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自由記述文データを用いた講義改善フィードバックの構築に関する研究
TP24006 小池 正基 指導教授：山下 隆義

1.はじめに
デジタル教科書の操作を記録した学習行動ログデータか

ら，講義を十分に理解できていない学生を早期発見し，学
習に対する改善等を提供する試みが行われている [1]．し
かし学習行動ログデータは，学生の講義に対するモチベー
ションや，内容についての解釈といった抽象的な情報を考
慮できない．そのため，具体的な学習支援を提供すること
が難しい．本研究では，学生の主観が含まれる自由記述形
式の学習日誌に注目する．予備調査より，講義に対する日
誌の変化と成績の相関が高いことが判明した．そこで，学
習日誌の変化量を用いた成績予測モデルを構築し，成績予
測時の分析結果を用いた LLM推論によって，より学生に
とってわかりやすく，具体的な根拠と改善策を提供可能な
学生向けフィードバックシステムの実現を図る．
2.研究背景
教育分野において学生の成績の要因を調査する研究が活

発である．Stephanie ら [2] は，工学系の大学生に対して
自由記述アンケートを実施し，回答内容と GPAに相関が
あるか調査した．分析の結果，成績の高い学生はエンジニ
アの実務内容や目的を表現する単語や，数学，科学に対す
るポジティブな発言が見られ，成績の低い学生が用いる単
語と明確な差が確認された．これらから，学生が記録した
学習日誌を分析することで，将来の成績を予測するととも
に，講義へのモチベーション低下など，成績変動に関与す
る要因を根拠として具体化できると考えられる．
3.予備調査
本研究で用いる学習日誌データセットに対して分析を行

い，成績との関連性を調査する．本調査では，九州大学で
収集した，情報科目の講義における学習日誌と，受講者の
成績で構成されるデータセットを用いる．学習日誌は講義
直後に， 1○今回の講義内容の説明， 2○講義内容や講義につ
いてわかったこと， 3○講義内容についてわからなかったこ
と， 4○講義への質問， 5○講義の感想の 5 項目に回答する
形式で行われた．学習日誌は 2020年から 2022年までの期
間，合計 377名の学生に対して実施された．各受講者の成
績は A，B，C，D，Fの 5段階評価である．
本データセットは講義回ごとに同一の学生から学習日誌

を収集しているため，学生 s の講義 i 回目の回答 xs,i は
xs,1, xs,2, . . . , xs,15 のような時系列データとして表現でき
る．このとき，各回答は講義順に時系列が進み，講義 i回
目の回答が講義 i+ 1回目の回答に影響しうるため，連続
性や変化（改善・停滞・悪化）といった時系列的な情報が
包含される．この時系列情報を埋め込み間距離を用いて定
量化することで，各学生の継続的な講義への取り組み方を
調査する．講義間における学習日誌の埋め込み間距離 Dist
の算出方法を式 (1)に示す．

Dist(i, g) = median
( ∑
n∈Ug

1− A⊤
i Ai+1

∥Ai∥2 ∥Ai+1∥2

)
(1)

ここで，Ai はWord2Vec[3]によって得られた講義 i回目
の学生回答の埋め込み表現，Ug は成績 g の学生群である．
式 (1)で示すように，隣接する講義回の文章埋め込みに対
してコサイン距離を求めることで，各講義間の意味的な変
化量を抽出する．また，コサイン距離は学生ごとに変化が
大きいため，全学生から算出したコサイン距離の中央値を
利用する．
予備実験の結果を図 1に示す．図 1より，成績が高い学

生ほど講義間コサイン距離が大きく，講義 14から 15回目
における学習日誌の回答内容が大きく変化していることが
確認できる．この結果から，学習日誌の変化量は，成績予
測に有用な指標であるといえる．
4.提案手法
予備実験より，学習日誌における内容の変化量が成績に

大きく影響していることが示された．本研究ではこの結果

図 1: 講義間のコサイン距離
を踏まえ，以下の 2つから構成されるアプローチによって，
より効果的なフィードバックを提供可能な学習支援を実現
する．

1. 学習日誌の取り組み差分情報を用いた成績予測
2. LLMによる学生向けフィードバックの生成

4.1.学習日誌の取り組み差分情報を用いた成績予測
各学生の全 15回分の学習日誌を文章埋め込みに変換し，

予備実験と同様に変化量を算出することで，成績予測モデル
の精度向上を図る．成績予測モデルには，予測結果の判断根
拠を容易に算出可能である点と系列データへの解釈性の高
さから，Light Gradient Boosting Machine（LightGBM）
を利用する．予測には，予備実験で用いた講義間コサイン
距離だけでなく，講義間ユークリッド距離，学習日誌の各
講義回における回答文字数，講義全体の欠席回数を特徴量
として利用する．講義間コサイン距離はベクトル間の類似
度から文脈や意味的な変化量を算出し，講義間ユークリッ
ド距離はベクトル間の直接的な距離関係から使用単語の変
化や文章構成の変化を定量化するものである．
4.2.LLMによる学生向けフィードバックの生成

LightGBM モデルによって得られた成績予測結果とモ
デルの分析を利用することで，より説得力のある，学生向
けの学習方法フィードバックを生成する．図 2に本手法の
概要を示す．本手法は LLMによる 2段階推論によって生
成文の品質向上を目指す．第 1段階では，モデルの SHAP
分析結果から寄与度が高い講義回を抽出し，寄与度が高く
なった根拠を講義内容と学習日誌の回答から予測する．こ
のとき，寄与度の高い要素が複数ある場合に備え，出力を
構造化することで網羅性の欠落を防止する．第 2段階では，
第 1段階で得られた分析結果と講義資料を入力することで，
根拠と改善策を分かりやすく提示した学生向けのフィード
バック文を生成する．各 LLMはGPT-4oの生成文を真値
として訓練する．
5.評価実験
本章では，提案手法の有効性を検証するための評価実験

を行う．
5.1.実験条件
学習日誌を用いた際の成績予測精度を比較し，提案手法

の有効性を検証する．ベースラインとして，文章埋め込みを
直接入力する LightGBMモデルを用いる．各講義回ごとに
モデルを訓練し，その出力の平均値を最終的な予測確率と
する．評価には分割交差検証法 (k=5)を行い，Accuracy，
F1-scoreを用いて提案手法の有無における精度の変化を検
証する．
5.2.実験結果
各手法における講義理解度予測精度の比較を表 1に示す．

表 1より，ベースラインよりも Accuracyが 6.43pt，F1-
scoreが 8.48pt向上し，提案手法の有効性を確認した．次に，
定性評価として SHapley Additive exPlanations (SHAP)
による特徴量寄与度を可視化し，モデルの判断根拠を分析



