Wavelet Components ViT によるテクスチャデータの性能及び解釈性の向上に関する研究 指導教授:藤吉 弘亘

TR23007 福井 雅弥

1.はじめに

画像認識モデルとして、入力全体を考慮して広範な依存 関係を捉えることができる Attention 機構を用いた Vision Transformer (ViT) [1] が注目されている. ViT は一般的 な画像分類タスクにおいて高い性能を発揮し、Attention を可視化することでモデルの判断根拠を示すことが可能で ある. 文献 [2] の調査により ViT は CNN と比較してテ クスチャよりも形状を捉える傾向があると報告されている. そのため、テクスチャデータに対して ViT の性能は低い. そこで、本研究ではテクスチャ分類における ViT の性能 と解釈性の向上を目的として、Wavelet 変換を導入した Wavelet Components ViT を提案する.

2. Vision Transformer (ViT)

ViT は入力画像をいくつかのパッチに分割したパッチトー クンと分類用のクラストークンを Transformer Encoder に 入力する. Transformer Encoder は、パッチ間の関係に基 づいて特徴抽出を行う Multi-Head Attention, パッチ内 の特徴量を混合することで特徴抽出を行う Multi-Layer Perceptron, 正規化を行う Layer Normalization で構成 されている. ViT では Multi-Head Attention で捉えた パッチ間の関連度に対して計算し, Attention rollout [4] を適用することで Attention Map を可視化できる. これ により、クラス分類時に重要なパッチをモデルの判断根拠 として視覚的に示すことができる.

3.提案手法

本研究では、ViT の解釈性向上を目的に Wavelet 変換 を活用することで空間的に重要な情報に加えて重要なテク スチャ成分を可視化する Wavelet Components ViT を提 案する. また, Wavelet Components ViT の事前学習に MIM を用いた成分間の対応関係を促す事前学習を行うこ とで性能向上を図る.

3.1 Wavelet Components ViT

Wavelet Components ViT は、入力画像を Wavelet 変 換し、Wavelet 変換で得られた成分情報を学習する.図1 に Wavelet Components ViT のネットワーク構造を示す. 入力画像に対して Wavelet 変換を1回適用して,両方向の 高周波成分(HH),縦方向の高周波成分(LH),横方向の 高周波成分(HL),低周波成分(LL)の4つの成分情報 を保持した画像に変換した後、パッチに分割する.低周波 成分(LL)のパッチトークンは式(1),高周波成分(LH, HL, HH) のパッチトークンは式 (2) で導出できる.

$$Y_l[p] = \sum_k \sum_{m,n} x[m,n] \cdot \phi_k[m,n] \tag{1}$$

$$Y_h^d[p] = \sum_k \sum_{m,n} x[m,n] \cdot \psi_k^d[m,n]$$
(2)

ここで, 添字 l は低周波成分, 添字 h は高周波成分, p は Wavelet 変換後のパッチトークン, k はパッチのインデッ クス, x[m,n] は入力画像のピクセル値, $\psi_k[m,n]$ は低周 波成分を抽出する基底関数, $\phi_k[m,n]$ は高周波成分を抽出 する基底関数, dは $d \in \{LH, HL, HH\}$ である. 分割した パッチは、それぞれ1次元のベクトル p_l, p_h^d に変換し、成 分ごとに Linear projection を適用することで、各成分に 特化した特徴抽出を可能にする. pl は式 (3), ph は式 (4) で導出できる.

$$p_l = \text{Flatten}\left(\{Y_l[p]\}_{p=1}^P\right) \tag{3}$$

$$p_h^d = \text{Flatten}\left(\{Y_h^d[p]\}_{p=1}^P\right) \tag{4}$$

ここで、Flatten はパッチを1次元のベクトルに変換する 処理, P はパッチの総数である. さらに, 各成分のパッチ

トークン p_l, p_h^d に同一の位置情報を付与する.式 (5) に Positional Embedding の計算式を示す.

$$PE_{(p,2i)} = \sin(p/10000^{2i/D})$$

$$PE_{(p,2i+1)} = \cos(p/10000^{2i/D})$$
(5)

ここで、pは $p \in \{p_l, p_h^d\}$, iは PE の次元, Dは PE の次 元数である. Transformer Encoder には Wavelet 変換後 のパッチトークンに加えて、Attention map におけるアー チファクトを防止するためにレジスタトークン [3] を入力 する. レジスタトークンは特徴抽出時のみ使用し, 推論時 には破棄する. 最後に, Transformer Encoder の出力とし て得られたクラストークンを MLP Head に入力し, 確率 分布からクラス分類を行う.

図 1: Wavelet Components ViT のネットワーク構造

3.2 Wavelet Components ViT の事前学習

Wavelet Components ViT の性能向上を目的として Masked Image Modeling (MIM) による事前学習を行う. MIM は、入力画像の一部にマスク処理を行い Encoder へ 入力した後, Decoder でマスクした領域を予測することで 学習を行う. そのため, Wavelet 変換後の画像において, 特定の成分がマスクされた場合でも、残存する他の成分 からマスクされたパッチのを予測することができるため, Wavelet 変換との相性が良いと考える.また、提案手法 では Cross-Attention を導入することで、Wavelet 変換 で得られた成分間の対応関係を捉えた学習を可能にする. Cross-Attention では、Query として Encoder 後の各成 分のトークンを用い, Key と Value として Encoder 後の 全成分のトークンを用いて, Attention を計算する. 入力 する. 損失関数にはマスクトークンの出力と Wavelet 変 換後の画像の Gradient Matching Loss を使用する. 図 2 に Wavelet Components ViT の事前学習方法を示す.

