」と「外れ値の影響」という
2 つの問題が生じる．本研究では，これらに対処するため
の改善手法を提案し，LLMとして Llama-3-8B を用いた
評価実験により提案手法の有効性を実証する．
2.Adaptive Feature Retention (AFR)

AFR [1]は，事前学習済みモデルに対する非構造枝刈り
手法である．AFRは，ReFer [2]と SNIP [3]という 2つ
の枝刈りスコアを標準化した後に加算することで，事前学
習で獲得した特徴空間の維持と下流タスクへの適応を両立
する．重み θn に対する枝刈りスコア SAFR(θn) は式 (1)
のように定義される．
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ここで，Z(·)は標準化を表し，第 1項は ReFer，第 2項は
SNIPに相当する．F l

SV D は，レイヤー l の出力する特徴
量に対する特異値分解による特異値の平均である．ReFer
は特徴表現の維持に焦点を当てているため，下流タスクへ
の学習の際に必要な重みを削除する可能性がある．

SNIPは，目的関数の勾配と重みの積を枝刈りスコアと
する非構造枝刈り手法である．事前学習済みモデルでは多
くの重みの勾配が小さく， ∂L

∂θn
≈ 0となり，SNIPのみで

は適切な枝刈りスコアの評価が困難である．
3.AFRの構造化における課題
本研究では，AFR の重み単位の枝刈りスコアの評価を

構造化枝刈りに適用して，推論の高速化を行う．本章では，
その際に生じる問題点を明確にする．
3.1 単純平均による構造化
非構造手法である AFRを構造化手法に適用するために

図 1に示すような単純平均による集約を考える．まず，重
み行列の各要素に対して枝刈りスコアを算出し，式 (2)に
示すようにニューロン単位で重みの枝刈りスコアを集約し
て平均スコア S̄j を求める．

S̄j =
1

m

m∑
i=1

|Sij | (2)

ここで，Sij はニューロン j の i番目の重みに対する枝刈
りスコア，mはニューロンあたりの重み数である．最後に，
ニューロン単位の平均スコアから低い順に枝刈り率に応じ
た数のニューロンを削除する．
3.2 単純平均による構造化の問題点
単純平均による枝刈りを LLMモデルに適用して，自然

言語のデータセットで評価した場合，表 1に示すように大
幅な性能低下が生じた．この原因に関して，以下の 2つの
問題が存在すると考える．
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図 1: 構造化枝刈りのための枝刈りスコア集約の処理
表 1: 予備実験結果（accuracy %）

枝刈率 手法 WinoG HellaS ARC-e ARC-c MMLU 平均
0% Llama-3-8B 72.61 79.16 77.74 53.33 62.13 68.99

20% AFR（非構造） 71.59 73.79 76.94 48.38 58.85 65.91

AFR（単純平均） 59.35 53.63 43.48 29.35 30.14 43.19

50% AFR（非構造） 60.62 50.64 55.35 32.94 35.07 46.92

AFR（単純平均） 52.25 29.29 29.92 26.02 23.07 32.11

問題 1: 最適化方向の一貫性情報の喪失
ReFer と SNIP の枝刈りスコアは勾配と重みの積として
計算され，その符号は最適化過程における重みの挙動を表
現する．勾配降下法による重みの更新則 θ ← θ − η ∂L

∂θ
に

おいて，枝刈りスコアの符号は重みの最適化方向を示す指
標となる．正の場合は重みの絶対値が減少する方向に，負
の場合は増加する方向に働く．構造化枝刈りでは，ニュー
ロン単位で削除を行うため，ニューロン内の重みの最適化
方向の協調性が重要となる．全ての重みが同一方向に最適
化される場合，そのニューロンは構造的に一貫した役割を
持つ．一方，最適化方向が混在している場合，ニューロン
内で相殺効果が生じており，全体としての寄与は限定的で
ある．しかし，式 (2) では重み単位で絶対値を取るため，
ニューロン内の最適化方向の一貫性という構造的特性が評
価できず，ニューロン単位の重要度が適切に評価されない．
問題 2: 外れ値の影響

図 2 は，ある層における ReFer の重み単位の枝刈りスコ
ア分布である．図 2より，大部分の枝刈りスコアは比較的
狭い範囲に分布しているが，両端に極端に大きな値や小さ
な値を持つ外れ値が少数存在していることがわかる．実際，
全体の枝刈りスコアのレンジは，-2,884～9,803であり，そ
の幅は 12,687と大きな値である．ここで極値の 2%を削除
するとレンジの幅は 48.799 となる．単純平均では，外れ
値の有無によりニューロン間の平均スコアの大小関係が変
化して，ニューロン単位の枝刈りスコアが適切に評価され
ないという問題がある．
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図 2: AFRの枝刈りスコアの分布例
4.提案手法
前章で述べた 2つの問題に対処するため，新たな枝刈り

スコアの集約手法を提案する．
4.1 絶対値枝刈りスコア集約
問題 1 に対処するため，集約後の絶対値処理を提案す

る．ニューロンに含まれる各重みの枝刈りスコアを符号付
きのまま平均し，平均化した後に絶対値を取る．これによ
り，符号が揃っているニューロンは平均後も大きな値を保
ち，符号が混在しているニューロンは平均により小さくな



【単純平均による構造化】

⼊⼒
ニューロンjの重み単位のスコア

{𝑆!,# , 𝑆$,# , 𝑆%,# , … , 𝑆&,#}

各スコアの絶対値を計算
{|𝑆!,#|, |𝑆$,#|, |𝑆%,#|, … , |𝑆&,#|}

平均を計算
1
mΣ|𝑆&,#|

[問題点]
符号情報の喪失×
外れ値の影響×

【絶対値アプローチ】

符号付きのまま平均
1
mΣ𝑆&,#

平均を計算
| !
'
Σ𝑆&,#|

[解決]
符号情報の喪失あ

【GMMアプローチ】

GMMで分布をモデル化
＆外れ値検出

𝑝 𝑆!,# = $ 𝜋$𝒩(𝑆!,#|𝜇$ , 𝜎$%)
&

&'(

[解決]
外れ値の除去あ

平均を計算
1
mΣ|𝑆&,#())|

出⼒
ニューロンj のスコア𝑆#)

枝刈りに使⽤

図 3: 提案手法の概要
る．このように，ニューロン内の符号の一貫性を評価でき，
構造化枝刈りに適した枝刈りスコアの評価が可能となる．
4.2 GMMを用いた外れ値処理
問題 2の外れ値の影響を軽減するため，Gaussian Mix-

ture Model（GMM）を用いた外れ値処理手法を提案する．
ニューロン j の枝刈りスコア集合 {S1j , S2j , . . . , Smj} に
対し，GMMにより枝刈りスコア分布をモデル化する．各
枝刈りスコア Sij の確率密度 p(Sij) を以下のように定義
する．

p(Sij) =

K∑
k=1

πkN (Sij |µk, σ
2
k) (3)

ここで，πk, µk, σ
2
k はそれぞれ混合比，平均，分散であり，

EM アルゴリズムで推定する．成分数 K は BIC により
K ∈ {1, 2, 3, 4, 5} から最適な値を選択する．推定された
モデルにより各枝刈りスコアの密度を評価し，密度が下位
2%に該当するものを低密度と判定する．次に，枝刈りス
コアを昇順にソートし，分布の両端から連続して低密度が
続く範囲を外れ値として検出し，その境界の枝刈りスコア
で置換する．これにより，極端な値の影響を抑制しつつ，
データ数を保ったまま安定した集約が可能となる．
4.3 提案手法の枝刈りスコア

4.1節と 4.2節で提案する手法を組み合わせた手法も提
案する．これは，符号付きの重み単位の枝刈りスコアに対
してGMM処理を適用した後，平均を取り，最後に絶対値
を取る処理となる．具体的には，GMM処理後の枝刈りス
コア S′

ij を用いて以下のように計算する．
S̄abs+GMM
j =

∣∣∣∣∣ 1m
m∑
i=1

S′
ij

∣∣∣∣∣ (4)

この手法により，符号の一貫性評価と外れ値の影響抑制の
両方を実現し，安定した枝刈りスコアの評価が期待される．
5.評価実験
提案手法の有効性を検証するため，Llama-3-8Bを対象

とした評価実験を実施した．
5.1 実験概要

Llama-3-8Bの各ブロックにおける FFN に対して構造
化枝刈りを適用する．枝刈り率は既存研究で広く採用され
ている 20%と 50%とする．性能評価には，WinoGrande，
HellaSwag，ARC-easy/ARC-challenge，MMLUの 5つ
のベンチマークデータセットを使用し，accuracy を評価
指標とする．比較手法として，非構造 AFR，構造化 AFR
（単純平均，絶対値のみ，GMMのみ，絶対値+GMM），お
よび既存手法（LLM-Pruner，LoRAP，CFSP）を用いる．
5.2 実験結果
表 2に提案手法の評価結果を示す．単純平均と比較して

