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HOZE D b ZEOUCRAEL, IEL =7 — X 2T
ZE TORVERTHCEE T3 2 e AREETH .

Z ZCAMETIE, a4 VEMEERFER LY 7 —
R OB L > THROHEEEZIHEIL, ~vF7my 75
TRIERICK > THCHIID h 2B OIERE 2 WET 5 H
CHEfid D 4> 74 VT ETFELIRE T 5. FERck
D, MEFEMERFERL MR L THEBELHRET S Z
ERNT.
2.BCHETHD A > 51 BGFES

HOBMD D A > 5 A4 kiR (Self-Supervised On-

line Continual Learning: SSOCL) i, BZRASIEN 2 7
RADBRNWT =X TH 57T —XA MY —4% TR
WKH¥BET27 70 —FTH5. F—RA MY —u1F, HE
T3 57— ZENSHRWAHBE Z o L i, R ofGEIC N
T=RDAPENT 2IEEHEEE VD 2 00K ELD 5.
ZDXSREMERREOF— X A Y — ATHE T % SSOCL
I3 2 DDMEND 5.
LI NTA—2BHEOQEOHEE. X112t FHD
AR —arye t+1HAHDAZRL— a BT 58
5 X — REHFIGEDOHELD a4 4 VHELEEZRT. RO
EEET X, VY ILVBICHEBER T — 2 TR R
522 RELTEY, AEOELEIX 0 1EWEE 22
. =T, Y IVEICHEDOD 37— X THEEETS
Y, AEOMEBIED 1.0 1IEWEICK 2. AEOFELE D
Ve, ETNLDNRT R =REREDT — X MISAREIC
BWET 2 HANEFT 2720, NLHEENKTRT 5.
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FHEBCEID D FEOPREEZ RS, K24, B
CHllD DB, HAMd D8 & s 2 & FEICEA
BWIerbrd., Ziud, 7—xofmHkH & HicZm
T B EMFUCENT, ACHETD D FEHOFENTRET
AR ZRL TN S.
3.IREFE

AW TIE, SSOCL I2EBIT 3 2 DDHEICMLT 5F
FeRRT 5. RRTRI, WO 270 a4
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X 2: i D5 e O D D 58 QIR

DEEROE XZNTHULF % 72 Multi-Crop Contrastive
Loss (MCC Loss) ZE AT 5.

3.1.287O0tX

RETFEOEE 0L 22K 318 T. B3 ITRTES
2, IBEFHEE, T—XA MY —sTHESREY YT
REEFA XDy 7 2 1ZBMT 5. 20Kk, Ny 7770
B VRLIY YTV I LT —RT K HADI =Ny
FEERL, FEHHTS. o, BCHMDH %
T OINKDE XIS 2 7=, #8BIEIC MCC Loss
AT 5. PERD Contrastive Loss 1%, 1 KOHEIRIZE
3 2EO T —XIREIMZATEZ 2 207 ay S
ML, ZROHORMEL 1 X 1 TiEoW, BR2H{E»S
Brroy X, @XT3XEFERTS. ZHAIHRL
T, IRRTFHETEA TS MCC Loss 1, 3 FoRR
57— XEREEA L, BohBrny 7ORMEE %
NS DEHMEA L FRIGEDT 5. 7 ay RN
EHZIET, LEIDRIA—XFEHICBVWTEIHZLD
TBEMENRINCEE TE 270, HOHED D 2EE OILH
DEXEZWET LI LNARETH 3.

K DI =Ny FTERE, Ny 77NV > TIVED
—EREHBZTWAEHE, a4 VEMUERESW TS
BRIV TINDARENY 7 7 IR FFL, IR Y T A%ZH]
FR3 5. Zhuckd, IBETFEEZ, 7—F AU —L45FD
MDD B TURZ T — X TOEE2HIEL, AEOMHEIC
FLE 2. FZDH, F—XAMY)—ATEHHLEY Y
W LTI 2 DIRS. URTIX, MCC Loss &
aY A VAL X 35— ZBRIRICOW TR HA T 5.