図 2: Wavelet Components ViT の事前学習

3.3 Attention を用いた逆 Wavelet 変換による可 視化

推論時に得られた Attention は Wavelet 変換後の各パッ チに対応しているため、Attention を解析することで空間 的な情報や各周波数成分に対する重要度を確認することが できる.また,Wavelet 変換後の画像に逆Wavelet 変換 することでWavelet 変換前の原画像を復元できることが 知られている.逆Wavelet 変換の計算式を式(6)に示す.

$$x[m,n] = \sum_{k} Y_l[k] \cdot \phi_k[m,n] + \sum_{d} \sum_{k} Y_h^d[k] \cdot \psi_k^d[m,n]$$
(6)

これらの特性を活用し、モデルの判断根拠を可視化する新たな方法を提案する. Attention を用いた逆 Wavelet 変換による可視化方法を図1の紫枠内に示す. 具体的には,推論時に得られた Attention を Wavelet 変換後のパッチ特徴に重み付けし,逆 Wavelet 変換を施すことで可視化する. Attention の可視化には Attention rollout [4] を使用する.

4.評価実験

MIM による事前学習した Wavelet Components ViT をファインチューニングした際の性能評価を行う. 事前学 習のデータセットには ImageNet-1K, ファインチューニ ングには代表的な 4 つのテクスチャデータセットである DTD, CUReT, GTOS, KTH-TIPS2 を使用する. 事前 学習において,マスク処理は画像全体の 75% をマスクす る. モデルサイズは, ViT-T/14 を使用する. 比較対象に は, CNN ベースの手法として ResNet18, ViT, MIM に よる事前学習をした ViT (MAE),スクラッチ学習した Wavelet Components ViT とする.

4.1性能比較

表1に性能評価の結果を示す.表1より,全てのデータ セットにおいて,MIM による事前学習を行うことで性能 が向上し,提案手法が最も高性能であることが確認できる.

Dataset	Method	Pretrain (MIM)	Params	Accuracy [%]
DTD	ResNet18	-	11M	53.1
	ViT	-	5M	42.9 51.0
	Ours	-	5M	33.4
CUReT	ResNet18	• -	11M	94.0
	ViT	-	5M	93.2 93.6
	Ours	-	5M	93.7 97.3
GTOS	ResNet18	-	11M	74.9
	ViT		5M	75.1 75.6
	Ours	-	5M	64.6 76.0
KTH-TIPS2	ResNet18	-	11M	75.3
	ViT		5M	71.4 79.1

表 1: テクスチャデータセットにおける性能比較結果

4.2解釈性の比較

評価実験で使用したテクスチャデータセットにおける各 モデルの判断根拠を可視化し,解釈性の比較を行う.図3 に解釈性の比較結果を示す.図3より,提案手法では全て のテクスチャデータセットに対して重要なエッジやテクス チャ成分を残した画像を表現できており,解釈性の向上を 確認できる.

5.モデルが捉える特徴の分析

Ours

次に,モデルが形状とテクスチャのどちらを重視した学 習をしているかを Stylized-ImageNet (SIN)を用いて評価 する.SIN は ImageNet の画像にスタイル変換を適用し, テクスチャを変化させたデータセットである.例えば,猫 の画像に対して象のクスチャを用いてスタイル変換した場 合,その画像に対してモデルが"猫"と認識した場合は"形 状"を重視したモデルであり"象"と認識した場合は"テ クスチャ"を重視したモデルであると評価することができ る.各モデルは ImageNet-1k で学習した重みを使用する.

図 3: 解釈性の比較結果

図4に分析結果を示す.縦線は各モデルの平均値を表し ており、線が左に位置するほど形状重視、右に位置するほ どテクスチャ重視であることを表す.図4より、提案手法 は ViT や ResNet18 と比較して右側に位置していること を確認できる.以上より、提案手法は Wavelet 変換で得ら れた各成分間の関係性を学習したことで ViT や ResNet18 と比較して、よりテクスチャを捉えたモデルに変化したと いえる.

図 4: モデルが形状重視かテクスチャ重視かの分析結果

6.おわりに

本研究では、ViT のテクスチャデータに対する解釈性及 び性能の向上を目的として Wavelet Components ViT と Wavelet Components MAE を提案した.代表的な 4 つ のテクスチャデータセットで評価し、ViT より優れた性能 と解釈性を獲得した.今後は、異常検知等に関するデータ セットで評価を行う.

参考文献

70.5

80.4

5M

- A. Dosovitskiy, et al., "An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale", In ICLR, 2021.
- [2] L. Scabini, et al., "A Comparative Survey of Vision Transformers for Feature Extraction in Texture Analysis", arXiv preprint arXiv:2406.06136, 2024.
- [3] T. Darcet, et al., "Vision Transformers Need Registers", In ICLR, 2024.
- [4] S. Abnar, et al., "Quantifying Attention Flow in Transformers", In ACL, 2020.

研究業績

 福井雅弥,緒方貴紀,平川翼,山下隆義,藤吉弘亘, "Wavelet Components Transformer", 画像の認識・理解シンポジウム, 2024.