提案手法である絶対値のみの場合は 20% 枝刈りで 13.04
ポイント，GMM のみの場合は 16.31 ポイントの精度向
上を示した．絶対値+GMMの場合が最も高い性能を示し，
20% 枝刈りで 18.06 ポイント，50% 枝刈りで 11.33 ポイ
ントの精度向上を達成した．これは，符号情報の損失と外
れ値の影響の両方が解決されたことによる相乗効果である．
5.3 既存手法との比較
提案手法（絶対値+GMM）を既存の構造化枝刈り手法

と比較する．表 3に既存手法との比較結果を示す．提案手

表 2: 提案手法の精度評価（accuracy %）
枝刈率 手法 WinoG HellaS ARC-e ARC-c MMLU 平均
0% Llama-3-8B 72.61 79.16 77.74 53.33 62.13 68.99

20% 非構造枝刈り
AFR 71.59 73.79 76.94 48.38 58.85 65.91

構造化枝刈り
AFR（単純平均） 59.35 53.63 43.48 29.35 30.14 43.19

AFR（絶対値のみ） 67.40 67.90 70.20 42.83 32.81 56.23

AFR（GMM のみ） 68.57 70.70 70.58 44.80 42.86 59.50

AFR（絶対値+GMM） 68.90 69.70 72.81 46.16 49.32 61.25

50% 非構造枝刈り
AFR 60.62 50.64 55.35 32.94 35.07 46.92

構造化枝刈り
AFR（単純平均） 52.25 29.29 29.92 26.02 23.07 32.11

AFR（絶対値のみ） 52.96 37.88 43.18 25.94 23.04 36.60

AFR（GMM のみ） 58.41 48.59 48.36 29.78 27.78 42.58

AFR（絶対値+GMM） 56.75 47.33 51.89 29.95 28.27 43.44

表 3: 既存手法との比較（accuracy %）
枝刈率 手法 WinoG HellaS ARC-e ARC-c MMLU 平均
0% Llama-3-8B 72.61 79.16 77.74 53.33 62.13 68.99

20% 提案手法 68.90 69.70 72.81 46.16 49.32 61.25

LLM-Pruner 69.85 69.02 63.59 40.53 48.36 58.26

LoRAP 71.19 70.48 69.61 45.48 44.57 60.27

CFSP 68.67 68.06 67.63 42.92 50.71 59.60

50% 提案手法 56.75 47.33 51.89 29.95 28.27 43.44

LLM-Pruner 52.49 35.50 37.88 25.51 22.95 34.87

LoRAP 57.30 40.19 42.60 26.79 26.85 38.75

CFSP 57.06 43.13 48.53 28.50 26.61 40.77

法は 20% 枝刈りで 61.25% を達成し，他の既存手法を上
回った．50% 枝刈りでも 43.44% を達成し，LLM-Pruner
（34.87%）と比較して 8.57 ポイント向上した．
5.4 リソース削減効果の評価
表 4に各枝刈り率におけるリソース削減効果を示す．50%

枝刈りでパラメータ数及びVRAM 使用量 35.1% 削減，推
論速度 1.57 倍の高速化を達成した．構造化枝刈りにより
実用的な高速化が実現された．

表 4: リソース削減効果の評価
枝刈率 パラメータ数 VRAM [GB] 推論速度 [ms/sample]

0% 8.03B — 16.06 — 22.98 1.0x

20% 6.90B 14.0%↓ 13.08 14.0%↓ 20.89 1.10x

50% 5.21B 35.1%↓ 10.42 35.1%↓ 14.64 1.57x

6.おわりに
本研究では，非構造枝刈り手法を構造化枝刈りに適用す

ることにより，精度の維持と推論の高速化を両立する手法
を提案した．
単純平均による枝刈りスコアの評価では，符号情報の損

失と外れ値の影響により性能が著しく劣化することを発見
した．これらに対処するため，絶対値アプローチと GMM
による外れ値除去を組み合わせた手法を提案した．Llama-
3-8B を対象とした評価実験により，提案手法は単純平均
手法と比較して大幅な性能向上を達成し，既存の構造化枝
刈り手法と比較して同等以上の性能を示した．また，50%
枝刈りでパラメータ数及びVRAM 使用量 35.1% 削減，推
論速度 1.57 倍の高速化を達成した．
今後の課題として，Attentionモジュールへの拡張，集約

方法の最適化，層ごとの適応的枝刈り率設定が挙げられる．
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時空間シーングラフを用いた案内文生成の高精度化と視覚的説明に関する研究
TR24009 鈴木颯斗 指導教授：藤吉 弘亘

1.はじめに
運転者の認知的負担を抑えつつ，走行状況を直感的に理

解できる案内を提供することが，快適な運転ナビゲーショ
ン支援では重要である．このようなナビゲーションシステ
ムの実現においては，車両が運転手に対して運転シーンに
合わせて適切な情報を提示する必要がある．既存システム
は，地図情報に基づいた経路案内や定型的な音声案内が主
流であり，複雑かつ動的に変化する走行環境では，運転手が
直感的に状況を把握することは容易ではない．このような
課題に対し，周囲の状況を踏まえて人間のように案内を行
う Human-like Guidanceに関する研究が注目されている．
本研究では，Human-like Guidanceの実現に向け，視界

情報を基にした環境認識と自然言語生成を統合し，運転手
が直感的に理解可能な案内文を生成することを目標とする．
走行シーンにおける判断対象となる情報は多岐にわたり，
特に時間的変化を伴う環境認識では，情報量の増加が生成
精度や安定性に影響を及ぼす可能性がある．そこで本研究
では，車両の視界情報から得られるオブジェクトの空間的・
時間的関係を時空間シーングラフとして表現し，これを基
に案内文を生成する手法を提案する．さらに，生成したシー
ングラフに対し，Graph Attention Networks(GAT)[1]を
用いて案内に重要な対象を強調しながら情報を統合するこ
とを目指す．そして，推論時に得られる Attentionを可視
化することで，生成された案内文に対する視覚的説明を可
能とする．
2.関連研究
本研究では，車両の視界情報を基に環境を理解し，運転

状況に即した案内文を生成することを目的としている．本
章では，この目的に関連する技術を述べる．
2.1 動画像からのキャプション生成
キャプション生成は，画像または動画像を入力とし，そ

の内容を自然言語による文章として生成するタスクである．
本タスクでは，一般に視覚特徴を抽出するエンコーダと，
抽出された特徴に基づいて文章を生成するデコーダからな
る Encoder-Decoder 構成が採用される．視覚特徴抽出の
手法として，画像を対象とする場合には CNN，動画像を
対象とする場合には 3DCNN や時系列情報を考慮可能な
Transformerベースのモデルが広く用いられる．文章生成
には，Transformerに代表される自己回帰型の言語モデル
が用いられ，Cross-Attention 機構を通じて視覚特徴と単
語列を統合しながら逐次的に自然言語の説明を生成する．
これにより，入力画像や動画像の内容と意味的に整合性の
あるキャプション生成が可能となる．
2.2 シーングラフによる環境理解

Graph Neural Networkを視覚認識へ応用した手法とし
て，画像中のオブジェクトをノードとして表現し，その関
係性をグラフ構造として扱うシーングラフに基づく手法が
提案されている．Graph R-CNN[2]は，物体検出モデルに
よって得られたオブジェクト間の関係をシーングラフとし
て明示的に構築することで，画像の構造的理解が向上する
ことを示している．
3.提案手法
本研究では，走行シーンの動画像から得られるオブジェ

クトの時空間的関係を時空間シーングラフとして構築し，
GAT を用いた Graph-to-Text モデルにより案内文を生
成する手法を提案する．また，Graph Encoder における
Attentionを可視化することで，案内文生成の判断根拠を
視覚的に提示し，モデルの解釈性と信頼性の向上を図る．
提案手法の全体構成を図 1に示す．
3.1 マルチオブジェクトトラッキング
交通シーンには多様なオブジェクトが存在し，その外

観も大きく変化する．従来のシーングラフ構築では，オブ
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図 1: 提案手法のアーキテクチャ
ジェクトをノードとして定義した場合に，この多様な外観
情報を含めることが困難である．そこで本研究では，Open-
Vocabulary 物体検出モデルである YOLO-World[3] を用
いる．YOLO-Worldは画像特徴とテキスト特徴を統合した
クロスモーダル表現により，未学習クラスの zero-shot検
出が可能である．本手法では，テキストで指定したクラス
ラベルを直接ノードのラベルとして利用することで，ノー
ド表現を簡潔かつ解釈可能な形式に統一する．
また，オブジェクト自身の時間的な差分をシーングラフ

として表現する場合，検出オブジェクトをフレーム間で一
貫して追跡する必要がある．本手法では追跡アルゴリズム
である BoT-SORT[4]を用い，各オブジェクトに一貫した
IDを付与する．これにより，シーングラフ構築時に時間方
向の解析が可能となる．
3.2 時空間シーングラフの構築
動画像が与えられたとき，前述したマルチオブジェクト

を行い，検出オブジェクトの位置・クラス情報・追跡情報
を用いて時空間シーングラフ Gを式 (1)として構築する．

G = {V ,E} (1)

ここで，V はノード集合，E はエッジ集合である．
ノード集合 V の定義：　各フレーム t におけるノード集
合 V t を，マルチオブジェクトトラッキングによって得ら
れた検出オブジェクトの集合として，式 (2)のように定義
する．

