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1.Introduction
Object detection is one of the most crucial tasks in

autonomous driving. In this task, both accuracy and
speed are important. There are various methods have
been studied to improve accuracy while accelerating the
detection speed. Although RGB images captured by
cameras are used for object detection, point clouds cap-
tured by LiDAR are also used for this task. Because
it is insensitive to visible light and can capture objects
day or night. However, point clouds are sparse and dif-
ferent from images in that the order is irregular, leading
to a slow processing speed as 2D convolution cannot
be performed directly. Surface normals extracted from
the points have a better ability to represent the shape
features of the object than 3D coordinates, which we be-
lieve will improve the performance of object detection.
In this study, we propose a novel point clouds-based 3D
object detection method for achieving higher-accuracy.
The proposed method employs You Only Look Once
v4 (YOLOv4) as a feature extractor and gives Normal-
map as additional input. Our Normal-map is a three
channels Bird-eye view (BEV) map, retaining detailed
surface normal vectors. It makes the input information
have more enhanced spatial shape information and can
be associated with other hand-crafted features easily.

2.Bird-eye View Representation
The BEV map represents the point clouds as a 2D

pseudo-image from the bird-eye view as shown in Figure
1. This approach converts the unordered point clouds
into a sequence ordered image. Conventional meth-
ods are to generate three maps by a mapping function
PΩi→j , representing normalized point cloud density (R),
maximum height (G), and maximum reflection intensity
(B), as

zr (Sj) = min(1.0, log(N + 1)/64)N = |PΩi→j | ,
zg (Sj) = max

(
PΩi→j · [0, 0, 1]T

)
,

zb (Sj) = max (I (PΩi→j)) .
(1)

Since 2D convolution can be applied to the BEV map,
the detection task can be accelerated by using a fast
object detection network such as YOLO[1]. However,
different points may be arranged to a same pixel in the
BEV map, which is less expressive than original data.
Besides, the object shape will be lost due to the 3D data
is compressed to 2D.

Figure 1 : Bird-eye View Representation.

3.Proposed Method
We propose a method for 3D object detection using

BEV map with additional normal information. Figure
2 shows an overview of the proposed method.

3.1 Normal Feature Extraction
The normal vector is estimated from the pre-processed

point clouds by Principal Component Analysis (PCA)
with the search radius of 30cm and the maximum search
number of 50 points. To make all normals point in the
same direction, the normals opposing the LiDAR are
reversed by an orienting system. Normal-map is gen-
erated for enabling the 2D convolution of each point’s

Figure 2 : Overview of Proposed Method.

normals. The mapping function fPS shown in Eq. (2)
is used for creating the Normal-map, which allows us to
use the normal vector x⃗ɼy⃗ɼz⃗ of the highest point in
PΩi→j when mapping each point into 2D space.

PΩi→j =
{
PΩi = [x, y, z]T |Sj = fPS(PΩi, g)

}
(2)

As shown in Eq. (3), the normal vectors of each point
are extracted as normalx⃗ɼnormaly⃗ɼnormalz⃗ from the
PΩi→h for each axis. The normal vectors are represented
by a 3-channel 2D pseudo image, as

normalx⃗(Sj) = x⃗ (PΩj→h) ,
normaly⃗(Sj) = y⃗ (PΩj→h) ,
normalz⃗(Sj) = z⃗ (PΩj→h) .

(3)

Since the search range of the normal estimation is wider
than the pixel representation range of the BEV map,
it can include a wider range of information. Moreover,
since the normal-map calculated from the normal vec-
tors is also a BEV map, it can be freely combined with
other BEV maps to be used as the input data.

3.2 Input Details
Our network uses RGB-map and Normal-map as in-

put. The RGB-map is similar to the BirdNet[2], and
consists of the height map, the density map, and the
intensity map. The Normal-map is the normal vectors
in the x, y, and z axes. Thus, the input is a 6-channel
BEV map consisting of these maps concatenated in the
channel axis.