YA VEHEEAV SR T — 2 ORE *NFIA £ BY

X 3: fERFIEOME

3.2.Multi-Crop Contrastive Loss

HOHNH b R ONEGHRE N, 70y 7RO & -
TEMLATRETH 2 Z e HISG LTV S [3]. IBETFIRE,
WERD 2 7vy TOAEMNRYE L7 Contrastive Loss %
3 7uy FLLRIZHER U 72 Multi-Crop Contrastive Loss
(MCC Loss) ZEA$%. MCC Loss 23 (1) 127”9

Lyvce = L XN: Xb: <— log — eXI;(Zj . z{/f) )
Nb i=1 j=1 Dokt 21 €XP(Z - zgc/T)
(1)

ZIT, N3zuy 78, b3 Ny FHA4 X, 2 13%F
TILOREE, 1 XREATX—& 27 3y xi O




# 10 FERETHRED NN 2P MEREE (%]

CIFARI10 CIFAR100 ImageNet100
Seq Seq-bl Seq-im| Seq Seqg-bl Seq-im| Seq Seg-bl Seq-im
MinRed[Q] 50.04 51.18 46.41 |22.38 23.20 21.26 | 22.87 22.71 20.46
SCALE[1] |41.41 40.85 41.31 |17.49 16.93 17.03 |15.46 15.41 15.77
EMP-SSL[3]| 57.02 57.32 57.31 |27.81 28.40 27.90 |22.79 22.01 22.99
Ours 59.71 59.96 58.67 [30.41 30.32 30.00 [25.81 25.64 25.24
30.0 25.0
g=o S
ézo.o _gzo.o
»
b =S| o o

learning progress [%]

(a) Seq-CIFAR10

learning progress [%]

(b) Seq-CIFAR100

learning progress [%]

(c) Seq-ImageNet100

4: ZEERIRIC BT 5 kNN JHEE (%)

TERMEERL, 29 1358 (2) TR 5.

Zj:iiz]:.
Ni:l '

MCC Loss i%, 1 OEBICH LT N BEORR 37—
SRR EMZ, &Y TVOFIGRE 27 25tHT 5. %
LT, &7 —XORME 20 7O FRHME 27 ([CFARC
BEDT B, £, BRA27F—20OVHRKM Z7 hoiT—
ROFEE 2! RT3 X528 T 5.

3.3. 91 VELEICL ZZ2HFEET —2DER
a4 VENEEZRWET - ZEROEMNE, T—& 2
Y — 2D 2T — R BB CEHICAHAT2 2
THhad. a4 VELUEOFHEIE, Ny 77N> Tl x;
L RIRFICIRTE L 2 REN R E 2 RV TEHET 3.
REFEOF—2#Z, X 3) TERNMLTE 3.

(2)

x; = argxrineljle/1 ernElR/I Sim (z;, z;) (3)
zZ; < az;i +(1—a)z; (4)

ZZT, MENY 77, xF @3Ny 77 IR ET 357 —4,
Zy PR 2, OIEBRBEITETH Y, x; b 2 Ay
T 7 ARFET B, VLA Ny 7 > ATHELERENT —
ZEHIERL, BOEMEL 27— X 2BELTY L
ANy 7 2 IR T 3.
4. FHmEER

F—RZA MY =L THE L EEFED Y 5 AFITBT
2 S HERE I & iS5 .
4.1. REREM

FHiffiiz i CIFAR10/100, TmageNet100 ® 3 DD 7 —&
Ty FPERWT, TR AN —2OEEERITS. KT —XK
v MEIERIFTE [1] 121> T, Seq, Seq-bl, Seq-im 7—
RANY—LBWHERT S, Seqld, 7IRATLDTF—&H
ER—L, TXOHER—EDRA I v TET R
MiTFT —RA M) —LTH3. T/, FHEFENZT—X
Z MY — A TEMAi 21T 5 728, Seq-bl 137 — & i D2k
BREBERIC L, Seq-im 32 7 A BD T — R EUe N1
12§ 5. ZHICED, Seq-bl IFFHEMFTHRAET ZIRED
Bo2RZE(E, Seq-im 127 5 ABOHBSHEEDRY &
WO BENLRAE e HRT 5.
4.2. RERER

