1.はじめに

バラ積みされた物体を高速かつ高精度に把持姿勢推定を 行う Fast Graspability Evaluation(FGE)[1]が提案されて いる.FGE は,深度センサから取得した深度マップと2次 元のハンドテンプレートを畳み込むこことで,深度マップ における把持位置を推定する.このとき,深度マップ における把持位置を推定する.このとき,深度マップ における把持位置の探索は深度センサの直行平面に対してのみ 行う.そのため,ハンドのアプローチ姿勢はカメラの姿勢 に依存するため,把持対象に対して適切な把持アプローチ 姿勢を求めることができない.そこで,本研究では,FGE を3次元に拡張することで,物体に適切な把持位置とアプ ローチ姿勢を推定する.また,3次元拡張により膨大とな るハンドテンプレートを特異値分解することで計算量を削 減する.

2. 従来手法

FGE の概要を図 1 に示す.FGE はロボットのハンドモ デルからハンドの衝突領域と接触領域をテンプレートとし て作成する.ハンドの衝突,接触テンプレートをそれぞれ 把持対象となる物体の接触領域とハンドが干渉する物体の 衝突領域に畳み込み交点を計算することでハンドが干渉し ない領域を求める.ハンドが干渉しない領域にガウシアン フィルタを適応し,値が最大となる位置を把持位置を推定 する.

図 1 : Fast Graspability Evaluation の概要

3.提案手法

提案手法では対象物体に対して適切なアプローチ角度を 推定するために,FGEの3次元拡張を提案する.FGEで 用いる2次元のハンドテンプレートを3次元に拡張する ことで,3次元空間における把持位置と姿勢を同時に推定 する.

3.1 FGE の 3 次元拡張

FGE では対象物の2値画像とテンプレートを畳み込む ことで把持姿勢をする.そのため,FGE では x, y, z, d, θ の5パラメータの推定となる.5パラメータではカメラ軸 上からアプローチする場合のみの推定となるため物体に対 して適切なアプローチとは限らない. そこで FGE を 3 次 元拡張することで、 $x, y, z, d, \theta_{(\alpha, \beta, \delta)}$ の7パラメータで推 定が可能となり、物体に対して適切な把持姿勢が推定でき ると考えられる.まず、ロボットのエンドエフェクタから 衝突ボクセルテンプレート H_c と接触ボクセルテンプレー ト H_t を作成する.そして,テンプレートは開き幅 d と回 転 $\theta_{(\alpha,\beta,\delta)}$ のパラメータを持つ,図3のステップ1に示す ように、2値のボクセルで表現し、パラメータを変化させ た時のボクセルテンプレートを作成する.このとき、テン プレートは $\theta_{\alpha}, \theta_{\beta}, \theta_{\delta}$ の順番で回転を行う.次に,対象 物体を多視点から撮影した点群から対象物体のボクセルを 作成する.

3.2 特異値分解による固有値テンプレートの算出

衝突ボクセルテンプレートと接触ボクセルテンプレート は, $d, \theta_{(\alpha,\beta,\delta)}$ の4パラメータを変化させるため膨大な組 合せとなる.また,従来手法である FGE はパラメータ毎 に畳み込みを行うためパラメータ数により処理時間が増加 する問題がある.そこで、衝突、接触ボクセルテンプレートを特異値分解する.分解することで、少数の固有値テンプレートの組み合わせとなり、畳み込み後の行列を近似することで処理時間の増加を抑制できる.

衝突,接触ボクセルテンプレートを特異値分解するため に、ボクセルテンプレート群を2次元の行列 M_c, M_t で表現 する.行列 $M_c \in \mathbb{R}^{E \times F}, M_t \in \mathbb{R}^{E \times F}$ の各列ベクトルはベ クトル化したテンプレート $m_c^{(d,\theta(\alpha,\beta,\delta))} \in \mathbb{R}^E, m_t^{(d,\theta(\alpha,\beta,\delta))} \in \mathbb{R}^E$ で構成される.図2に示すように、Eはハンドテンプ レートのボクセル数 (= 27000 px)、F はロボットハンド の状態数 (= 216 パラメータ)である.行列 M_c, M_t に対 して特異値分解を適用すると、3つの行列 U, S, V^{T} に分解 できる.

図 2: ボクセルテンプレートの特異値分解

図 2 に示すように、行列 S_c は対角成分に特異値 s_{c_i} を 持つ対角行列であり、特異値は上位の要素のみ大きな値を 持ち、下位の要素では 0 に近い値となる.ここで、行列 S_c の特異値から求めた累積寄与率を用いて、次元削減を行う. この時の行列を S'_c とする. $u_{c_i} \in \mathbb{R}^E$ を行列 U_c の i 番目 の列ベクトル、 $\gamma_{c_i} \in \mathbb{R}^F$ を行列 $S'V_c^T$ の i 番目の行ベク トルとすると、パラメータ $(d, \theta_{(\alpha,\beta,\delta)})$ の衝突ボクセルテ ンプレート $m_c^{(d,\theta_{(\alpha,\beta,\delta)})}$ は式 (1) のように定義できる.同 様に $m_t^{(d,\theta_{(\alpha,\beta,\delta)})}$ も定義できる.

$$\boldsymbol{m}_{\boldsymbol{c}}^{(d,\theta_{(\alpha,\beta,\delta)})} = \sum_{i=1}^{N} \boldsymbol{\gamma}_{\boldsymbol{c}_{i}}(d,\theta_{(\alpha,\beta,\delta)}) \boldsymbol{u}_{\boldsymbol{c}_{i}}$$
(1)

 u_{c_i}, u_{t_i} を分解前の形状に戻すことで3次元のテンプレート行列とみなすことができる.ここでは"固有値テンプレート"と呼び,重み係数となる $\gamma_{c_i}, \gamma_{t_i}$ を"固有関数"と呼ぶ.