V t = {vti | (Bt
i , c

t
i, id

t
i) ∈ Dt} (2)

ここで，Dt はマルチオブジェクトトラッキングの出力を
表し，B はオブジェクト毎の境界ボックス座標，cはクラ
スラベル，idは ID化されたトラッキング情報を示す．
エッジ集合Eの定義：　同一フレーム内のオブジェクト間
の関係性を空間的エッジ Espatial として式 (3)のように定
義する．

Espatial = {((vti , vtj), wt
ij)}, wt

ij =∥ B̃t
i − B̃t

j ∥2 (3)

ここで，wt
ij はエッジに対する重みを示し，オブジェクト

間のユークリッド距離を付与する．これにより，フレーム
毎のオブジェクト間の動的変化をグラフ内に表現する．
続いて，時系列方向におけるオブジェクト間の関係性と

して時系列エッジ Etemporal を式 (4)のように定義する．
Etemporal = {((vti , vt+1

j )) | idti = idt+1
j } (4)

この処理では，前後のフレームでトラッキング IDが一致
するノードに対してエッジが接続される．
最終的に，エッジ集合 E は式 (5)となる．

E = Espatial ∪Etemporal (5)

3.3 シーングラフへのAction埋め込み操作
案内文生成では，シーンの状況だけでなく，自車の行動

Action（右折・直進など）を考慮することが重要である．
本手法では，ナビゲーション時に与えられる Actionをテ
キスト形式として入力し，埋め込み層を通して Action特
徴を得る．そして，得られた Action特徴を前段で生成さ
れたシーングラフ内のすべてのノード特徴へ統合する．事
前にシーングラフに Actionを埋め込むことで，Actionに
基づいて着目すべきノードが強調されるような効果を図る．



表 1: 各モデルで生成された案内文の精度結果
Method

5 frame 10 frame 15 frame
B-1 B-4 M R B-1 B-4 M R B-1 B-4 M R

3DCNN 0.568 0.322 0.575 0.643 0.551 0.292 0.538 0.617 0.519 0.268 0.515 0.601
3DResNet 0.459 0.197 0.446 0.559 0.448 0.173 0.439 0.547 0.457 0.180 0.449 0.534

VTN 0.583 0.337 0.578 0.565 0.412 0.142 0.378 0.537 0.379 0.099 0.377 0.471
ViViT 0.524 0.266 0.538 0.592 0.540 0.285 0.551 0.603 0.549 0.274 0.559 0.611
Ours 0.610 0.363 0.635 0.668 0.617 0.382 0.646 0.675 0.631 0.388 0.649 0.677

※ B-1：BLEU-1, B-4：BLEU-4, M：METEOR, R：ROUGE 　
3.4 Graph-to-Textモデル
本研究では，時空間シーングラフから文章の生成を行う

Graph-to-Textモデルを提案する．Graph-to-Textモデル
は，グラフの特徴抽出を行う Graph Encoderと文章生成
を行う Text Decoder で構成される．Graph Encoder で
は，空間方向と時系列方向に分けて Attention を適用し，
特徴抽出を行う Spatial Temporal GAT (ST-GAT) を構
築する．Text Decoderでは，Graph Encoderにより抽出
されたグラフ特徴量から，Transformer Decoderを用いて
文章の生成を行う．また，モデルの推論時，最終層におけ
る各エッジに対する Attentionスコアをグラフ上に可視化
することで，モデルの判断根拠の解釈を可能とする．
4.データセット
ナビゲーションタスクには，走行車両の車載カメラ映像と

対応する案内文のペアからなるデータセットが必要となる．
本研究では案内文生成に特化したデータセットを CARLA
Simulatorを用いて独自に作成する．撮影には 8つのマッ
プを用い，撮影条件は以下の通り設定する．

• フレームレート：10 fps

• 天候条件：ClearNoon, WetNoon

• 撮影範囲：交差点約 50m手前から交差点通過直後
案内文のアノテーションは手動で実施し，注目対象に基づ
いた案内文を作成する．作成したデータセットは，合計 160
シーン，計 10,219フレームで構成される．各シーンには，
前述した案内文，進行方向における動作情報が含まれる．
5.評価実験
評価実験を通じて提案手法の有効性を検証する．本実験

では，ベースライン手法との比較，入力フレーム数が 5フ
レーム，10フレーム，15フレームにおける異なるフレー
ム長が案内文の生成精度に与える影響について分析する．
評価には，BLEU，METEOR，ROUGEを用いる．
5.1 ベースライン手法
ベースライン手法として動画像から直接特徴量を抽出す

る手法を用いる．具体的には，提案手法におけるシーング
ラフを構築する過程と Graph Encoderを Video Encoder
に置き換える．本実験では，CNNおよび Transformerを
ベースとした，3DCNN，3DResNet，Video Transformer
Network (VTN)，Video Vision Transformer (ViViT)を
用いる．
5.2 実験条件
学習設定は，学習率 1.0× 1.0−4，エポック数 100，バッ

チサイズ 32，Dropout 率 0.3 とする．学習の最適化アル
ゴリズムには AdamW を用いる．これらの設定は，提案
手法およびベースライン手法の全てのモデルで統一する．
5.3 定量的評価
提案手法およびベースライン手法の各モデルで生成され

た案内文の精度について定量的評価によって比較を行う．評
価結果を表 1に示す．結果より，提案手法は全てのフレーム
数において他の手法を上回る精度を達成しており，フレー
ム数が増加するほどより顕著に精度が向上していることが
確認できる．
5.4 定性的評価
提案手法およびベースライン手法の各モデルで生成され

た案内文について定性的に評価する．各手法における案内
文生成結果の例を図 2に示す．結果より，Groud Truthと
同様の “yellow car” を中心とした案内文を生成できてい
るものは提案手法のみであり，最も適切な説明となってい

る．ベースライン手法においては，最も動作の変化が大き
い “black car”もしくは画像内に存在しないオブジェクト
を注目しており，不適切な説明となっている．

Input image (𝑡 = 1)

Input image (𝑡 = 15)

Ground truth：
Straight ahead following the yellow car.

Action：
Straight

3DCNN：
Straight ahead following the black car.

3DResNet：
Straight at the intersection, following the white car.

VTN：
Straight ahead, following the red car currently.

ViViT：
Straight at the intersection where the black car is 
located.

Ours：
Straight ahead in the direction where the yellow car is
heading.

図 2: 各手法における案内文生成結果
次に，提案手法における案内文生成において，推論時の

Attentionを時空間シーングラフ上に可視化する．Atten-
tionの可視化結果を図 3に示す．結果より，グラフ上では
“black car” に着目しており，生成案内文の着目している
オブジェクトと一致する．また，エッジはオブジェクト間
の関連度として解釈することができる．したがって，モデ
ルが生成した案内文の判断根拠をグラフを通して視覚的に
説明可能であることを示している．

Action：right

Output text：
Turn right at this 
intersection, following    
the black car in front.

Input image (𝑡 = 4) Scene Graph and Attention Visualization ( 𝑡 = 4)

図 3: Attentionの可視化結果
6.おわりに
本研究では，車両の視界情報から動的な環境を理解し，

運転手に直感的な案内文を生成する手法を提案した．走行
シーンのオブジェクト関係を時空間シーングラフとして表
現し，Graph-to-Text モデルにより案内文生成を行った．
また，GATによる重要情報の強調と Attention 可視化に
よる判断根拠の提示を実現した．評価実験では，提案手法
が CNNや Transformerベースの Video Encoder を用い
たベースライン手法よりも高い精度を示し，特に長期間の
情報統合において有効性が確認された．さらに，定性的評
価および Attention可視化から，モデルが適切な対象に注
目し案内文を生成していることを確認した．
今後の課題として，より複雑な環境や多様な運転シナリ

オへの適用とその有効性の検証が挙げられる．
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複数生物の遺伝子解析を行うMix-Geneformerに関する研究
TR24010 西尾優希 指導教授：藤吉 弘亘

1.はじめに
次世代シーケンサにより単一細胞の遺伝子発現量を計

測できるようになり，細胞ごとの特性解析が可能となって
いる．解析の属人化を避け，効率化するために，深層学習
を用いた single-cell RNA sequencing (scRNA-seq) 解析
手法として，Geneformer[1]やMouse-Geneformer[2]が提
案されている．これらは，それぞれヒトとマウスの遺伝子
発現情報を文章として扱い，Transformerにより学習する
ことで，汎用的な細胞の特徴表現を獲得している．この学
習により獲得した特徴表現を用いることで，細胞型分類や
in silico 摂動などの下流タスクで高い性能を示している．
GeneformerおよびMouse-Geneformerは，いずれも単一
生物種を対象とした事前学習モデルであり，生物種を横断
した解析は困難である．一方，生物種を横断した解析が可
能となれば，マウスで得られた解析結果をヒトの解析に適
用でき，創薬プロセスの短縮や研究効率の向上が期待でき
る．そこで本研究では，ヒトおよびマウスの scRNA-seq
データを統合的に学習する Mix-Geneformer を提案する．
これにより，生物種を横断した解析が可能なモデルの構築
を目指す．
2.深層学習を用いた scRNA-seq解析

scRNA-seq解析は，次世代シーケンサにより細胞を単一
細胞レベルに分離して計測した遺伝子発現量をもとに，細胞
間の多様性や状態変化を解析する手法である．scRNA-seq
解析における課題として，前処理や特徴量設計，細胞型同
定などの解析工程において解析者の判断が介在する場面が
多く，属人的なバイアスが生じやすい．この課題に対し，
解析の自動化と汎用的な特徴表現の獲得を目的とした手法
が提案されている．
深層学習を用いて細胞の特徴表現を学習する手法とし