図 2: LLMによるフィードバックシステムの概要

(a) 成績 A (b) 成績 B (c) 成績 C (d) 成績 D (e) 成績 F

図 3: 各成績の学生における判断根拠の可視化

表 1: 成績予測精度の比較
指標 ベースライン 提案手法

Accuracy 45.70 52.13

F1-score 33.20 41.68

する．図 3に各成績の学生に対する寄与度分析結果を示す．
図 3より，成績A，Bの学生に対してモデルは講義 14，15
回間のコサイン距離や未回答数，全体的なコサイン距離の
平均に注目していることがわかる．この結果から，成績が
高い学生ほど，講義最終時点の回答内容の変化や，講義全
体を通して一貫性のある回答がされているかといった要素
に注目していることがわかる．一方で，成績 C，Dの学生
に対して，モデルは講義 4～7回目のユークリッド距離や，
講義 11回時点の回答など，中盤～後半の学習日誌に注目
している．この結果から，成績が低下する傾向にある学生
は成績が高い学生と比較し，講義中間以降の取り組みに問
題があると解釈できる．成績 Fの学生については，学習日
誌の未提出回数と全体のコサイン距離に注目していること
から，学生の講義不参加といった傾向に強く注目した予測
を行っていることが確認できる．以上より，成績予測モデ
ルは各成績の学生が示す学習日誌の変化から，講義全体に
おける取り組みの継続性に注目して予測を行なっていると
考えられる．
5.3.LLMによる学生向けフィードバックの評価

LLMによって生成されるフィードバック内容を定性的
に評価する．図 4に，成績 Cの学生に対するフィードバッ
クの生成結果を示す．図 4より，予測時の判断根拠をもと
に，初期の講義内容である符号化やエントロピーなどの単
元に対する取り組みが活発であるといった強みの分析と，
後半の講義内容であるデータ分析や AIの単元における理
解不足といった改善点を明確に提示している．この傾向は
図 3に示す成績 Cの学生の寄与度分析と一致しており，モ
デルの分析内容をフィードバックに適用できていることを
示唆している．さらに，「非構造化データの処理方法につい
て理解を深めるべきである」といった具体的な改善点が言
及されていることから，各学生に対して講義理解を促す具
体的なフィードバックを提示できていることが示唆される．

図 4: LLMによるフィードバック結果
6.おわりに
本研究では，学生の理解度や解釈を読み取りやすい自由

記述形式の学習日誌に注目し，学生の成績予測を活用する
フィードバックシステムを開発した．各講義における学習
日誌の変化が成績と強く相関していることが示されたため，
これを決定木モデルの入力に利用することで，Accuracyが
6.43pt，F1-score が 8.48pt 向上することを確認した．さ
らに，成績予測モデルの SHAP分析において，講義中間時
点における学習日誌の内容変化に対して寄与度が高いと示
された．この結果を用いた多段階 LLMの構築により，学
生に対して具体的なフィードバックを提示可能となった．
今後は，フィードバックで示す成績改善案のさらなる具体
化と，実環境における有効性の調査を行う予定である．
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学習行動ログデータを用いた成績予測における説明性向上に関する研究

TP24009 舘良太 指導教授：山下 隆義

1.はじめに
教育現場における学習管理システム（LMS）やデジタ

ル教材配信システムの普及に伴い，教育・学習活動に関す
るデータを収集・解析し，教育改善に活用する Learning
Analytics の研究が活発に行われている．これにより，学
習者の進捗状況，学習傾向などを把握することで，各学習
者の学修状況に合わせた支援を提供することが可能となる．
こうした背景から，操作ログのような大規模なデータを扱
い，学習者ごとの特徴を捉える手法として，教育分野にお
ける機械学習モデルの活用が期待されており，早期退学者
の検出や学習行動の改善を目的とした成績予測の研究が多
く行われている．
宮崎らは，自然言語処理を用いて操作間の前後関係や時

間間隔を保持した分散表現を生成する手法を提案している．
しかし，学生特徴の生成には学習量を直感的に表現できる
Bag-of-Words（BoW）によるヒストグラム特徴を用いて
おり，操作頻度分布の偏りを十分に考慮できないため，希
少だが重要な操作が特徴として反映されにくいという問題
がある．そこで本研究では，BoW と同様に頻度情報に基
づきつつ，文書長正規化と逆文書頻度を考慮可能な BM25
と，クラス間差の大きさを定量化できる効果量を組み合わ
せた重み付けにより，操作頻度分布の偏りとクラス間差の
双方を考慮した成績予測手法を提案する．
2.先行研究
宮崎らは，学習操作間の前後関係や時間間隔といった情

報を保持した分散表現の生成手法である E2Vec[1] を提案
している．E2Vec の概要を図 1に示す．E2Vec は，前処
理，埋め込み，集約の 3 つのモジュールで構成される．
前処理では，操作ログを自然言語処理の “文字”，“単語”，

“文章” に対応付け，文字列表現に変換する．文字は 1 文
字 1 操作に対応し，操作名を 1 文字に変換して表現する．
各操作名と文字の対応表を表 1に示す．単語は最大 1 分間
かつ 15 文字以内で構成され，隣接する文字間に操作の時
間間隔に対応した文字を挿入して表現される．文章は複数
の単語から構成され，操作間隔が 5 分以上となるまでを 1
つの文章とする．
埋め込みでは，前処理により文字列表現に変換した操作

ログを用いて fastText を学習し，学習済み fastText によ
り各単語を 100 次元ベクトルに埋め込む．さらに，単語ベ
クトルを平均化して文章埋め込みベクトルを生成する．
集約では，文章埋め込みベクトルに対して k-means に

よるクラスタリングを行い，codebook を生成する．生成
した codebook を用いて BoW アプローチにより学生の特
徴ベクトルを生成する．

E2Vec は BoW アプローチに基づく特徴量生成を行う
ため，操作頻度分布の不均衡を考慮できず，モデルが “希
少だが重要な操作”を捉えることが困難となる．

前処理
timeOperationStudent ID
9:00:00OpenX-2020_Ua
9:00:20NextX-2020_Ua

………

9:00:50OpenX-2020_Ub
9:01:00PrevX-2020_Ub

………

Sentence
OsNPmAsN NsNm…
JsJsNsN NsPsNsPm…
OmPm…
…

学習済み
fastText

VectorSentence
[0.21, 0.03, …]OsNPmAsN NsNm…
[0.25, 0.12, …]JsJsNsN NsPsNsPm…
[0.27, 0.22, …]OmPm…
……

VectorSentence
[0.21, 0.03, …]ONmN ENsNmN …
[0.25, 0.12, …]NsNsA PsPmP …
[0.27, 0.22, …]NsPmNsP EmEsN …
……Student

⋯
⋯

Number of Clusters

Embedding Dimension

codebook

k-means

BoW

C1 C2 C3 C4

…

…

Operation Log DB

埋め込み

VectorSentence
[0.21, 0.03, …]OsNPmAsN NsNm…
[0.25, 0.12, …]JsJsNsN NsPsNsPm…
[0.27, 0.22, …]OmPm…
……