BFEOFERTIROSEBE LR 11T, R1 LD,
REFHRE, CIFARIO THAK 19.11pt, CIFAR100 TH

& 13.39pt, ImageNet100 THA 10.35pt DFEEE M L%
FATE 5. ¥7, MinRed [2] 1Z, Seq-im TOREEK T

WTEZ. ZhUE, 7 7R BOHBHEERZ NG —I2T 5
2 e T, BERED WY F R0 UTHEECR L 7%
WolzlzdirrEZ 65, —T, IREFHEE, Seq-im
DR MDF—Z 2 MV — A FERETHD, ZhiFk
DBERNRT—RZA M) —LIZBWTHEEDARETH 5
ZrZmLTWVW3,

KT, FEEERCBT 2 0 ERBE O ZITS. &FiE
DHEBFBIAITHB T 2 R EOHR 2K 4 177, M4 X
D, REFED kNN JHREEE, FEES? 20% O
RITBWT, Seq-CIFAR10 THJ 56.0%, Seq-CIFAR100
THY 28.0%, Seq-ImageNet100 TH 23.0% TH 5. i
X, FROFERTRETOME  ASE» 2 LTS
5. U, EEFHED Multi-Crop Contrastive Loss 12
FoTHFRIREEFRL Lz Z 2 WGERT 2 EZ 5N 5.
5.50DIC

AR TIX, BEBETID D A > 54 kBB 5
LELOHBANC & 2 MERES L & EENOR DE X 1L T 5
EERRE L. BEFERE, adA VEMECLSE T4
BIRIC X 5T, Ny 77 NCEHR T — X B LEEIC
W Z e THAROMEBNIHLL, MCC Loss #E AT 3%
CrTCHCHED D EEDICRDES L L 7. B
RIb, BHOF—Zty MTBOTIREFIRIL, EEF
EEDDECDEREELENT 5 2 e 2R L. S5,
ImageNet21K 72 ¥ & D KEL 7 — XL v b2 @A LT,
IO EMHFUSENT XA MY —LEHEL, TOEME
RIS 2 FETD .

BEVH

[1] Yu et al, “SCALE: Online Self-Supervised Life-
long Learning Without Prior Knowledge”, CVPRW,
2023.

[2] Purushwalkam et al., “The challenges of continuous
self-supervised learning”, ECCV, 2022.

[3] Tong et al., “Emp-ssl: Towards self-supervised
learning in one training epoch”, arXiv, 2023.

TS

[1] Imai et al., “Faster convergence and Uncorre-
lated gradients in Self-Supervised Online Continual
Learning”, ACCV, 2024. (fth 3 {f)
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1. FL&IC

HEREERCEREGTIC BV T, WEEEIC X 2Tk
MHE T ML, BOHREZ T TR, SWEEENER X
na. LhrL, EFEETME, ZoHWRLSTZ v
IRy I RATHE. ZOXSBRERDPL, MKREET
A OB & A\ RN FRARRTRE 72 Con§ AT RE R AL
(XAD 2BEFEHEATWS. EBHICR L L Fike L
T ODAM[1] BMREREIN TS, ODAM F4EHRICH
DWTHHLZAT S 728, ANBEBIIN T 2 AFLHEKR R
Fii7a AL, A XOHEZZITRTVE WIS REND 5.

Z ZCARMSETIE, ODAM 23E X 2 AEMRIFIC X 3 5F
BT 279, ANBEBICET 2 HRE R nR—
AT A VEGD» O ANEIRICES EFTOBEREEZZERTE S
HEEHEIETH % Integrated Gradients[2] ZEAT 3. &
512 Integrated Gradients (2 331F 2 fli I EI{5 D A4 B 7 15
WHERET 2EMELEAEB LA A XOMEICER T
5. IS ERRT 2720, AL & Z2HNZEcED
WTH Y Y v B R BN HIE S 2 R A L7
Adaptive IG-ODAM %% 3 5.