て，Geneformer[1] および Mouse-Geneformer[2] が提案
されている．これらは Transformer を用いた scRNA-seq
解析手法であり，細胞を文章，遺伝子をトークンとして扱
う点に特徴がある．具体的には，各細胞において遺伝子発
現量上位 2,048個の遺伝子を抽出し，発現量順に整列した
トークン列として細胞文を構成する．両モデルはいずれも
Masked Language Modeling（MLM）による事前学習を
通じて，細胞型分類や in silico摂動などの下流タスクに応
用可能な特徴表現を獲得している．一方で，これらのモデ
ルは単一生物種のデータを用いて事前学習しているため，
生物種を横断した統合解析には至っていない．
3.提案手法：Mix-Geneformer

本研究では，生物種を横断した解析が可能なモデルの実
現を目的として，ヒトおよびマウスの scRNA-seqデータ
を同一の Transformerで学習する scRNA-seq解析モデル
Mix-Geneformerを提案する．ヒトおよびマウスの scRNA-
seqデータを統合して学習することで，生物種に依存しな
い細胞表現の獲得を目指す．
3.1 Mix-Geneformerにおける事前学習

Mix-Geneformer の事前学習では，Masked Language
Modeling（MLM）とSimCSEを組み合わせて用いる．MLM
は，各細胞文内における遺伝子の関係を学習するための自
己教師あり学習である．SimCSE は，ミニバッチ内の細
胞文同士の関係性を捉えるための対照学習である．Mix-
Geneformerの学習方法の概要を図 1に，損失関数を式 (1)
～(3)に示す．

Ltotal = LMLM + LSimCSE (1)

LMLM = −
∑
i∈M

logP (xi | x\M ; θ) (2)

LSimCSE = − 1

N

N∑
i=1

log
exp

(
sim(h

(1)
i , h

(2)
i )/τ

)
∑N

j=1 exp
(
sim(h

(1)
i , h

(2)
j )/τ

)
(3)

式 (2)，(3)において，M は一部をマスクしたトークンの
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図 1: Mix-Geneformerの学習方法

集合，sim(·, ·)はコサイン類似度，τ は温度パラメータであ
る．式 (2)のMLM損失 (LMLM)は，マスクしたトークン
を予測する過程を通じて，細胞文内における遺伝子発現順
位の関係性を学習する．式 (3)の SimCSE損失 (LSimCSE)
は，同一の細胞文に対してエンコーダ内の確率的な dropout
により得られる 2つの特徴表現を生成し，それらを正例対
として扱う．各細胞 iに対して，同一エンコーダを 2回通
すことで得られる表現 h

(1)
i および h

(2)
i を正例とし，同一

ミニバッチ内の他の細胞に由来する表現 {h(2)
j }j ̸=i を負例

として対照学習を行うことで，細胞間の特徴表現の類似度
を学習する．
3.2 学習データセット:Mix-Genecorpus-50M

Mix-Geneformer の学習データセットとして，ヒトの
scRNA-seqデータセットである Genecorpus-30Mとマウ
スの scRNA-seqデータセットであるMouse-Genecorpus-
20Mを統合し，約 5,000万細胞から構成するMix-Genecorp
us-50Mを作成した．Genecorpus-30MおよびMouse-Gene
corpus-20Mは，複数の公開データセットを統合しており，
多様な臓器や細胞型を含んでいる．
3.3 事前学習
本研究では，ヒトおよびマウスの scRNA-seqデータを

同一の事前学習データとして扱うことで，生物種を横断し
た解析が可能なモデルの作成を目的とする．事前学習では，
埋め込み特徴を 256 次元とし，6 層の Transformer エン
コーダを用い，MLMおよび SimCSEに基づく対照学習を
組み合わせて学習を行った．MLMでは，細胞文中の一部
のトークンをランダムにマスクし，周辺のトークンから元
のトークンを予測することで，細胞文内における遺伝子間
の関係性の学習を促した．SimCSE による対照学習では，
特徴表現間の類似度に基づく損失を導入することで，各細
胞文同士の類似性を学習させた．事前学習は，バッチサイ
ズ 8，warmup10,000ステップを含む 10エポックで行った．
4.評価実験
本研究では，Mix-Geneformerの評価として，細胞型分

類と in silico摂動実験の 2種類の下流タスクを行う．各実
験において，単一生物種内の評価と，生物種の横断性の評
価を行う．いずれの下流タスクにおいても，事前学習済み
の Transformerに対して 10エポックのファインチューニ
ングを行う．
4.1 細胞型分類による評価
細胞型分類タスクでは，単一生物種内の評価として，事前

学習済みモデルに対してマウスおよびヒトのデータでファイ
ンチューニングし，GeneformerおよびMouse-Geneformer
と細胞型分類精度を比較する．さらに，生物種の横断性を
評価するため，マウスの脾臓データでファインチューニン
グしたモデルをヒトの脾臓データに，ヒトの脾臓データで
ファインチューニングしたモデルをマウスの脾臓データに
適用し，細胞型ごとのモデルの特徴表現を UMAPにより



可視化する．表 1および表 2に，マウスおよびヒトデータ
における分類精度を示す．

表 1: マウスの細胞型分類精度
Organ Types Mouse-GF Mix-GF
Brain 15 96.9 97.6
Heart 11 97.8 97.7
Kidney 18 94.9 95.4
Large intestine 7 93.1 94.6
Limb muscle 9 99.5 99.7
Mammary gland 7 99.0 99.1
Spleen 10 98.7 98.6
Thymus 6 97.0 97.6
Tongue 3 94.9 95.3

表 2: ヒトの細胞型分類精度
Organ Types Human-GF Mix-GF
Spleen 6 98.9 99.0
Brain 6 96.8 97.7
Immune 10 94.4 95.1
Kidney 15 92.8 93.3
Large intestine 16 92.7 93.4
Liver 12 91.1 91.2
Lung 16 93.4 94.3
Pancreas 15 93.0 93.5
Placenta 3 97.9 98.2

表 1および表 2より，マウスおよびヒトのいずれのデー
タにおいても，Mix-Geneformerは従来モデルと同等以上
の分類精度を示した．この結果は，複数の生物種のデータ
を同時に学習に用いることで，細胞型分類に寄与する特徴
を獲得した可能性を示唆している．
また，生物種の横断性を評価した UMAP可視化結果を

図 2に示す．図 2より，可視化対象と異なるデータでファ
インチューニングしたモデルであっても，UMAP上で細胞
型ごとに一定程度クラスタが分離していることを確認した．
このことから，Mix-Geneformerはマウスとヒトのデータ
を同時に学習することで，生物種を横断した解析が可能で
あると示唆される．

B細胞
B細胞（形質細胞）

CB CD34+
樹状細胞

類洞内⽪細胞

内⽪細胞
（抗原提⽰細胞）

⾚⾎球系細胞

単球

マクロファージ
⾚⾎球系前駆細胞

T細胞

好中球

(a) マウスで FT →ヒト
の脾臓データ可視化

マクロファージ・
樹状細胞前駆細胞

未成熟
NK T細胞

B細胞
T細胞
⾚芽球
顆粒球

マクロファージ

形質細胞

ナチュラルキラー細胞

成熟NK
T細胞

巨核球
⾚⾎球前駆細胞
前⾚芽球

(b) ヒトで FT →マウス
の脾臓データ可視化

図 2: 生物種の横断性に関する UMAP可視化結果
4.2 in silico摂動実験による評価

in silico摂動実験とは，コンピュータ上で遺伝子の過剰
発現や遺伝子削除を模擬し，細胞状態を目標状態へ近づけ
る上で重要な遺伝子を同定する手法である．in silico摂動
実験の概要を図 3に示す．
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遺伝子の特徴分布
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遺伝子Aを欠失 遺伝子Cを活性化

順位変化後

順位変化後

目標状態 目標状態

図 3: in silico摂動実験の概要
本実験では，対象遺伝子の順位を変化させることで細胞

に仮想的な摂動を与え，摂動後の特徴表現と目標状態の特
徴表現間の類似度を算出する．その上で，目標状態への変化
が大きい遺伝子を重要遺伝子として特定する手順で実験を
行う．評価指標には，cosine shift（↑）および p value（↓）
を用いた．cosine shiftはコサイン類似度の変化量であり，
正の値が大きいほど目標状態へ近づくことを意味する．ま
た，p value は統計的有意性を評価する指標であり，本研
究では p < 0.05を統計的に有意とする．
本研究では，単一生物種内の評価として，マウスの心臓