3.3 Graspability の効率的な計算

図 3 に提案手法の概要を示す.ステップ 1 では,衝突 ボクセルテンプレートを予め特異値分解を行い,固有値テ ンプレートと固有関数を計算する.ステップ 2 では,対 象物のボクセル O_t, O_c と固有値テンプレート u_{c_i}, u_{t_i} を, $q_{c_i} = O_c \otimes u_{c_i}, q_{t_i} = O_t \otimes u_{c_i}$ のようにあらかじめ式 (2) により畳み込める.ステップ 3 では,衝突領域 $C'^{(d,\theta_{(\alpha,\beta,\delta)})}$ を式 (2) の固有関数値のみ変化させることで任意の開き幅 d と回転角度 $\theta_{(\alpha,\beta,\delta)}$ における出力を効率的に計算できる. 同様に $T'^{(d,\theta_{(\alpha,\beta,\delta)})}$ も計算できる.

$$C^{\prime(d,\theta_{(\alpha,\beta,\delta)})} = \sum_{i=1}^{N} \gamma_{c_i}(d,\theta_{(\alpha,\beta,\delta)})q_{c_i}$$
(2)

ステップ4では, graspability マップ $G^{(d,\theta_{(\alpha,\beta,\delta)})}$ を,次 式のようにガウシアンフィルタ g を畳み込んで求める.

$$G^{(d,\theta_{(\alpha,\beta,\delta)})} = (T^{\prime(d,\theta_{(\alpha,\beta,\delta)})} \cap C^{\prime(d,\theta_{(\alpha,\beta,\delta)})}) \otimes g \qquad (3)$$

この時, graspability マップの最大値を把持姿勢として推 定する.しかし,経路生成や衝突判定で最大値の把持姿勢 が使用できない場合が考えられる.そこで,graspability マップの値から優先順位をつける.graspability マップは 最大値の周囲に高い値を持つ.そのため,graspability マッ プの x,y 平面に対してグリッド分割を行うことで推定領域 における優先順位をつけることができる.

4.評価実験

本実験では、FGE の 3 次元拡張に対して特異値分解を適 応した場合における、累積寄与率を変化させた際の畳み込 み時間とテンプレートの誤差を評価する.また、把持姿勢推 定にかかる処理時間を評価する.テンプレートのパラメー タを $d \in \{60, 70\}, \theta_{\alpha} \in \{0, 30, \cdots 150\}, \theta_{\beta} \in \{0, 15, 30\}, \theta_{\delta} \in \{0, 30, \cdots 150\}$ の 216 パラメータとする.テンプレー トの復元誤差は Mean Absolute Error(MAE) を用いて評 価を行う.

4.1 テンプレートにおける最適な累積寄与率の評価

図4における衝突ボクセルテンプレートの MAE の結果 を示す.図4より,累積寄与率が小さくなるにつれ固有値 は非線形的に下がることが確認できる.また,累積寄与率 50%までほぼ線形的に上昇している.図5に衝突ボクセル テンプレートにおける畳み込み時間を示す.図5より,削 減率が累積寄与率 60%から変化が微小になるため,累積寄 与率は 60%を用いる.

図5:衝突ボクセルテンプレートの畳み込み時間と削減率

4.2 把持姿勢推定時間の評価

衝突ボクセルテンプレートと接触ボクセルテンプレートの累積寄与率を 60%とした際の把持姿勢推定時間を表 1 に示す.ここで,FGE を 3 次元拡張した結果を FGE 3D とし,FGE の 3 次元拡張に特異値分解を導入した手法を FGE 3D SVD とする.FGE 3D に比べ特異値分解を導入 することにより,把持姿勢推定結果にかかる処理時間を約 66.6%削減した.これにより,特異値分解の導入は処理時 間の削減に有効であることを確認した.

表 1	:	把持姿勢推定時間と削減率
表 1	:	把持姿勢推定時間と削減率

	FGE 3D	FGE 3D SVD
推定時間 [sec]	207.4	69.2

4.3 把持姿勢推定結果の評価

図6に把持姿勢推定結果を示す.また,着色した直方体 が把持姿勢を示している.図6(a)及び(b)より,直方体は 把持対象に対して干渉が発生しない領域に対して把持姿勢 推定できていることが確認できる.FGE 3D SVD におい て,FGE 3Dより把持姿勢推定結果が多く検出されること が確認できる.これは,特異値分解による復元ノイズが影響していると考えられる.

図 6:把持姿勢推定結果

5.おわりに

本研究では、物体に対して適切なアプローチ角度を高精 度に推定する手法を提案した.評価実験より、3次元拡張 により増加する畳み込み回数は特異値分解により大幅に削 減することが可能であることが確認できた.今後は、実機 による FGE と提案手法の把持成功率の評価及び,把持姿 勢推定における探索方法の改善を行う.

参考文献

 Y. Domae, et al., "Fast graspability evaluation on single depth maps for bin picking with general grippers", ICRA, pp. 1997–2004, 2014.

研究業績

 K. Mano, et al., "Fast and Precise Detection of Object Grasping Positions with Eigenvalue Templates", ICRA, 2019.

(他 学会発表 3 件)