2. Integrated Gradients

XALIZBWT, A LR AT & FHIO B R % &Y
WKL TWB Z ek ons. BEOARN—ATE
X, AEHRIC XY BEERRMERZ SRRV WS KE
DRMHPFETH 5. ZOFEIINL, R—RAT7L4V»b
AN EZ TOEBERIIH > THEEZHES L, SRMEoHF
5E %85 % Integrated Gradients 2R XN TV 3.
R Z 27T, R—RA54 ¥ LTLEENY DR
BHVWLENS Z e HEL, BRSO NRIEREH WS Z
¢ T, H—0 ANHEROAEIRIT L iR 5 5
EHNFREL 125,

—HT, REEITREES 2 AREORB NI X DL
T2, K1IRT X1, MR E Ry 7Y
¥ URSGEIIE, AR T 3 KBS+ f
MAEDPEI DY ToHNT, BOLLEREREEL, 4 AET
RFTVEWSHEID L. KT, WEETMIBVWTAR
DI IS T 2854, Z OELEEEIF AR DR
EHICEEE RIE T ReED D 5.

%72, Integrated Gradients (T E— DTl H1 % %
R LEREZHEELTEBY, MEBRED X5 12EBDA
VAR Y AR ERFARIC S <L F A v AR ABREIAN
DOEZNZBERIICIE, KR LTHENNFRIATWS.

8
P
-
o j
&

a=0.01 a=0.2 a=0.4 a=0.6 a=0.8 a=1.0
Logit vs Alpha

E2LOE PR

0.0 02 0.4 0.6 08 1.0

Alpha

1: Integrated Gradients 1 & % 2 5HEE & iR
% _ECoABLEaF O f)
3. IREFL: Adaptive IG-ODAM

AWFFETIX, Integrated Gradients % ¥4 H D HIHHR
HATH{LFETH % ODAM ICEA L7z IG-ODAM %42
RT3, 35, —FRY V7Y U ACERT 25T ER
FERBEE ) A X BAERRT 2720, w0 EZEXEI
¥ 7Y T EEHEIGINCELE S 5 Adaptive IG-ODAM
PIRET 5.

3.1. ODAM A® Integrated Gradients DEA

IG-ODAM &, ANHERE X=X F 4 ¥ E{§Z RS
BE2EROAREREH VWS 2T, B—0mEBICBIT3
AEIHAF T 2IERTFIRICH S0 2 /TR D 0%

fhHI&E BRI LT ER

KT 5. 512, MERBRHBREEDOYLTF A VARV RB
BABHT 272912, IoU ICESMBRNELEYL 75X
2a7 DELEERE LA VAR ARy F U T REA
T5. Zhuc kb, iR B TR—A4 Y AZ R
P—EHLTEBHLADOFSEHET 3.

Wik p ot d 2 T2 522 a7 s (1) 2 EHSEHE
DOXRE L, N—=RAF74 VEG T 5 ATTEG T ~NOFl
MRS I =T’ +a(I - 1) (o €0,1]) IZIh-> TREER D
2175, VIR TIX, FIEEGS 2 I EEROEIE
2T 2728, Bt TigRl—4 Y 2AX 2
BB TERVWE WS HENH B, £ ZTIG-ODAM T
&, AJEBR 2B 391K p © BBox B T2 Z
ARAT ORI NDMEFER D, 2&%Er L, m &H
OFEEGR X = La,, 225585 N HHAERES 6(Xn)
NOERH D, & ORT, MEEMUE sic BXUE7 72X
A aA7HVE sas TRHOWZEUEZERT 5.

Sim(Dz, Dj,m) - Sloc(Dt7 Dj,m) : SCIS(Dt7 Dj,m) (1)

BHMERICB VT, Sim(Dy, Dj,m) 23ERAK L 72 5 8HH
WEREMIEA VAR YA dy, 8 LTGEIRT 2. ZORIGA
Fick b, fERBERIChblzoTR—4 Y A& 2% —
BLTGEILRDS, FEEHMERITS 2L BAHEL 2 5.