疾患データでファインチューニングしたモデルを用い，マウ
スにおける心臓疾患状態から正常状態へ変化させる in silico
摂動実験を行う．また，生物種間の横断性の評価として，マ
ウスの心臓疾患データでファインチューニングしたモデル

をヒトの心臓疾患データに適用し，心臓疾患状態から正常
状態へ変化させる in silico摂動実験を行う．前者の実験は
遺伝子の削除，後者の実験は遺伝子の過剰発現による実験
を行っている．これらの実験において，Mix-Geneformer
が重要と判定し，実際の生物実験で有効性が確認された遺
伝子の一部を表 3に，摂動前，摂動後，および目標状態に
おける細胞の特徴表現を UMAPにより可視化した結果を
図 4に示す．
表 3: in silico摂動実験で確認された有効遺伝子の一部

使用モデル 遺伝子名 cosine shift p value
マウス ALDOB 0.011 1.56E-2
マウス ALDH3B2 0.011 9.03E-3
ヒト　 MTRNR2L11 0.202 0.0
ヒト　 NAP1L6 0.035 1.66E-03

摂動前
⽬標状態
摂動後

(a)ヒトで FTしたモデル
による実験

摂動前
⽬標状態
摂動後

(b)マウスでFTしたモデ
ルによる実験

図 4: in silico摂動実験における UMAP可視化
表 3，図 4 から，マウスおよびヒトデータでファイン

チューニングしたモデルの両者ともに，摂動後の細胞の特
徴表現は摂動前と比較して目標状態に近づいた．cosine shift
の摂動前後の変化は，図 4(a)においては約 0.43，図 4(b)
においては約 0.05 であり，定量的，定性的評価ともに in
silico 摂動実験の成功を確認した．一方で，ヒトデータで
ファインチューニングしたモデルでは，UMAP によるク
ラスタ間の分離がより明瞭であり，摂動前後における細胞
の特徴表現の変化量も大きいことを確認した．これは，マ
ウスデータで学習したモデルをヒトデータに適用する際に，
生物種の違いに起因するドメインギャップが存在する可能
性を示唆している．この差異を解消するには，マウスとヒ
ト間でのデータ正規化や，種間の関係性学習のための損失
を定義する必要があると考える．
5.おわりに
本研究では，ヒトおよびマウスの scRNA-seqデータを同

一のTransformerで事前学習するモデルMix-Geneformer
を提案した．細胞型分類タスクにおいて，Mix-Geneformer
は従来モデルと同等以上の精度を示し，同一種内における
性能の有効性を確認した．また，生物種の横断性の評価と
して，UMAPによる特徴表現の可視化を行った結果，異な
る生物種でファインチューニングしたモデルであっても，一
定程度のクラスタ構造が保持されることを示した．in silico
摂動実験においても同様の傾向を確認し，マウスデータで
ファインチューニングしたモデルでもヒトの in silico 摂
動実験が可能である．一方で，同一種のデータでファイン
チューニングを行った場合と比較すると性能に差が見られ
ることから，生物種の差異が結果に影響する可能性が示唆
される．以上より，Mix-Geneformerは生物種を横断した
scRNA-seq解析が可能である一方で，種間差異をより適切
に扱うための学習手法の設計が今後の課題である．具体的
には，生物種の差異に起因する影響の緩和，ヒトおよびマ
ウス以外の生物種への拡張が挙げられる．
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MLLMによる科学図の理解と生成に関する研究
TR24014　増田 大河 指導教授：藤吉 弘亘

1. はじめに
学術論文における科学図は，複雑な概念や構造，関係性

を直感的に理解させるための重要な役割を担っている．科
学図を自動生成することで，研究者の図作成プロセスの支
援が可能である．学術論文中の科学図の多くがベクタ形式
で表現されるため，ベクタ形式に基づく科学図の自動的生
成が求められている．AutomaTikZ[1]は，大規模言語モデ
ル (LLM) を活用して LaTeX の TikZ パッケージのコー
ド生成を行うことでベクタ形式の科学図生成を実現してい
る．しかし，AutomaTikZには以下の 2つの問題がある．
(i) 構文エラーなどを含むコードが生成されることがある．
(ii) 生成結果を人間が修正するには TikZパッケージの専
門知識が必要となる．
本研究では，専門的な記述言語に対する知識を必要とせ

ず，作図ツール上で人間が直感的に編集可能な形式である
XMLを対象とする．そして，MLLMを用いた科学図の自
動生成手法を提案する．具体的には，エラーの自動修正と
生成結果の自己改善を行う機能を導入する．これにより，
構造的な整合性を保ちつつ，高品質なベクタ形式の科学図
を生成可能となる．また，生成された XML形式の科学図
は既存の作図ツール上で容易に修正・拡張・再利用ができ
る．そのため，図の作成から改良に至る反復的な作業プロ
セスの効率化に貢献する．
2. AutomaTikZ

Belouadi らは，科学図を対象として TikZ コードの自
動生成手法である AutomaTikZを提案している [1]．Au-
tomaTikZ は，CLIP による画像特徴を事前学習済みの
LLaMAに統合したモデルをファインチューニングし，自
然言語キャプションと真値となる図の画像から TikZコー
ドを生成する．これにより，テキストと図の整合性を考慮
した高品質な TikZコードの生成を可能にしている．
生成性能の評価には DaTikZ データセットが用いられ

ている．DaTikZ は，インターネット上から収集された 約
12万件もの TikZ コードと自然言語キャプションのペアか
ら構成される大規模データセットである．データは，TeX
Stack Exchange の投稿，arXiv 論文の TeX ソース，およ
び教育目的の TikZ 図共有サイトなど，実用的に利用され
ている公開リソースから収集されている．AutomaTikZは，
DaTikZデータセットを用いて学習することで TikZコー
ドの自動生成を実現している．しかし，生成対象が TikZ
に限定されている点や，構文エラーを含むコードを生成す
る場合があるといった課題がある．
3. 提案手法: XML-Diagram Agent

ベクタ形式の科学図の記述方法には，TikZ や SVG な
ど多様な形式が存在し，それぞれ異なる目的に基づいて設
計されている．AutomaTikZで対象とされている TikZは
TeX用の描画パッケージであり高度な数理表現が可能であ
る．しかし，文法が複雑であり，人間による図の追加修正
等はTikZの専門知識が必要となる．一方で，XMLはノー
ド・エッジ・レイアウト情報が明確に分離された構造とし
て記述でき，draw.ioのような作図ツール上で追加修正可
能である．
本研究では，クエリから XML の科学図を生成するフ

レームワークである XML-Diagram Agent (XDA)を提案
する．XDAは，ラスタ画像生成モデルとMLLMを用いて
エラーの修正や図の品質の改善を自律的に行うことで，高
品質なベクタ形式の科学図を生成する．XDAのフレーム
ワークを図 1に示す．本フレームワークは以下のモジュー
ルを組み合わせて構築する．
Query Expansion

Query Expansion は与えられたクエリを基に，図を構
成する要素や構造をプロンプト文に変換する．これにより，
曖昧さの少ない構造的な情報を後続のモジュールに入力で

XML Converter

Syntax Check 

Render XML

✔︎

✗ Error

Query Expansion

Query

XML Corrector
IR Generator

Visual Evaluator ×N

Image Generator

raster
image

: MLLM

図 1: XDAのフレームワーク
き，図の意味的整合性および生成品質の向上が期待できる．
Image Generator

Image Generator (IG) では，プロンプト文を画像生成
モデルに入力してラスタ形式の画像を生成する．ここで生
成した画像は，後続のモジュールに入力してデザイン的な
補助情報として活用する．
IR Generator

IR (Intermediate Representation) Generatorでは，プ
ロンプト文とラスタ画像から図の構成要素やそれらの関係
をグラフ表現として生成する．これにより，ノードやエッ
ジといった要素の種類，接続関係，階層構造などを明示的
に表現することができる．また，IR Generator で生成し
たグラフ表現は，後続の XML Converterで XMLのドラ
フトをルールベースの作成に利用する．
Visual Evaluator

Visual Evaluatorでは生成した XMLをレンダリングし
た図が，クエリとラスタ画像に従っているかを視覚的に評
価し，不整合や改善点を抽出する．評価結果は自然言語によ
るフィードバックとして出力され，後続の XML Corrector
に提供される．
XML Corrector

XML CorrectorではXMLとラスタ画像とVisual Eval-
uatorが出力したフィードバック文を入力として受け取り，
改善した XMLを生成する．生成した XMLは外部ツール
によって構文チェックおよび再レンダリングを行い，その
結果を再び Visual Evaluator に入力する．この処理を反
復することで，図の構造的および視覚的な品質を段階的に
向上させる．
ここで，ラスタ形式の画像を生成する Image Generator

以外のモジュールにMLLMを利用する．最終的にフレー
ムワークは，以上 4 つのモジュールに加えてルールベー
スで動作する XML Correctorと外部ツールによる Sytax
Check，Render XMLを組み合わせて，段階的かつ自律的
にエラーを改善し，図の品質を向上させるフィードバック
ループによって構成される．
4. 評価実験
提案手法の有効性を検証するために，科学図の生成性能