集約

Operation Log DB

図 1 : E2Vecの概要

3.提案手法
本研究では，効果量に基づく重み付けを適用した，E2Vec

ベースの BM25 特徴による成績予測手法を提案する．本手
法の概要を図 2に示す．本手法は，codebook生成モジュー

表 1 : 操作名と文字の対応表
操作名 説明 文字
NEXT 次のページへ移動 N
PREV 前のページへ移動 P
OPEN 教材を開く O
ADD MARKER マーカーを引く A
CLOSE 教材を閉じる C
PAGE JUMP 指定したページへ移動 J
GET IT ページ内容について理解した G
OTHERS 低頻出の操作 E
short interval 1から 10秒の時間間隔 s
medium interval 10から 300秒の時間間隔 m
long interval 300秒以上の時間間隔 l

ル，特徴量生成モジュール，成績予測モジュールの 3 つで
構成される．

E2Vec

Word vectorWordStudent ID
[0.21, 0.03, …]ONmNX-2020_Ua
[0.25, 0.12, …]ENsNmNX-2020_Ua

[0.27, 0.22, …]ONsPmPX-2020_Ub
[0.09, 0.12, …]NsNsAX-2020_Uc

[0.15, 0.42, …]NsPmNsPX-2020_Ud

………

⋯
⋯

Number of Clusters

Embedding Dimension

Cohen’s dcodebook ID
0.2512C1
0.5221C2
0.4811C3
0.011C4
……

codebook

Classifier
At-risk

No-risk

C1 C2 C3 C4

…

…

k-means

Operation Log DB

Changed SentenceSentenceStudent ID
C1 C2 C3…ONmN ENsNmN PsNmG …X-2022_Ua
C1 C4 C4 …ONsPmP NNsN NsNsN …X-2022_Ub
………

Changed SentenceSentenceStudent ID
C5 C6 C7 …NsNsA PsPmP NNsJ …X-2022_Uc
C8 C2 C9 …NsPmNsP EmEsN AsAsA …X-2022_Ud
………

E2Vec
At-risk Student

No-risk Student

BM25

BM25

C1 C2 C3 C4

…

…

C1 C2 C3 C4

…

…

Changed SentenceStudent ID
C1 C2 C3…X-2022_Ua

BM25 ×

Cohen’s dcodebook ID
0.2512C1
0.5221C2
0.4811C3
0.011C4
……

1．Codebook生成

2．特徴量生成

3．成績予測

効果量を算出
codebookをもとに置換

図 2 : 提案手法の概要

3.1.Codebook生成モジュール
操作ログデータに E2Vec の前処理を適用し，操作単語

の分散表現を獲得する．得られた操作単語ベクトルを k-
means++でクラスタリングし，codebookを作成する．各
操作単語を最も近いクラスタに置換し，学生ごとのクラス
タ列を生成する．

3.2.特徴量生成モジュール
クラスタ列に BM25[2] を適用し，操作の頻度と希少度

を考慮した特徴量を算出する．BM25とは，文書集合にお
ける，ある単語の重要度を測るための尺度である．BM25
特徴 BM25i,j は式 (1)で定義される．

BM25i,j = IDFj ·
fi,j (k1 + 1)

fi,j + k1
(
1− b+ bLi

L̄

) (1)

IDFj = log
N − nj + 0.5

nj + 0.5
(2)

ここで，N は学生数，nj はクラスタ j を含む学生数，fi,j
は学生 i のクラスタ j の出現回数，Li は学生 i のクラス
タ総出現回数，k1 と bは BM25のハイパーパラメータで
ある．

BM25特徴を用いてクラス間の行動差を定量化するため
に，式 (3)のように効果量 [3]を算出する．

dj =
x̄at-risk, j − x̄no-risk, j

sp
(3)

ここで，xat−risk,j は低成績クラスにおけるクラスタ j の
BM25 平均値，xno−risk,j は高成績クラスにおけるクラス
タ j の BM25平均値，sp はプールされた標準偏差である．
特徴量 xi,j は式 (4)で求める．

xi,j = BM25i,j × |dj | (4)



3.3.成績予測モジュール
式 (4)により算出された特徴量 xi,j をクラスタごとに集

約することで，各学生を K 次元の特徴量ベクトルとして
表現する．この特徴量ベクトルを機械学習モデルに入力し，
At-risk と No-risk の二値分類を行う．本研究では，分類
モデルとして Random Forest を用いる．
4.評価実験
本実験では，定量的評価として，提案手法を用いて成績

予測を行い，E2Vecと成績予測精度を比較する．定性的評
価として，BM25値と効果量の分析を行い，各成績におい
て重要な操作を調査する．また，SHAP を用いて成績予測
に寄与する特徴量の分析を行う．

4.1.実験条件
本実験では，九州大学で収集された LMS の操作ログ

データを使用する．A，D はコースの種類を表し，2020
年，2021 年，2022 年はコースが開講された年を表す．A-
2020 と D-2020 は，fastText の学習および codebook の
生成にのみ使用し，A-2021，A-2022，D-2021，D-2022 の
4コースを成績予測に用いる．1コースを訓練，別の 1コー
スを評価とした組合せを全通り実施し，計 12 通りの実験
を行う．成績は A，B，C，D，F の 5 段階評価であり，F
は単位不合格を意味する．本研究では，A，B を No-risk，
C，D，Fを At-riskとして扱う．分類モデルには Random
Forest Classifier を使用し，Grid Search によりハイパー
パラメータ探索を行う．評価指標には F1-Score を用いる．

4.2.定量的評価
表 2に，4 コースに対する E2Vec と提案手法の分類精

度を示す．表 2 より，評価データにコース A のデータを
用いた場合に最大 0.41 pt の精度向上が確認できた．これ
より，訓練データと評価データで異なるコースを用いた場
合でも精度が向上し，汎化性能があることが確認できる．

表 2 : E2Vecと提案手法による分類精度比較
train test E2Vec Ours

A-2021 A-2022 0.72 0.74

D-2021 0.60 0.60

D-2022 0.53 0.55

A-2022 A-2021 0.71 0.77

D-2021 0.67 0.58

D-2022 0.51 0.52

D-2021 A-2021 0.53 0.77

A-2022 0.24 0.65

D-2022 0.64 0.48

D-2022 A-2021 0.59 0.79

A-2022 0.38 0.72

D-2021 0.85 0.67

4.3.定性的評価
定量的評価において最も高い予測精度であった D-2022

を対象として，BM25 値，効果量，および SHAP に基づ
き，各成績クラスの特徴的な操作パターンと，クラス間を
識別するために重要な操作パターン，成績の向上・低下に寄
与する操作パターンを分析する．表 3に各クラスで BM25
平均値が高い操作パターン上位 5件を示す．表 3より，At-
riskクラスは操作間隔が短い“ s”を含む“Next”の連続操
作パターンであること，No-riskクラスは操作間隔が短い
“m”を含む“Next”の連続操作や“Page Jump”や“Add
Marker”を含む操作パターンであることが確認できる．こ
のことから，ページ移動効率や教材内容を理解しようとす
る能動的な学習行動が成績に関係していると考える．
表 4に 各クラスで効果量が高い操作パターン上位 5 件