3.3 Object Detection Network
The network predicts the class and size of an object

with the Euler-Region Proposal Network (E-RPN) for
3D object detection as shown in Figure 3. We employ
YOLOv4 as the basis network for 3D object detection.
E-RPN predicts the height, width, angle, objectness,
and class probability of the bounding box coordinates.
In this study, the number of object classes is 6: Car,
Van, Truck, Person, Cyclist, and Tram. The loss func-
tion is based on Mean-Square Error.

Figure 3 : Normal-YOLO Network Architecture.

4.Evaluation Experiments
In order to examine the effectiveness of the proposed

method, some comparison experiments are conducted
using the KITTI dataset. We also evaluate the accuracy
of the object angle detection by adding a function to
calculate the yaw angle.



Table 1 : Evaluation Results for Bird-eye View Performance on the KITTI Benchmark.
Car Pedestrian Cyclist

Method FPS Easy Mod. Hard Easy Mod. Hard Easy Mod. Hard Average
BirdNet 9.1 84.17 59.83 57.35 28.20 23.06 21.65 58.64 41.56 36.94 45.93

Complexer-YOLO 16.7 77.24 68.96 64.95 21.42 18.26 17.06 32.00 25.40 22.88 38.68

Ours 5.5 72.84 71.52 67.50 26.71 21.19 20.17 42.50 36.06 31.18 43.30

Figure 5ɿ3D Object Detection Visualization in Camera View.

4.1 KITTI Benchmark Evaluation Results
Table 1 shows the evaluation results. Compared with

the conventional method, the proposed method achieves
the detection accuracy of 72.84% in Car under the Easy
mode, and the highest accuracy of 67.50% at the Hard
mode. It achieves almost the same accuracy as BirdNet[2],
which is also a BEV-based method. Even for the same
class objects with different detection modes, our method
shows a more robust performance by adding normal in-
formation. In addition, we achieve a higher Average
Precision (AP) than Complexer-YOLO[3], which uses
the same YOLO-based network. Although the input
is BEV map, the accuracy for non-planar objects (e.g.
pedestrians and cyclists) is better for each mode.

4.2 Evaluation of Angle Prediction
Since the normal is the object shape information, we

assume that object angle accuracy can be improved by
adding the Normal-map. Table 2 shows the result of
calculating the average included angle θk from the esti-
mated object angles and ground truth for 6 classes.

scoreclass (θk) =

(
1
n

n∑

k=1

arccos θk

)−1

(4)

Normal-map improves the angle accuracy. In particular,
the accuracy of objects with large and flat shapes like
cars is further improved.

Table 2 : Yaw Angle Prediction of 6 Classes.

Input Map
Score of Angle Accuracy

Car Van Truck Person Cyclist Tram

RGB 10.18 7.49 5.78 2.22 4.44 3.24
Normal 8.76 5.37 5.35 1.69 3.10 3.28
Normal+RG 9.27 6.43 10.09 2.14 3.34 3.55
Normal+RGB 10.34 6.57 8.89 2.06 3.86 5.25

4.3 Evaluation by Distance
Since the density of the point clouds changes depend-

ing on the distance, we evaluate the detection accuracy
by distance. Figure 4 shows average precision over dis-
tance. From Figure 4, the detection accuracy of the
group with added Normal-map does not decrease up to
30m, and the decrease is smaller than no-normal group
even at 40m or more.

Figure 4 : Average Precision over distance.

4.4 Visualization Results
As shown in Figure 5, due to traffic lights, and traffic

signs are cylindrical and have a height similar to a hu-
man, the no-normal group could easily make false pos-
itive prediction. In contrast, proposed method reduce
the number of such mistakes with the addition of nor-
mal information. This indicates that the Normal-map is
useful in avoiding the false detection of objects similar
to human features.

5.Conclusion
We proposed a novel 3D object detection method with

Normal-map on point clouds. We have confirmed that
the accuracy of BEV map-based object detection is fur-
ther improved when we introduced normal information
to the BEV map. Since the Normal-map can keep high
detection accuracy without intensity information, it is
possible to use synthesized datasets by simulator with
the virtual environment. In the future, to improve the
accuracy of the method, we would like to explore deep
learning methods for object normal estimation.
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