R~ v 7 A 1S 3 F v 3L ER w1, HEEE
B EOAEEEDT TS TR (2) DX IERINS.

1 9.(p)
® _ [ 05" (la)
wy, 7‘/0 oA, do (2)

FEE IE, MR R —RRICaEIL, AR R
DLBMEBENICE > TGEBT 2 22T, 4 YRRV REH
De— bt~y TEERT 3.
3. 2. Spatial-Guided Adaptive Sampling
Integrated Gradients {281} 2 —4 > 7"V ¥ ZIER
T HHEICN LT, MR Loy 7Y v RN
HECE T % Spatial-Guided Adaptive Sampling & A L
7z Adaptive IG-ODAM Z8R$ 5. KFEIL, WiEHH
EFAOHIHBBICENT 2 MEXEICER Y~ T
NEEES 58T, HmELRRES SUAI . 4 XD
BzHNE T 5. SIREFHEOET NV ERT.

Instance
matching

output

3: Adaptive IG-ODAM D& 7 /L4185
Adaptive IG-ODAM T, Fif#ER L omEis 23>
TV TR am & amyr OENCBII 2EEEZFHMEL, =H
HEOEBWIXEZ BRI 5. BEEEFMICIE,
HABELOEEE ¥ T BBox DZEMZAE DS %AWV 5.
%3, AEHE g, X 3) ICXDERT .

gm = |G(am+1) — Glam)l; 3)
ZZT, Glam) EHEEBR an, 1B 3 RYEO M
AATIHT IR~y TORAERT. i, #igT b
R EREIC BT % Tl BBox OZEMZER) s,, %, IoU IZ
HEONTHK (4) DESWCEHTS. ZTIZT, Blan) 3l
MR a., XS 3Tl BBox 2R 7.
$m =1 —10U(B(am), B(am+1)) (4)
INLEEAMPEN EHOTHAL, SHEXEOBELE
A7 Ry R (5) WKW EHT 3.
R =Agm + (1 — N)sm (5)



Detected object

Adaptive IG-ODAM

IG-ODAM

X 2: DETR (T & 2 PR ARG SRS 2 FIMR ML o ATAR LS R

BREER a7 O WXEE BRIt sz T, &
EMEXECY TR ERRICEID 2T 5. Spatial-
Guided Adaptive Sampling 12 & D 1§ & 7zFE—kkix M
HoMERICHEIE, WK p IcfT2F ¥ 2L k DEHA
w? ZHBENCESER (6) D L SISEMTZ. 22T,
Gr(om) FHMEIR o BT 2F v 3L kIS %
At RT.

M-1

1
w,(f) ~ Z 5
m=1
BRI, FonieF vy A VEAEHWT, 4 Y AX 2 R[EH
Hob—tr~xy 7 HP 2HE®KT 2. 22T, A, 3F~
IV k ORI~y TERT.
) (7)

H® = RBLU'<§:1U
4. FHEEER

PRRFIEO BN © 22 23l 3 2 72, Hig
FEEERITS . HINHRILO E5EEIX Deletion / Insertion 7 &
PO AUCIZ L DFHMi L, ZE[ERAIBESIIE Visual Explana-
tion Accuracy (VEA) ¥ Energy-based Pointing Game
(EBPG) ZRWTHIET 5.

YiiER £ 7 1 121d Backbone 12 ResNet-50 & 7=
DETR %=L, MS COCO F—%+v b _ET Grad-
CAM, Grad-CAM++, D-RISE, ODAM ¥ [b#s$ 3. 7

AERTIE, WEET: EREHOFELE L EE
?5t® HARBN % 05 ITRET 5.