を示す．表 4より，At-riskを特徴づける操作パターンは，
操作間隔が短い”s”を多く含む“Next”と“ Prev”で構
成された操作パターンであることが確認でき，No-riskを
特徴づける操作パターンは，操作間隔が長い”m”と“ l”
を含む“Next”と“Prev”で構成された操作パターンであ
ることや，”Add Marker”を含む操作パターンであること

が確認できる．このことから，ページごとの滞在時間や教
材内容を整理する行動がクラス間の差であると考える．
表 3 : D-2022における BM25平均値が高い操作

At-risk Operation No-risk Operation

CsCsCm NNNNsNsCl

GNmGNl JsNJJPJJNJNJPN

NNsNNsNNNsNsNs NmNmNmNm

NsNsNsNsNsNsNs NmNsNsNmNsNs

GsNmNsGmNsGm AmAsAm

表 4 : D-2022における効果量が高い操作
At-risk Operation No-risk Operation

NsPmNmNm PPPsPPPPPNNNNN

NsNsNsNl NsPPNsNPsNmNNN

NNNNNNNNsPsPPs AsCm

PsPsPNNsNm NNmCl

PPPsPsPPsPm NNsNPsPl

さらに，予測結果の説明を目的として SHAPにより特徴
量の寄与度を分析した．図 3に SHAP値の分布を示す．その
結果，操作パターン “OsJsNPPPPNNNNN ”，“AsCm”，
“PPPPPPPPPsPmPP”，“NsNsNmOmNNNNNN”は特
徴量値が高いほど負の寄与を示す傾向が見られ，一方で
“NsNm”，“NNNNNsNNNNNNNN” は特徴量値が高いほ
ど正の寄与を示す傾向が見られた．これより，成績に良い
影響を与えるクラスタは “Page Jump” や “Add Marker”
を含むパターンであり，成績に悪い影響を与えるクラスタ
は “Next” や “s” で構成されたパターンであることが分か
る．以上より，希少な操作を含む学習行動が成績向上に寄
与する一方で，短時間の連続ページ遷移が成績低下に寄与
する可能性が示唆された．

OsJsNPPPPNNNNN

AsCm

NsNm

PPPPPPPPPsPmPP

NNNNNsNNNNNNNN

NsNsNmOmNNNNNN

図 3 : SHAPによる寄与度の可視化結果
5.おわりに
本研究では，効果量に基づく重み付けを適用した E2Vec

ベース BM25特徴による成績予測を行った．結果から，従
来手法と比べ，訓練と評価で異なるデータを使用した場合
でも精度向上が確認できた．また，BM25値と効果量，お
よび SHAP による分析により，操作間隔の違いや “Page
Jump”，“Add Marker” といった希少操作の有無がクラス
間の差として現れており，教材の熟読やページ移動効率が
成績に関係していると考えられる．今後は，重み付けを特
徴量ではなく損失関数に適用した成績予測モデルの構築を
行う予定である．
参考文献
[1] Y. Miyazaki et al., “E2Vec: Feature Embedding

with Temporal Information for Analyzing Student
Actions in E-Book Systems”, EDM, 2024.

[2] S. E. Robertson et al., “Okapi at TREC-3”, TREC-
3, 1995.

[3] J. Cohen, “Statistical Power Analysis for the Behav-
ioral Sciences (2nd ed.)”, Lawrence Erlbaum Asso-
ciates, 1988.

研究業績
[1] R.Tachi et al., “Grade Prediction Using fastText

Features Weighted Through Differential Pattern
Mining”, LAK, 2025.

(他 2件)



自己教師ありオンライン継続学習における収束速度と勾配相関の改善に関する研究
TP24001 今井 孝洋 指導教授：山下 隆義

1.はじめに
深層学習モデルを学習する場合，データを事前に収集・

蓄積して学習するオフライン学習と，蓄積せずに逐次デー
タを入力して学習するオンライン学習の 2つのアプローチ
がある．オフライン学習は，蓄積したデータセットを繰り
返し用いて学習するため高い精度を達成しやすい一方で，
データの蓄積に伴うストレージコストが課題となる．オン
ライン学習は，収集したデータを即座に学習し，学習後は
そのデータを破棄するため，ストレージコストを大幅に削
減できる．しかし，収集したデータに対してリアルタイム
でラベル付けして学習するのは困難である．
これに対して，自己教師ありオンライン継続学習は，逐

次入力するデータに対して自己教師あり学習を行うことで，
ラベルを付与するコストを低減できる．しかし，従来の自
己教師ありオンライン継続学習手法は，2つの課題がある．
(i)パラメータ更新時の勾配に相関が発生し，モデルが特定
のデータに過度に適合することで汎化性能が低下する．(ii)
自己教師あり学習の収束が遅く，収集したデータを破棄す
るまでの短い時間で十分に学習することが困難である．
そこで本研究では，コサイン類似度を使用した学習デー

タの選択によって勾配の相関を抑制し，マルチクロップ対
照損失によって自己教師あり学習の収束速度を改善する自
己教師ありオンライン継続学習手法を提案する．実験によ
り，提案手法が従来手法と比較して分類精度を改善するこ
とを示す．
2.自己教師ありオンライン継続学習
自己教師ありオンライン継続学習 (Self-Supervised On-

line Continual Learning: SSOCL) は，逐次入力されるラ
ベルのないデータであるデータストリームを用いて継続的
に学習するアプローチである．データストリームは，連続
するデータ間に強い相関を持つと共に，時間の経過に伴い
データ分布が変化する非定常性という 2 つの特性がある．
このような特性を持つデータストリームで学習する SSOCL
には 2つの課題がある．
課題 1：パラメータ更新時の勾配の相関．図 1に t 回目の
イタレーションと t+ 1 回目のイタレーションにおけるパ
ラメータ更新時の勾配のコサイン類似度を示す．従来の深
層学習モデルは，サンプル間に相関がないデータで学習を
行うことを仮定しており，勾配の類似度は 0に近い値とな
る．一方で，サンプル間に相関のあるデータで学習を行う
と，勾配の類似度が 1.0に近い値になる．勾配の類似度が
高いと，モデルのパラメータを特定のデータ分布に過度に
適合する方向へ更新するため，汎化性能が低下する．

相関のあるデータで学習 (knn acc : 15.92%)
相関のないデータで学習 (knn acc : 19.54%)

図 1: パラメータ更新時の勾配の類似度
課題 2：自己教師あり学習の収束の遅さ．図 2に教師あり
学習と自己教師あり学習の収束速度を示す．図 2より，自
己教師あり学習は，教師あり学習と比較すると学習収束が
遅いことがわかる．これは，データ分布が時間と共に変化
する実世界において，自己教師あり学習の学習が不足する
可能性を示している．
3.提案手法
本研究では，SSOCLにおける 2つの課題に対処する手