の比較を行う．
4. 1. 実験概要
評価実験を行うために，科学図の XML データをイン

ターネット上から収集して DiagramXMLデータセットを
構築した．DiagramXML は，インターネット上から収集
した科学図のXMLと，説明文から構成される．説明文は，
XMLをレンダリングして得られた画像に対して GPT-4o
を用いて生成した．説明文の正確さと図の完成度を人間に
よる 0から 100のスコアリングにより検証し，70以上の
スコアであった 70件を利用する．



表 1: 各手法の評価結果

生成手法 w/ IG CLIPScore C-BLEU
DiagramEval

SRNode Path
prec. recall F1 prec. recall F1

Zero-Shot XML - 71.38 5.760 0.601 0.480 0.518 0.252 0.175 0.174 0.69
Zero-Shot graph - 85.61 6.332 0.859 0.708 0.752 0.396 0.290 0.300 0.99

XDA
84.79 6.060 0.857 0.725 0.762 0.440 0.332 0.336 0.97

✓ 87.32 6.123 0.872 0.783 0.802 0.516 0.443 0.426 0.99

GT Zero-Shot XML XDA w/ IG

GT Zero-Shot XML XDA w/ IG

図 2: 各手法により生成された科学図
4. 2. 定量的評価
定量的評価では，提案手法である XDA と，2 種類の

Zero-Shot 手法との比較を行う．具体的には，Zero-Shot
prompting により XML を直接生成する手法 (Zero-Shot
XML)と，中間表現としてグラフ表現を生成した後に XML
に変換する手法 (Zero-Shot graph) を用いる．これらの手
法においては，いずれもMLLMとして Qwen2.5-VL-72B-
Instruct モデルを使用する．また，XDAにおける IGで利
用する画像生成モデルは，gpt-image-1モデルとする．さら
に，XDAにおける IGの有効性を確認するために IGの有無
による比較も行う．評価指標としてCLIPScore，C-BLEU，
DiagramEval[2]，生成成功率 (SR) を用いる．
各手法の評価結果を表 1に示す．これより，CLIPScore

と DiagramEval の評価値に注目すると，提案手法である
IG あり XDA が最高精度を達成していることが確認でき
る．これより，ラスタ画像生成モデルの性能も活かしつつ
自己改善を行うことで高品質なベクタ形式の科学図を生成
できていると言える．また，Zero-Shot XML は全ての評
価指標で Zero-Shot graph を超える精度を達成しており，
科学図生成においてグラフ表現を中間表現として用いるこ
とが有効であることがわかった．
さらに，XDAにおけるラスタ画像生成モデルの有無に

よる精度に着目すると IG あり XDA は IG なし XDA と
比較して全ての評価指標で高い精度を示している．これよ
り，ラスタ画像生成モデルで生成した画像を基にフィード
バックと修正を繰り返して生成した科学図は，より高品質
な科学図を生成できているといえる．
以上より，提案手法である IGありXDA は，Zero-Shot

prompting手法とは異なり，自己改善ループによる安定し
た構造生成を可能とし，成功率および構造的な一致率の観
点で優れた性能を示しており，高品質かつ構造的に整合性
の取れた XML 形式の科学図の自動生成が可能であること
がわかった．
4. 3. 定性的評価
提案手法である IG あり XDA により生成した場合と

Zero-Shot prompting手法で XMLを直接生成した場合を
定性的に比較する．各手法により生成された科学図を図 2
に示す．これより，IGありXDAは Zero-Shot prompting
手法で XMLを直接生成した場合と比べて，より正解画像
に近い図を生成できていることがわかる．特に矢印の関係
性が大きく向上しており，IG あり XDA 手法の有効性を
確認した．
さらに，IGあり XDA手法における Visual Evaluator

による生成図の変化を図 3に示す．これより，Visual Eval-

Ground Truth2nd Generation

Initial Generation

Input Query: 
The diagram is a centralized flowchart with a primary rectangular box in the center labeled 'IPyDrawio' in 
dark blue. From this central box, there are four arrows extending in four cardinal directions. Above 
'IPyDrawio', an arrow points upward to a rectangular box labeled 'Distr ibuting' in orange. From 'Distributing', 
three arrows extend to three rectangular boxes labeled 'pip', 'conda', and 'npm' from left to right, all in a 
lighter shade of orange. To the left of 'IPyDrawio', an arrow points leftward to a rectangular box labeled 
'User Experience' in red. From 'User Experience', three arrows point to boxes labeled 'familiarity', 'power', 
and 'robustness', arranged vertically from top to bottom, all in a lighter shade of red. To the right of 
'IPyDrawio', an arrow points rightward to a rectangular box labeled 'Q/A' in teal. From 'Q/A', four arrows 
point to boxes labeled 'acceptance testing', 'unit testing', 'integrity testing', and 'linting', arranged vertically 
from top to bottom, all in a lighter shade of teal. Below 'IPyDrawio', an arrow points downward to a 
rectangular box labeled 'Interoperability' in light blue. From 'Interoperability', three arrows point to boxes 
labeled 'diagrams.net', 'jupyterlab-drawio', 'browsers', and 'jupyterlite', arranged in a T-shape with 
'diagrams.net' and 'browsers' to the sides and 'jupyterlab-drawio' and 'jupyterlite' below, all in a lighter 
shade of blue.
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Visual Evaluator feedback text: 
1. **Colors**: The reference image uses a consistent color scheme. 
The 'IPyDrawio' box should be a dark blue (#1F4E79), the 
'Distributing' box should be an orange (#FFB667), the 'User 
Experience' box should be a red (#FF9999), the 'Q/A' box should be a 
teal (#87CEFA), and the 'Interoperability' box should be a light blue 
(#ADD8E6). The subpaths should use a lighter shade of their 
respective main path colors.

2. **Layout and Positioning**: The layout of the reference image is 
more organized and balanced. Move the 'Distributing' box directly 
above the 'IPyDrawio' box and adjust the positions of 'pip', 'conda', 
and 'npm' so they are evenly spaced horizontally. Similarly, move the 
'User Experience' box to the left of 'IPyDrawio' and align 'familiarity', 
'power', and 'robustness' vertically below it. The 'Q/A' box should be to 
the right of 'IPyDrawio', with its subpaths aligned vertically. The 
'Interoperability' box should be below 'IPyDrawio', with its subpaths
forming a T-shaped arrangement.

図 3: Visual Evaluator による生成図の変化
uator で生成されたフィードバック文を用いて修正された
科学図は回数を重ねるごとに真値に近づいていることがわ
かる．特に，図中のオブジェクトの配置や色味などが改善
されており，生成結果によるフィードバック文の指摘を踏
まえて改善できたといえる．
5. おわりに
本研究では，グラフ構造を中間表現として利用し，生成

結果に対するフィードバックを活用した自己改善を行うフ
レームワークである XDAを提案した．実験結果より，提
案手法は直接 XMLを生成する場合と比較して，生成の安
定性および構造的正確性の観点で優れた性能を示すことを
確認した．また，特にグラフ表現を中間表現として用いる
ことが極めて有効であることを確認した．今後の課題とし
ては，より多様な科学分野における図表への適用や，レイ
アウトや視認性といった視覚的品質のさらなる向上が挙げ
られる．
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深層強化学習における報酬関数の自動生成及び自動修正に関する研究
TR24008 鈴木 佳三 指導教授：藤吉 弘亘

1.はじめに
強化学習 (RL)は，エージェントが環境との相互作用を

通じて方策を学習する機械学習手法の一種であり，ロボッ
ト制御やゲーム攻略などの分野で応用が進んでいる．RL
では，環境から与えられる報酬をもとに行動を評価し，報
酬を最大化するように方策を更新する．そのため，報酬関
数の設計はエージェントの学習や性能を左右する重要な要
素である．一方で複雑なタスクでは報酬の設計が難しく，
専門知識や試行錯誤への依存が大きな課題となっている．
この問題に対し，大規模言語モデル (LLM)を用いて報酬
関数を自動生成・修正する Text2Reward (T2R) [1] が提
案されている．これにより，自動で報酬関数を生成できる
一方で，生成された報酬関数が必ずしも実行可能であると
は限らず，環境の仕様と不整合なコードや未定義変数を含
む場合がある．また，報酬関数の修正において人間による
評価やフィードバックを前提としており，設計者の主観や
負担に依存する点が課題として残されている．
本研究では，これらの課題に対処するため，報酬関数の

自動生成および自動修正を安定して実現するフレームワー
クを提案する．提案手法では，LLM が生成した報酬関数
の実行可能性を担保する Auto Debug Moduleと，自動的
に RL結果を分析する Feedback LLMを導入することで，
人間に依存しない報酬関数の生成および改善を目指す．
2.RLにおける報酬設計と従来法

RLにおいて，報酬関数はエージェントの行動を数値的
に評価し，学習の方向性を決定づける重要な要素である．
エージェントは報酬を最大化するように方策を更新するた
め，報酬設計は最終的な方策の性質や学習性能に大きな影
響を与える．
2.1人手による報酬設計
一般的な RLでは，タスクの目的を人間が解釈し，目標