4.1. Deletion, Insertion

Deletion / Insertion 7R M, FI#ULFEIET LT
HICEERENE COREIERHICRIETE 50, BHEEL
M3 2615 TH 5. Deletion TiE, b— b~y FHD
SEALEBEEIACS VX AMETEBRL, FHIR27 DK
TZMPET 5. Insertion TlX, N—RX 7 A VEHIRICER
HEZIEZGEML, THRa70 ERAE2HET 2. RE
T, W7 R M2 100 2Ty STEML, EEEHBE? S
AUC 2HHT 3.

FERERER 11”7, IG-ODAM &, fekoyiamst
M AMEETFETH 5 ODAM & H# LT, Deletion 22
7% 55.25 705 51.48 IZIKJK L, Insertion X 27 % 15.37
M5 1814 KM EXE 2 Z T, BEEDMEEZRL .
E 51T, Adaptive IG-ODAM &, Deletion 227 46.48,
Insertion 227 25.88 EwmEOMHRELZ R L7z, T4,
Spatial-Guided Adaptive Sampling 12 & D ¥ 12 H
3 2 WiEfg Rk X h, BT MEREMRRE iz
THeEZIHND.

4.2. VEA, EBPG

VEA EMiEEike o—EBM %z, EBPG I3WETHEEBAD
RTERELZ TN NG T 2468 TH 5. FEEMHRER 2
127”9, Adaptive IG-ODAM &, IG-ODAM & LEE: LT,
VEA % 40.0528 K4 > b, EBPG % +0.1133 KA > b
m X, ZEREN—ENS X ORERE O TEbEm -
ZRUL7z. 24U, Spatial-Guided Adaptive Sampling IZ
X0, R ETETOVHINRE (LT 2 XHEICE
RWRY TV v I fTbiizizdTH 5.

[Gr(am) + Gr(am+1)] (@m+1 — am) (6)

7 1: FFED Deletion/Insertion FHifE R
Method

‘ Deletion| Insertion?

Grad-CAM 72.82 11.23
Grad-CAM++ 72.60 11.04
D-RISE 57.57 13.23
ODAM 55.25 15.37
I1G-ODAM 51.48 18.14
Adaptive IG-ODAM 46.48 25.88

% 2: VEA ¥ EBPGC OFHfiifE R

Method | VEAt EBPG 1
Adaptive IG-ODAM | 0.1492  0.3934
IG-ODAM 0.0964  0.2801

4. 3. TEMRIFT

X 212, EFEC X 2R EZ RS, IG-ODAM I3,
PERFIE L B LT/ A XoMRiRE h, YiksEsi%e X Ehk
WA TWS. —7, Grad-CAM B XU Grad-CAM++
TIHERPMIEADTEHIEL ST {, ODAM TR~
NFA YRR Y ABRICBWTIEHERO S E R oh .
X512, Adaptive IG-ODAM &4 > 2 &R > Z[EHDEH
IR IAMICOBES 2 2 2T, IERFIETHRONZEFEHD
TR B D BIR A T L'CL‘ 52 bhr b
5. 8HDIC

AT, YIRS B T 2 3tHRTREE oM B2 BIW
¥ LT, IG-ODAM ¥ & U Adaptive IG-ODAM %#12%
L7:. IG-ODAM i, Integrated Gradients Z ODAM IZ
MaL, MEERSEONRERE A VARV ATy F ¥
TED, IAVFA VAR ABIBEICBIT B VAR VR
B O HIWARIL AT L2 SEBL L 7. X 512 Adaptive IG-
ODAM Tl&, ARCZLE & FHl BBox DZEMAEICHED <
Spatial-Guided Adaptive Sampling ZEA 325 Z T, &
IELEREB KU 4 XOBIEZER L. FHliSEER O
R, BEES X O2MEERE ) oM cBHEFER LE 2
MERE Z HERR L 7.

S, ol — by TRHGRIRE BT 5 A
BB LTERAT 2 FEEMET 5.
SENHER
[1] Chenyang ZHAO, Antoni B. Chan, “ODAM:

Gradient-based Instance-Specific Visual Explana-
tions for Object Detection”, ICLR. 2023.

[2] Sundararajan, et al., “Axiomatic Attribution for
Deep Networks.” arXiv. 2017.