法を提案する．提案手法は，勾配の相関に対処するためコサ
イン類似度を用いたデータ選択を行い，自己教師あり学習

教師あり学習
⾃⼰教師あり学習

図 2: 教師あり学習と自己教師あり学習の収束速度
の学習収束の遅さに対処するためMulti-Crop Contrastive
Loss (MCC Loss) を導入する．
3.1.学習プロセス
提案手法の学習プロセスを図 3に示す．図 3に示すよう

に，提案手法は，データストリームで観測されたサンプル
を固定サイズのバッファに追加する．その後，バッファか
らランダムにサンプリングしたデータで K 個のミニバッ
チを作成し，学習に使用する．このとき，自己教師あり学
習の収束の遅さに対処するため，損失関数に MCC Loss
を導入する．従来の Contrastive Loss は，1枚の画像に異
なる 2 種類のデータ拡張を加えて得た 2 つのクロップに
対し，それらの特徴量を 1対 1で近づけ，異なる画像から
得たクロップは，遠ざけるように学習を行う．これに対し
て，提案手法で導入する MCC Lossは，3種類以上の異な
るデータ拡張を適用し，得られた各クロップの特徴量をそ
れらの平均特徴量へと同時に近づける．クロップ数を増加
させることで，1回のパラメータ更新においてより多くの
情報を効率的に学習できるため，自己教師あり学習の収束
の遅さを改善することが可能である．

K 個のミニバッチで学習後，バッファ内のサンプル数が
一定数を超えている場合，コサイン類似度に基づいて多様
なサンプルのみをバッファに保持し，冗長なサンプルを削
除する．これにより，提案手法は，データストリームが持つ
相関のある冗長なデータでの学習を防止し，勾配の相関に
対処する．その後，データストリームで観測したサンプル
に対して同様の処理を繰り返す．以下では，MCC Loss と
コサイン類似度によるデータ選択について詳細に説明する．

コサイン類似度を⽤いた多様なデータの保持

リプレイバッファから
データを削除

データをリプレイ
バッファに格納

データストリームtime

Vehicle Mammalian

リプレイ
バッファ

マルチクロップによる学習収束の⾼速化

𝜆ℒ!"" + ℒ#"$

ProjectionEncoder

Projection

Projection

𝐾

𝑋% = [𝑥%%, 𝑥%&, 𝑥%']

Encoder

Encoder

𝑍% = [𝑧%%, 𝑧%&, 𝑧%']

𝑍& = [𝑧&%, 𝑧&&, 𝑧&']

𝑍( = [𝑧(% , 𝑧(& , 𝑧(' ]
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𝑋( = [𝑥(% , 𝑥(& , 𝑥(' ]

リプレイバッファ
から 𝐾回に分けて
データを取り出す

図 3: 提案手法の概要
3.2.Multi-Crop Contrastive Loss

自己教師あり学習の収束速度は，クロップ数の増加によっ
て高速化可能であることが知られている [3]．提案手法は，
従来の 2 クロップのみを対象とした Contrastive Loss を
3 クロップ以上に拡張した Multi-Crop Contrastive Loss
(MCC Loss)を導入する．MCC Lossを式 (1)に示す．

LMCC =
1

Nb

N∑
i=1

b∑
j=1

(
− log

exp(z̄j · zji/τ)∑N
k=1

∑b
l=1 exp(z̄

j · zlk/τ)

)
(1)

ここで，N はクロップ数，bはバッチサイズ，zは各サン
プルの特徴量，τ は温度パラメータ，z̄j はサンプル xj の



表 1: 学習終了時の kNN分類精度 [%]

CIFAR10 CIFAR100 ImageNet100

Seq Seq-bl Seq-im Seq Seq-bl Seq-im Seq Seq-bl Seq-im

MinRed[2] 50.04 51.18 46.41 22.38 23.20 21.26 22.87 22.71 20.46

SCALE[1] 41.41 40.85 41.31 17.49 16.93 17.03 15.46 15.41 15.77

EMP-SSL[3] 57.02 57.32 57.31 27.81 28.40 27.90 22.79 22.01 22.99

Ours 59.71 59.96 58.67 30.41 30.32 30.00 25.81 25.64 25.24
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図 4: 学習過程における kNN分類精度 [%]

平均特徴量を示し，z̄j は式 (2)で求める．

z̄j =
1

N

N∑
i=1

zji . (2)

MCC Loss は，1 枚の画像に対して N 種類の異なるデー
タ拡張を加え，各サンプルの平均特徴 z̄j を計算する．そ
して，各データの特徴量 zji をその平均特徴量 z̄j に同時に
近づける．また，異なるデータの平均特徴 z̄j から各デー
タの特徴量 zl を遠ざけるように学習する．
3.3.コサイン類似度による多様なデータの選択
コサイン類似度を用いたデータ選択の目的は，データス

トリームから多様なデータを選択して学習に利用すること
である．コサイン類似度の計算は，バッファ内サンプル xi

と同時に保存した代表的な特徴量 z̄∗i を用いて計算する．
提案手法のデータ選択は，式 (3)で定式化できる．

x∗
i = arg min

xi∈M
min

xj∈M
Sim

(
z̄∗i , z̄

∗
j

)
(3)

z̄∗i ← αz̄∗i + (1− α) z̄i (4)

ここで，Mはバッファ，x∗
i はバッファに保存するデータ，

z̄∗i は平均特徴 z̄i の指数移動平均であり，x∗
i と z̄∗i をバッ

ファに保存する．リプレイバッファ内で類似度が高いデー
タを削除し，類似度が低く多様なデータを優先してリプレ
イバッファに保持する．
4.評価実験
データストリームで学習した各手法のクラス分類におけ

る分類精度を評価する．
4.1.実験条件
評価には CIFAR10/100，ImageNet100の 3つのデータ

セットを用いて，データストリームの構築を行う．各データ
セットを従来研究 [1]に従って，Seq，Seq-bl，Seq-imデー
タストリームを構築する．Seqは，クラスごとのデータ数
を統一し，データ分布が一定のタイミングで変化する模擬
的なデータストリームである．また，より現実的なデータ
ストリームで評価を行うため，Seq-blはデータ分布の変化
境界を曖昧にし，Seq-im はクラス毎のデータ数を不均衡
にする．これにより，Seq-blは現実世界で発生する環境の
滑らかな変化を，Seq-im はクラス毎の出現頻度の偏りと
いう現実的な不均一性を再現する．
4.2.実験結果
各手法の学習終了時の分類精度を表 1に示す．表 1より，

提案手法は，CIFAR10 で最大 19.11pt，CIFAR100 で最

大 13.39pt，ImageNet100で最大 10.35ptの精度向上を確
認できる．また，MinRed [2] は，Seq-imでの精度低下が
確認できる．これは，クラス毎の出現頻度を不均一にする
ことで，観測回数の少ないクラスに対して学習が収束しな
かったためだと考えられる．一方で，提案手法は，Seq-im
の精度は他のデータストリームと同程度であり，これはよ
り現実的なデータストリームにおいても学習が可能である
ことを示している．
次に，学習過程における分類精度の比較を行う．各手法