状態への到達や制約条件の遵守などを評価基準として，状
態や行動に応じた報酬を定義する．報酬は単一の項目で与
えられる場合もあるが，多くの場合は複数の評価項目を組
み合わせた加算形式で表現される．この際，各評価項目に
対する重み付けや，疎報酬か密報酬かといった報酬形状を
人手で設定する．これらの設定は探索の容易さや学習の安
定性に強く影響するため，学習曲線やエージェントの行動
例を観察しながら報酬関数を反復的に修正する試行錯誤が
必要となる．専門家はタスク構造や RLアルゴリズムの特
性を踏まえた調整が可能である一方，非専門家にとっては，
どの評価項目をどの程度強調すべきかを判断することが難
しい．その結果，報酬関数の品質に差が生じ，意図しない
行動の誘発や学習の停滞が生じることがある．
2.2従来手法：Text2Reward

T2Rは，LLMを用いて報酬関数を自動生成し，人間の
フィードバックを通じて修正する手法である．図 1 に示す
ように，まず LLMに対して RLタスクの概要や環境情報
を与え，報酬関数のコードを生成させる．生成された報酬
関数を用いて RLを実施し，その学習結果やエージェント
の振る舞いをもとに，人間がフィードバックを与えること
で報酬関数を更新する．

T2R は，従来人手に依存していた報酬設計を自動化す
る可能性を示している．一方で，実際の RLタスクに適用
する際には，生成された報酬関数の実行可能性や，人間に
よるフィードバックの与え方に起因する問題がある．そこ
で，T2Rを用いた事前調査を行い，これらの問題点を明ら
かにする．
2.3事前調査 1：生成関数の実行可能性
本調査では，LLMが生成する報酬関数の実行可能性につ

いて検証する．LLMに対して，ManiSkill2の PushChair-
v1を対象とした報酬関数の生成を依頼し，生成された関数
を実際の RL環境上で実行する．実行時にエラーが発生し

LLM RL agent

RL training

Description: Seems like violent behavior
Feedback: Keep the chair standing

User

Task & Env.
Descriptions

def compute_reward(self, action):
  # get states
  pose = self.agent.pose
  ...
  
  return reward

Reward Function

図 1: Text2Reward
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図 2: フィードバック方針の違いによるRLへの影響
た場合は，当該関数を実行不可能と判定し，新たに報酬関
数の生成を行う．この操作を繰り返し，10個の実行可能な
報酬関数が得られるまで試行する．
結果を表 1 に示す．この調査により，LLMが生成した

報酬関数には，未定義の変数や環境に存在しない属性を参
照する記述が含まれる場合が多く，実行可能な関数を得る
ためには複数回の生成が必要であることがわかった．この
ことから，T2Rでは報酬関数生成の段階で実行可能性が十
分に担保されておらず，LLM による生成に不安定性が存
在することが確認できる．

表 1: T2Rにおける報酬関数の実行可能性
LLM 総生成回数 実行可能率 [%]

GPT-4o 36 27.8

GPT-5 38 26.3

2.4事前調査 2：修正方針の違いによるRLへの影響
本調査では，報酬関数の修正時に用いるフィードバック

の違いが与えるRLへの影響について調査する．GPT-5が
生成した報酬関数 (LLM Reward)を異なる 2つの方針で
修正し，それぞれで RLを実施する．一つは安全性や必要
最低限の動作を重視する保守的な修正方針 (defensive) で
あり，もう一方はタスクの達成速度や効率を重視する積極
的な修正方針 (aggressive)である．これらのフィードバッ
クに基づいて報酬関数を修正し，同一条件下で RLを実行
した．RLタスクには，PushChair-v1を用いる．
結果を図 2に示す．aggressiveは最高で 80%程度のタス

ク成功率を示したが，defensiveは終始 0%付近で停滞して
いる．この調査により，フィードバック方針の違いによっ
て学習の進行や最終的な性能に大きな差が生じることが確
認された．同じ初期報酬関数を用いた場合であっても，人
間の判断による修正内容の違いがタスク成功率やエージェ
ントの行動に大きく影響する．この結果は，T2Rにおける
報酬修正が人間の熟練度や価値観に強く依存していること
を示しており，非専門家にとって安定した性能向上を達成
することが困難であるという課題を示唆している．
3.提案手法：Auto-Text2Reward

本研究では，図 3 に示すように，報酬関数の自動生成
および自動修正を安定して実現するためのフレームワー
クを提案する．本手法では，Code Generate LLM，Auto



Code Generate
LLM

Your task:
- Write a reward function.

RL task:
- PushChair-v1 (ManiSkill2)
- Use a dual-arm mobile robot.

Goal:
- Push the chair to the marked position.

Available variables and functions:
- base_link.pose.p: world position of the robot
- base_velocity: linear velocity of the robot

Generation Prompt
def compute_reward(self, action):
  # get states
  base_xy = self.agent.base_link.pose
  chair_p = self.root_link.pose.p
  chair_xy = chair_p[:2]
  ...

  # stage reward
  if not in_contact:
    stage_reward += w_stg1 * dict_chair
  ...
  
  return reward
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図 3: 提案手法 (Auto-Text2Reward)

Debug Module，Feedback LLM を組み合わせ，T2R に
おける生成段階および修正段階の不安定性の低減を図る．
3.1報酬関数の自動生成
存在しない変数の参照や記述ミスを抑制するために，以下

の手順に従い報酬関数を生成する．まず， 1○の Code Gen-
erate LLMが，RL環境で直接使用可能な変数や関数を明
示したプロンプトを基に，報酬関数を生成する．次に， 2○の
Auto Debug Moduleに生成した報酬関数を渡し，環境に
おいて正常に実行可能であるか検証する．ここでエラーが
発生した場合，Auto Debug Moduleはエラーログを LLM
に共有し，再生成を行うことで実行可能な報酬関数のみを
選別する．正常に実行可能な報酬関数が得られたら， 3○の
実際の RL環境に渡り，RLを実施する．
3.2報酬関数の自動修正
人間の熟練度や判断基準に依存しないように，RLの結

果を自動的に分析する Feedback LLMを導入する．RLの
実施後， 4○の Feedback LLMを用いて RLの分析を行う．
ここでは，学習中のタスク成功率や獲得報酬の推移などの
RLログデータ，エージェントの振る舞いを記録した画像列
を入力として受け取り，学習状況やエージェントの振る舞
いを分析する．その後，使用した報酬関数と分析結果を踏
まえ，報酬関数の改善案であるフィードバックを生成する．
これらの分析結果とフィードバックに基づき， 1○の Code
Generate LLMが再び報酬関数を生成する．
4.評価実験
提案手法の有効性を検証するため，報酬関数の実行可能

性と，報酬設計の品質に関する評価実験を行う．
4.1報酬関数の実行可能性
生成した報酬関数の実行可能性を検証するため，Man-

iSkill2のタスクを対象として報酬関数を生成する．事前調
査 1と同様に，LLMにはGPT-5を用いて，10個の実行可
能な報酬関数を生成するまでに要した試行回数を計測する．
結果を表 2 に示す．提案手法は，いずれのタスクにおい

ても従来手法より少ない試行回数で実行可能な報酬関数を生
成しており，プロンプト改善および Auto Debug Module
が報酬関数の実行可能性を向上させていることが確認で
きる．

表 2: 提案手法における報酬関数の実行可能性
タスク 手法 総生成回数 実行可能率 [%]

PushChair-v1
T2R 38 26.3

Ours 14 71.4

OpenCabinetDoor-v1
T2R 72 13.9

Ours 11 90.9

OpenCabinetDrawer-v1
T2R 75 13.3

Ours 14 71.4
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図 4: タスク成功率の推移
4.2報酬設計の品質
生成した報酬関数の品質を検証するため，PushChair-v1

を用いて RLを実施する．比較対象として，専門家設計の
Professional Reward，GPT-5が生成した LLM Reward，
T2Rによって LLM Rewardを保守的および積極的な方針
で修正した T2R (defensive/aggressive)，提案手法によっ
て n回の自動修正を行った Ours (n feedback) を用いる．
各エージェントの学習過程におけるタスク成功率を図 4

に示す．提案手法は，いずれの報酬関数よりも高いタスク
成功率を達成した．また，提案手法による修正を繰り返す
ことで，修正前の報酬関数を用いた学習より性能が向上し
ている．以上より，提案手法は人間を介せず，報酬関数の
自動生成および自動修正を実現したといえる．
5.おわりに
本研究では，RL における報酬設計の困難さに着目し，

報酬関数の自動生成および自動修正を安定して実現するフ
レームワークを提案した．T2R の課題に対し，提案手法
では，生成された報酬関数の実行可能性を担保する Auto
Debug Moduleと，RLの結果を分析してフィードバック
を生成する Feedback LLMを導入した．評価実験より，提
案手法は専門家が設計した報酬関数や従来手法により得ら
れた報酬関数と比較して，エージェントの性能を改善させ
ることが可能であることを確認した．
今後は，RL分析サマリーのさらなる最適化や，動画情