TS

[1] Nakai, et al, “IG-ODAM: Instance-Aware Visual
Explanations for Object Detection with Integrated
Gradients,” MVA. 2025.

(fth 3 )



7O TEICEITBAORRDEHAHICE BKEE R EICEET 3K

TP24003 X &5

1. 1818

7t x4 FERZ, REICEW G O EETEEE
Tubh&A4 T UGERL, RS P2 EE T 2FE
TH53. HamRHIIANEZRE 7a b &4 T D87 7 2
PRIES % & & HICERER O HIBMRIL & 72 2 R PR EIE & AR
/B2 TES. UL, 7—XWEHTESRLE
A TE, HRPuI Y — 7RO EYRMERICEFER
LTLESHEDND 2. Z OREIXERS HBRER 2
WIARIL S B ST ClIBRAITH 5.
AHETIE, ETLOEEERLEZHENE LT, ADH
R% 28 7 I A3A T Human-in-the-Loop (HITL)
D7 Tu—FWH ANLFELRET 3. BERRIE,
ProtoPFormer[1] Z~X— 212, AROEHMBEBPNSRY)
O RIBEFZ ANOHIR  UTHEERICHEELBEKE LT
Human Knowledge Loss (HKLoss) ZEAT 5. ZHIZ
b, W7 x4 TOBREFEL, YR
ANOEHZIHT 3.
2.ProtoPFormer

ProtoPFormer (%, Vision Transformer (ViT) Z~X—
A L7e7a bR A TEERTSETATH L. HERER
IZ#EH T % Global Branch &, EFTfEEICEH T % Local
Branch 2> S5 SN 5. #HEFwRFE Local Branch Tl ViT
DFHMEEE D 12 FP Mask Z7EK L, #igICH 3045
MDOARX=—I =0 OREHMETS. 2D, Global
Branch Tl&27 5 A b =2 > & 7v b &4 7 Local Branch
TIEMHEINZA X =V =T Tu bXA T D
PERZHET 2. Xic7u b x4 72t hanizi
ROFELER 2HEEEICATIL, & Branch 22127 7 &
WREHNT 2. REICEhZTID T J RO
TUPHNT 2075 AR 55, Zho oo
WA T, R ETVREEEE T 2725HD Cross
Entropy Loss ¥, Local Branch Ad 7' ma kX 4 7% %%
T2 (1) &3 (2) DEEREBEHCTEET 5.

1
‘Cl};PC = W Zmax (t’u —
Uiy

LPpc =1tr (max (O, Z —ta)) (2)
LEoc WRUZ 7 ADT B b &2 A4 THEBLTWRIEEK
EEREE5Z23. 22T, m{ 3K IATHHATE S
O rRATOKTHY, pld7ab&xA 7 TH5. t, 13H
BTH2. LIpo T 0 2L THERT 2HEEE ML
FTEHEETH 2. D 37w &4 TOHGEITHI O A
B DFEETHY, t, 1IHETH 3.

ZhizkD, kD CNN ZR—2 2 LFiEL L
TEVRBBELZR>—HT, ERua~v—2REN#H
FNEEHLTLE S M@ T V3,

REFE

ARIFFETlE, ProtoPFormer O JFFTHEBUCIER %23 3%
Local Branch D 71 b & 4 F 1L, NOFHIRZIEE
CLTEATS. BARPEATAMEREZX 11277

3.1. 70 b2 41 FOFEIRNFE

ETOTA &4 TE—HI TANOFHIR] 1520133 &,
2TOTR XA THECHEECEE L, 2L R
5. ZhERi<TD, RFETEEHRI 22, AOHIRI
RYLEWEHEBEZES 0 F &4 FOMHASDEEREIN
CHRRT 5. BEROGFEL LT, AHEIRD NI ED
X METR7IRABT B IR &A TR L, X
Rekhr7a R THOELNZETOMAEHLEDLD
ANDOHIR DFLENRK Ko T-HAEDRICEENS
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3.2.Human Knowledge Loss (HKLoss)
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