の学習過程における分類精度の推移を図 4に示す．図 4よ
り，提案手法の kNN 分類精度は，学習進捗が 20% の時
点において，Seq-CIFAR10 で約 56.0%，Seq-CIFAR100
で約 28.0%，Seq-ImageNet100で約 23.0%である．これ
は，他手法の学習終了時点での精度と同等かそれ以上であ
る．これは，提案手法のMulti-Crop Contrastive Lossに
よって学習収束を高速化したことに起因すると考えられる．
5.おわりに
本研究では，自己教師ありオンライン継続学習における

勾配の相関による性能劣化と学習収束の遅さに対処する手
法を提案した．提案手法は，コサイン類似度によるデータ
選択によって，バッファ内に多様なデータを保持し学習に
用いることで勾配の相関に対処し，MCC Loss を導入する
ことで自己教師あり学習の収束の遅さに対処した．実験結
果より，複数のデータセットにおいて提案手法は，従来手
法よりも高い分類精度を達成することを確認した．今後は，
ImageNet21Kなどより大規模なデータセットを使用して，
より実世界に近いデータストリームを構築し，その有効性
を評価する予定である．
参考文献
[1] Yu et al., “SCALE: Online Self-Supervised Life-

long Learning Without Prior Knowledge”, CVPRW,
2023.
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物体検出モデルの判断根拠可視化における解釈性向上に関する研究
TP24010　仲井悠真 指導教授：山下　隆義

1. はじめに
自動運転や医療画像解析において，深層学習による物体

検出モデルは，高い性能だけでなく，高い信頼性が要求さ
れる．しかし，深層学習モデルは，その判断根拠がブラッ
クボックスである．このような背景から，物体検出モデ
ルの判断根拠を人間に理解可能な形で示す説明可能な AI
（XAI）が注目されている．物体検出に特化した手法とし
て ODAM[1]が提案されている．ODAMは勾配情報に基
づいて可視化を行うため，入力画像に対する勾配消失や局
所的な勾配ノイズの影響を受けやすいという課題がある．
そこで本研究では，ODAMが抱える勾配依存による課

題を軽減するため，入力画像に関する情報を持たないベー
スライン画像から入力画像に至るまでの過程を考慮できる
勾配計算法である Integrated Gradients[2]を導入する．さ
らに Integrated Gradients における補間画像の生成方法
に起因する積分近似誤差および勾配ノイズの問題に着目す
る．これらを低減するため，勾配変動と空間的変化に基づ
いてサンプリング位置を適応的に制御する機構を導入した
Adaptive IG-ODAMを提案する．
2. Integrated Gradients

XAI において，可視化結果が入力と予測の関係を適切
に反映していることが求められる．既存の勾配ベース手法
は，勾配消失により重要な特徴を捉えられないという感度
の欠如が課題である．この課題に対し，ベースラインから
入力までの直線経路に沿って勾配を積分し，各特徴量の寄
与度を算出する Integrated Gradients が提案されている．
画像タスクでは，ベースラインとして全画素がゼロの画像
が用いられることが多く，経路全体の勾配情報を用いるこ
とで，単一の入力画像の勾配に依存しない忠実な寄与度推
定が可能となる．
一方で，実装上は経路積分を有限個の補間点により近似

するため，図 1に示すように，補間経路を一様にサンプリ
ングした場合には，勾配が急激に変化する区間に十分な補
間点が割り当てられず，積分近似誤差や勾配ノイズが生じ
やすいという課題がある．特に，深層モデルにおいて勾配
が非線形に変化する場合，この近似誤差は可視化結果の忠
実性に影響を及ぼす可能性がある．
また，Integrated Gradientsは主に単一の予測出力を対

象とした設定を想定しており，物体検出のように複数のイ
ンスタンスや出力を同時に扱うマルチインスタンス環境へ
の直接的な適用には，依然として課題が残されている．
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勾
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図 1: Integrated Gradientsによる寄与推定と補間経
路上での勾配飽和の例
3. 提案手法: Adaptive IG-ODAM

本研究では，Integrated Gradientsを物体検出の判断根
拠可視化手法である ODAM に導入した IG-ODAM を提
案する．さらに，一様サンプリングに起因する積分近似誤
差や勾配ノイズを低減するため，補間経路上の重要区間に
サンプリング点を適応的に配置する Adaptive IG-ODAM
を提案する．
3. 1. ODAMへの Integrated Gradientsの導入

IG-ODAMは，入力画像とベースライン画像を結ぶ補間
経路全体の勾配情報を用いることで，単一の画像における
勾配に依存する従来手法に見られる局所的な偏りの影響を

低減する．さらに，物体検出特有のマルチインスタンス環
境へ適用するために，IoUに基づく位置的類似度とクラス
スコアの類似度を統合したインスタンスマッチングを導入
する．これにより，補間経路上において同一インスタンス
を一貫して追跡しながら寄与度推定する．
物体 pに対する予測クラススコア s(p)(I)を寄与度推定

の対象とし，ベースライン画像 I ′ から入力画像 I への補
間経路 Iα = I ′ +α(I − I ′)（α ∈ [0, 1]）に沿って経路積分
を行う．物体検出では，補間画像ごとに検出結果の数や順
序が変化するため，単純な対応付けでは同一インスタンス
を追跡できないという問題がある．そこで IG-ODAM で
は，入力画像 I における物体 p の BBox 座標と予測クラ
ススコアから構成される検出結果Dt を基準とし，m番目
の補間画像Xm = Iαm から得られる検出結果集合 ϕ(Xm)
内の各検出Dj,m との間で，位置類似度 sloc およびクラス
スコア類似度 scls を用いた類似度を定義する．

Sim(Dt, Dj,m) = sloc(Dt, Dj,m) · scls(Dt, Dj,m) (1)

各補間画像においては，Sim(Dt, Dj,m)が最大となる検出
結果を対応インスタンス d̂m として選択する．この対応付
けにより，補間経路全体にわたって同一インスタンスを一
貫して追跡しながら，寄与度推定を行うことが可能となる．
特徴マップ Ak に対するチャネル重み w

(p)
k は，補間経

路上の勾配を積分することで式 (2)のように定義される．

w
(p)
k =

∫ 1

0

∂s(p)(Iα)

∂Ak
dα (2)

実装上は，補間経路を一様に分割し，有限個の補間点に基
づく数値積分によって近似することで，インスタンス固有
のヒートマップを生成する．
3. 2. Spatial-Guided Adaptive Sampling

Integrated Gradientsにおける一様サンプリングに起因
する課題に対して，補間経路上のサンプリング点を動的に
再配置する Spatial-Guided Adaptive Samplingを導入し
た Adaptive IG-ODAMを提案する．本手法は，物体検出
モデルの出力が急激に変化する補間区間に重点的にサンプ
ルを配置することで，積分近似誤差および勾配ノイズの低
減を目的とする．図 3に提案手法のモデル図を示す．
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図 3: Adaptive IG-ODAMのモデル構造
Adaptive IG-ODAMでは，補間経路上の連続するサン