報の導入方法，フィードバック生成頻度の制御，あるいは
軽量な言語モデルとの併用といった観点から，計算効率と
分析精度の両立を検討する．
参考文献
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1.はじめに
言語指示と視覚観測に基づいてロボットの行動を直接生

成する Vision-Language-Action（VLA）モデルが注目さ
れている [1]．VLAは，事前に獲得した世界知識を利用す
ることで未知のタスクにおいても汎化可能である．しかし，
軌道や回り込み方向，速度変化，停止位置などの動作指示に
関する詳細を言語のみで正確に表現することは困難である．
このような言語指示の曖昧さを補うため，視覚的に意

図を与えるスケッチ指示を用いる手法が提案されている．
RT-Sketch[2] は，手描きのスケッチ指示を目標表現として
用いることで，言語目標が曖昧な場合や視覚的外乱が存在
する場合でも，空間的な意図を伝達できる可能性を示した．
そこで，本研究では VLAモデルに対してスケッチ指示

を導入する．従来の言語指示に加えて，スケッチ指示を用
いることで，言語指示による高い汎用性・認識能力を活か
しつつ，動作の具体的な意図を補完し，より人の意図をく
み取ったロボット動作の実現と動作性能の向上を目指す．
2.Vision-Language-Action（VLA）モデル

VLA モデルは，視覚情報と言語指示から環境・タスク
を理解し，ロボットの状態（関節角など）を条件として，
関節角やグリッパなどの行動を直接出力する．これにより
End-to-End な制御を実現する．また，汎用的な理解能力
と高速な動作生成を両立するため，高レベルの解釈・推論
と運動制御を分担させる 2層構造（dual-system）の VLA
も提案されている．

GR00T N1[3]は，視覚・言語モデルと拡散モデルから
なる 2 層構造の VLA である． GR00T N1 の構造を図
1に示す．視覚・言語モデル部分 (System2) では，環境・
指示内容を解釈し，観測画像と言語指示をトークン列とし
て入力することで，視覚言語特徴を抽出する．拡散モデル
(System1) 部分では，ロボットの各関節角度などの状態情
報を実機の構成に合わせた MLP で埋め込み，拡散過程で
用いるノイズ付与済み行動と拡散時刻を Action Encoder
で埋め込む．これらと視覚・言語モデルで得られた特徴量
の cross-attention を求めることで，環境や言語指示を考
慮した行動系列を生成する．System1は 16ステップ先ま
での行動を生成し，高頻度に更新することで滑らかな実機
制御を可能にする．
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図 1: GR00T N1のモデル構造
3.提案手法
本研究では，GR00T N1をベースとし，Diffusion Trans-

former にスケッチ指示を入力することで，意図した軌道・
速度でのロボット動作を実現する．
3.1 スケッチ入力に対応したVLAモデル
モデル構造を図 2に示す．視覚言語特徴とロボットの状

態ベクトルに加えて，スケッチ指示を動作生成の条件情報
として Diffusion Transformer へ入力する．これにより，
従来の言語指示のみでは指定が難しい回り込み方向や通過
経路などを条件情報として動作に直接反映する．
3.2 スケッチ指示
スケッチ指示は画像上の座標 (x, y) を記録する．その

後，変化量（∆x,∆y）および 2次微分 (∆2x,∆2y)を求め，

VLA の入力に用いる．これにより，軌道だけでなく動作
速度についても反映することを実現する．Sketch Encoder
は，スケッチ指示を小規模な MLP で埋め込み，ロボッ
トの状態ベクトルと同様に条件トークンとして Diffusion
Transformerへ入力する．
3.3 デモンストレーションデータによるファインチ
ュー二ング

実機ロボットによるデモンストレーションデータを用い
て GR00T N1 をタスクに適応させる．ファインチューニ
ングでは，視覚情報・言語指示・ロボットの状態・スケッチ
指示を条件として与え，VLMは固定したまま，条件情報
の埋め込み・統合部および Diffusion Transformerを学習
する．学習では，教師データである行動系列を生成するよ
うに，ノイズ予測誤差を最小化してパラメータを更新する．
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図 2: 提案手法のモデル構造
3.4 データセット作成
提案手法を学習・検証するため，RealSense D435 によっ

て撮影したRGB動画とロボットの動作ログを同期して記録
し，各デモデータに対して言語指示とスケッチ指示を付与す
ることでデータセットを作成する．ロボットはMyPalletizer
260-M5（4 軸＋グリッパ）を使用し，各関節角およびグ
リッパ開閉量を時刻情報付きで記録する．データセットの
作成環境を図 3に示す．
各デモデータは観測画像列（30fps）と状態・行動（関節

角・グリッパ）から構成され，両者を対応付けることで，学
習時に同一時刻の各データの参照を可能にする．タスクは
ピックアンドプレースとし，「青色のキューブを白色のカッ
プに入れる」といった基本的な指示から，「青色のキューブ
を茶色のカップの前を通って手前側から白色のカップに入
れる」などの複雑な指示まで 16通り設定する．タスクを
表す言語指示を各デモデータに付与し，さらに同一な配置
に対しても，複数経路のスケッチ指示を作成する．また，
1つのモデルでスケッチ指示の有無の評価を行うため，ス
ケッチ指示を含むデータと含まないデータの 2種類を学習
用に各 300 セット，評価用に 30セット用意する．

図 3: データセットの作成環境
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図 4: 定性的評価：スケッチ経路の妥当性

4.評価実験
作成したデータセットを用いた提案手法の実験を行い，

スケッチ指示を用いない場合と用いる場合で比較を行う．
学習条件はバッチサイズ 4，学習ステップ 100000，最適化
手法 AdamW，学習率 1e-4 とする．定量的評価として実
機制御を行った際のタスク成功率を比較し，定性的評価と
して動作結果を観察することで，経路・速度の妥当性を確
認する．
4.1 定量的評価
実機制御におけるタスク成功率を用いて，スケッチ指示

の有無による性能差を比較する．ここでタスク成功とは，
物体（青色キューブ）を把持し，指示された目標カップに
投入できた場合である．カップに投入出来なかった場合や，
目標カップに投入できた場合でも，他のカップへの接触や，
指示された経路で動作しなかった場合はタスク失敗とする．
タスク 1は直線的に移動するシンプルな経路，タスク 2は
回り込む経路，タスク 3ではより遠回りの経路や他のカッ
プ位置も考慮した経路とする．各タスクについてスケッチ
指示あり／なしの条件でそれぞれ 20回ずつ検証する．

表 1: 実機実験におけるタスク成功回数
タスク 1 タスク 2 タスク 3

スケッチあり 20/20 17/20 3/20

スケッチなし 16/20 8/20 0/20

表 1より，全てのタスクにおいて，スケッチ指示を用い
た場合の成功回数が向上した．これにより，スケッチ指示
が軌道の意図（直線移動や回り込み方向）を明示し，スケッ
チ指示なしの場合よりも正確な動作を実現できていると言
える．一方で，タスク 3ではスケッチ指示を用いた場合で
も成功回数が 20回中 3回のみであった．タスク 3は，遠
回り経路や他のカップ位置の考慮といった複数の制約を同
時に満たす必要があり，タスク 1・2と比較して要求される
軌道の多様性が高い．このため，学習データにおけるタス
ク 3のバリエーション不足や，スケッチ表現の分解能（点
列密度・速度情報）不足により，モデルが安定して意図通
りの回避・経路選択を生成できなかったと考えられる．
4.2 定性的評価
経路の差が分かりやすい設定としてタスク 4を用意し，

動作を観察することでスケッチ指示の有無による挙動の差
を確認する．まず，スケッチなし条件では，把持から投入

までの一連の動作において，目標へ向かう途中で手先が迷
うように揺らぐ，直線的に接近して他のカップへ接触する，
あるいはカップ手前で停止位置が定まらないといった挙動
が観察された．特にタスク 4 のような回り込み動作では，
回り込み方向の選択が安定せず，目標カップへ到達できな
い例が見られた．一方でスケッチあり条件では，移動方向
や回り込み方向が明確となり，目標へ向かう経路が安定す
る傾向が確認できた．
次に，経路の妥当性について評価する．入力したスケッ

チ指示に対して，手先の移動経路が沿っているかを確認す
る．図 4に，可視化したスケッチと，物体把持後からゴー
ルまでの実機の経路の対応例を示す．この結果から，スケッ
チ指示に沿う経路で動作する様子が確認できた．また，近
い経路でスケッチ指示の密度（150ステップと 300ステッ
プ）を変えて入力した場合の動作速度の変化も確認できた．
5.おわりに
本研究では，言語指示に基づく VLA モデルにスケッチ

指示を時系列の条件情報として入力し，軌道・速度といっ
た具体的な動作意図を行動生成へ反映する手法を提案した．
評価では，オフライン指標（MSE）において提案手法の
誤差が増加した一方，実機ではスケッチ指示に沿う経路で
動作する傾向や，スケッチ指示の点列密度の違いに応じた
速度変化が確認できた．今後は，スケッチ指示パターンご
とのデータ不足を解消するためのデータ拡充，タスク追加
を行い，より高い汎化性能の獲得を実現する．また，別の
VLA モデルやロボット実機を使った実験を行い，更なる
動作性能の向上を目指す．
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