プリング点 αm と αm+1 の間における重要度を評価し，重
要度の高い区間を逐次的に細分化する．重要度評価には，
勾配の変動量と予測 BBoxの空間変動の両方を用いる．
まず，勾配変動 gm を式 (3)により定義する．

gm = ∥G(αm+1)−G(αm)∥1 (3)

ここで，G(αm) は補間画像 αm における対象物体の検出
スコアに対する特徴マップの勾配を表す．次に，連続する
補間画像間における予測 BBoxの空間変動 sm を，IoUに
基づいて式 (4) のように定義する．ここで，B(αm) は補
間画像 αm に対する予測 BBoxを表す．

sm = 1− IoU
(
B(αm), B(αm+1)

)
(4)

これらを重み係数 λを用いて統合し，各補間区間の優先度
スコア Rm を式 (5)により算出する．

Rm = λgm + (1− λ)sm (5)
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図 2: DETRによる物体検出結果に対する判断根拠の可視化結果
優先度スコアの高い区間を逐次的に細分化することで，重
要な補間区間にサンプルを集中的に割り当てる．Spatial-
Guided Adaptive Sampling により得られた非一様な M
個の補間点に基づき，物体 p に対するチャネル k の重み
w

(p)
k を台形則に基づき式 (6)のように近似する．ここで，

Gk(αm) は補間画像 αm におけるチャネル k に対応する
勾配を表す．

w
(p)
k ≈

M−1∑
m=1

1

2
[Gk(αm) +Gk(αm+1)] (αm+1 − αm) (6)

最後に，得られたチャネル重みを用いて，インスタンス固
有のヒートマップ H(p) を生成する．ここで，Ak はチャ
ネル k の特徴マップを表す．

H(p) = ReLU

(∑
k

w
(p)
k ◦Ak

)
(7)

4. 評価実験
提案手法の忠実性と空間識別能力を評価するため，比較

実験を行う．判断根拠の忠実性はDeletion / Insertionテス
トのAUCにより評価し，空間識別能力はVisual Explana-
tion Accuracy（VEA）と Energy-based Pointing Game
（EBPG）を用いて測定する．
物体検出モデルには Backbone に ResNet-50 を用いた

DETR を使用し，MS COCO データセット上で Grad-
CAM，Grad-CAM++，D-RISE，ODAMと比較する．な
お，本実験では，勾配変動と空間変動の寄与を等しく考慮
するため，重み係数 λを 0.5に設定する．
4. 1. Deletion, Insertion

Deletion / Insertion テストは，可視化手法がモデル予
測に重要な領域をどの程度正確に特定できるか，忠実度を
評価する指標である．Deletionでは，ヒートマップに基づ
き画素を重要度順にランダム値で置換し，予測スコアの低
下を測定する．Insertion では，ベースライン画像に重要
画素を順次追加し，予測スコアの上昇を測定する．本実験
では，両テストを 100ステップで実施し，信頼度推移から
AUCを算出する．
実験結果を表 1に示す．IG-ODAMは，従来の物体検出

向け可視化手法であるODAMと比較して，Deletion スコ
アを 55.25から 51.48に低減し，Insertionスコアを 15.37
から 18.14 に向上させることで，忠実度の向上を示した．
さらに，Adaptive IG-ODAMは，Deletion スコア 46.48，
Insertion スコア 25.88 と最良の性能を示した．これは，
Spatial-Guided Adaptive Sampling により経路積分に使
用する補間画像が最適化され，積分近似誤差が低減された
ためと考えられる．
4. 2. VEA, EBPG

VEAは物体形状との一貫性を，EBPGは物体領域への
局在精度をそれぞれ評価する指標である．実験結果を表 2
に示す．Adaptive IG-ODAMは，IG-ODAMと比較して，
VEAを +0.0528 ポイント，EBPGを +0.1133 ポイント
向上させ，空間的一貫性および局在精度の双方で性能向上
を示した．これは，Spatial-Guided Adaptive Samplingに
より，補間経路上でモデル出力が大きく変化する区間に重
点的なサンプリングが行われたためである．

表 1: 各手法の Deletion/Insertion評価結果
Method Deletion↓ Insertion↑
Grad-CAM 72.82 11.23
Grad-CAM++ 72.60 11.04
D-RISE 57.57 13.23
ODAM 55.25 15.37
IG-ODAM 51.48 18.14
Adaptive IG-ODAM 46.48 25.88

表 2: VEAと EBPGの評価結果
Method VEA ↑ EBPG ↑
Adaptive IG-ODAM 0.1492 0.3934
IG-ODAM 0.0964 0.2801

4. 3. 定性的評価
図 2に，各手法による可視化結果を示す．IG-ODAMは，

従来手法と比較してノイズが低減され，物体境界をより正確
に捉えている．一方，Grad-CAMおよび Grad-CAM++
では背景や他物体への注目が生じやすく，ODAMではマ
ルチインスタンス環境において注目領域の分散が見られる．
さらに，Adaptive IG-ODAMはインスタンス固有の注目
領域を明確に分離することで，従来手法で見られた注目の
分散を最も効果的に抑制していることがわかる．
5. おわりに
本研究では，物体検出における説明可能性の向上を目的

として，IG-ODAM および Adaptive IG-ODAM を提案
した．IG-ODAMは，Integrated GradientsをODAMに
統合し，補間経路全体の勾配情報とインスタンスマッチン
グにより，マルチインスタンス環境におけるインスタンス
単位の判断根拠可視化を実現した．さらに Adaptive IG-
ODAMでは，勾配変動と予測 BBoxの空間変動に基づく
Spatial-Guided Adaptive Samplingを導入することで，積
分近似誤差およびノイズの削減を達成した．評価実験の結
果，忠実度および空間識別能力の両面で既存手法を上回る
性能を確認した．
今後は，得られたヒートマップを知識蒸留における教師

信号として活用する手法を検討する．
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プロトタイプ法における人の知見の組み込みによる精度向上に関する研究
TP24003 落合祐馬 指導教授：山下隆義

1.概要
プロトタイプ学習は，認識に有効な画像中の局所領域を

プロトタイプとして選択し，特徴ベクトルを学習する手法
である．推論時は入力画像とプロトタイプとの認識クラス
を特定するとともに認識の判断根拠となる局所領域を同時
に得ることができる．しかし，データ駆動で獲得したプロ
トタイプは，背景やロゴマークなどの不適切な領域に注目
してしまう問題がある．この問題は医療や自動運転など判
断根拠が重要な分野では深刻である．
本研究では，モデルの信頼性向上を目的として，人の知
見を認識モデルに組み込む Human-in-the-Loop（HITL）
のアプローチを取り入れた手法を提案する．具体的には，
ProtoPFormer[1] をベースに，人間の注目領域や対象物
体の欠損箇所を人の知見として学習時に損失関数として
Human Knowledge Loss（HKLoss）を導入する．これに
より，適切なプロトタイプの選択を誘導し，不適切な領域
への注目を抑制する．
2.ProtoPFormer

ProtoPFormer は，Vision Transformer (ViT) をベー
スにしたプロトタイプ学習を行うモデルである．画像全体
に注目するGlobal Branchと，局所領域に注目する Local
Branchから構成される．推論時は Local BranchではViT
の注目領域をもとに FP Maskを作成し，前景にある対象
物のイメージトークンのみを抽出する．その後，Global
Branchではクラストークンとプロトタイプ Local Branch
では抽出されたイメージトークン とプロトタイプとの類
似度を計算する．次にプロトタイプごとに出力された最
大の類似度を全結合層に入力し，各 Branchごとにクラス
確率を出力する．最後にそれぞれのクラス確率の平均をモ
デルが出力するクラス確率とする．これらの推論時の処理
に加えて，学習時にはモデル全体を学習するための Cross
Entropy Lossと，Local Branch内のプロトタイプを学習
するために式 (1)と式 (2) の損失関数を用いて学習する．

Lµ
PPC =

1

(mc
l )

2

∑
i ̸=j

max
(
tµ −

∥∥µ̂c
i − µ̂c

j

∥∥2 , 0) (1)

Lσ
PPC = tr

(
max

(
0,
∑

−tσ
))

(2)

Lµ
PPC は同じクラスのプロトタイプが類似しているほど大
きな損失を与える．ここで，mc

l は各クラスで使用するプ
ロトタイプの数であり，µはプロトタイプである．tµ は閾
値である．Lσ

PPC はプロトタイプが注目する領域を小さく
する損失である．∑ はプロトタイプの共分散行列の対角
成分の平均であり，tσ は閾値である．
これにより，従来の CNNをベースとした手法と比較し

て高い認識精度を持つ一方で，背景やロゴマークなどへ過
剰に注目してしまう問題が指摘されている．
3.提案手法
本研究では，ProtoPFormer の局所領域に注目をする

Local Branch 内のプロトタイプに対し，人の知見を損失
として導入する．損失を導入する概要図を図 1に示す．
3.1.プロトタイプの選択的誘導
全てのプロトタイプを一律に「人の知見」に近づけると，

全てのプロトタイプが同じ領域に注目し，多様性がなくな
る．これを防ぐため，本手法では画像ごとに，人の知見に
最も近い注目領域を持つプロトタイプの組み合わせを動的
に探索する．探索の方法として，入力画像のラベルに基づ
き，対応するクラスに属するプロトタイプを対象とし，対
象となるプロトタイプから得られる全ての組み合わせから
人の知見との類似度が最大となった組み合わせに含まれる
プロトタイプに対してのみ損失を適用する．これにより，
多様性を維持しつつ，モデルの出力を人の知見へと整合さ
せる．
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3.2.Human Knowledge Loss (HKLoss)

HKLoss を式（3）に示す．選択されたプロトタイプの
注目領域 ypred と，人の知見 ytrue との間の二乗誤差を損
失関数とする．

LHK =

(
1

m

m∑
i=1

yi
pred − ytrue

)2

(3)

ここで m は選択されたプロトタイプの数である．この損
失により，プロトタイプの活性化領域が，人間が重要と考
える領域（鳥の頭部，車のライト，製品の欠陥部など）に
収束する．
3.3.擬似的な人の知見の生成
人の知見データが存在しないデータセットに対して，人

の知見を用いたい場合は，図 2に示す二段階の手順を用い
て，擬似的な人の知見を生成する ．第一段階として，LLM
である Geminiに対し，データセット内のクラス名を入力
として与え，そのクラスの特徴を 3～5個のテキストとし
て出力する．第二段階では，出力されたテキストと画像と
の対応付けを行うために CLIPを用い，テキスト記述に対
応する画像内の注目領域を特定する．これらの手順によっ
て得られた注目領域を「擬似的な人の知見」として学習に
導入する．
4.データセット
本研究では CUB-200-2011，MVTec，Stanford-Cars，

Stanford-Dogsの 4つのデータセットを用いた．また，人
の知見として，CUB-GHA，欠陥部分のセグメンテーショ
ンマスクを利用，人の知見がないデータセットにおいては擬
似的な人の知見の生成手法を用いて，人の知見を導入した．
5.評価実験
提案手法の適用による認識精度の変化，および可視化結

果に基づく定性的な評価を行った．
5.1.定量的評価
各データセットにおける精度比較結果を表 1に示す．CUB

およびMVTecにおいて，8ポイント以上の大幅な精度向上
を確認した．これは，識別において重要な「局所的な特徴」
への誘導が成功したことを示している．また，Stanford-
Carsにおいては，既存手法と比較して 12ポイント以上の
大幅な精度向上を確認した．対して，Stanford-Dogsにお
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図 3 : MVTecにおける注目領域の比較

いては，既存手法と比較して 0.18 ポイントの僅かな精度
向上が見られた．

表 1 : 従来手法と人の知見を加えた際の精度比較 [%]

データセット 既存手法 提案手法 追加実験

CUB-200 81.19 89.78 81.52

MVTec 89.28 97.42 95.83

Stanford Cars 87.94 99.89 99.86

Stanford Dogs 80.71 80.89 78.48

5.2.定性的評価と可視化
CUB-200，MVTec，Stanford-Cars，Stanford-Dogsに

おける注目領域の比較結果を図??，3，4，5に示す．実験
に使用したモデルのプロトタイプは各クラス 10個である
ため，1 つの入力画像に対して 10 個の可視化結果を生成
した．図??では，提案手法の注目領域が既存手法と比べ局
所的になり，人の知見に近づいたことが確認できた．図 3
では，物体全体に注目する既存手法に比べ，提案手法は局
所的な注目をした．図 4では，既存手法の注目領域に多様
性がなく，提案手法では様々なパーツに注目した．図 5で
は，提案手法と既存手法で差異が見られなかった．
6.考察
実験結果から，データセットによって提案手法の効果

が異なることがわかった．CUB-200，MVTec，Stanford-
Carsにおいては，注目領域が局所的になり，さらに多様性
を持ったことで，提案手法が精度向上をもたらした．一方
で，Stanford-Dogsにおいては，大きな精度向上は見られ
なかった．これは提案手法と既存手法の注目領域に差異が
見られなかったため，生成された擬似的な人の知見が局所
的な領域に集中せず，全体に注目したことで，提案した損
失が機能しなかったためと考えられる．
7.結論
本研究では，LLMと CLIP を活用した低コストな擬似

的な人の知見の生成手法と人の知見を損失として導入する
HKLossを ProtoPFormer に導入する手法を提案した．実
験により，提案手法が車種識別等において強力な正則化と
して機能し，大幅な精度向上をもたらすことを確認した．
今後の展望として，Stanford-Dogsをはじめとした様々な
データセットに対応するため，LLMと CLIPを用いた擬
似的な人の知見の生成手法の精度向上が考えられる．
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図 4 : Stanford-Carsにおける注目領域の比較
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図 5 : Stanford-Dogsにおける注目領域の比較
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