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Video understanding is a critical field within computer vision that aims to compre-

hend the content and context of video data. It involves various tasks such as action

recognition, action detection, and video captioning. These tasks are vital for various

applications, including video editing, anomaly detection, and autonomous driving. For

example, in anomaly detection, video understanding enables the identification of suspi-

cious activities or objects, enhancing security measures. This technology is also helpful

for recognizing pedestrians, vehicles, and traffic signs, ensuring safe navigation in au-

tonomous driving systems. Since the traditional methods are limited by processing time,

deep learning models have emerged as powerful tools for exploring video content. These

models can analyze and process complex video data, leading to improved performance of

video understanding tasks.

To deploy various video understanding models into real-world applications, two main

challenges have been identified in this thesis: interpretability and efficiency. The in-

terpretability of predictions poses a significant issue since people cannot trust a model

that cannot be explained. This lack of clear reason for predictions hinders the practi-

cal application of video understanding models, as people might feel confused about the

output from models. Additionally, the sheer volume of video data presents an efficiency

challenge. Although deep-learning models can explore potential relationships buried in

complex video data, they need some time to predict a correct result. Generally, a model

with better performance contains more parameters and needs more time to handle inputs.

It is an important issue for applications requiring performance and speed. To address this

issue, improving the efficiency of video understanding algorithms is crucial, particularly

for real-time applications where quick decision-making is essential, such as video anomaly

detection. Via enhancing interpretability and efficiency, video understanding models can

provide more accessible and practical solutions for a wide range of applications and make

our lives more convenient.

In this research, several novel methods are proposed to address the two challenges in

video understanding. (i) Firstly, the use of an attention mechanism is introduced to en-

hance interpretability in Chapter 3. Via leveraging attention mechanisms, the temporal

information in videos can be efficiently explored. The important frames in videos are

highlighted according to the attention scores to help us to analyze the reason of predicted

class labels. (ii) Secondly, the issue of inefficiency caused by the presence of similar frames

in videos is addressed in Chapter 4. The frame saliency weighting module that identifies

the salient frames and enhances efficiency by focusing on keyframes is proposed. Addi-

tionally, the frame saliency module can utilize saliency scores to present the importance

of frames and interpret the predictions of detection models. (iii) Thirdly, the limitation of

score-based interpretation methods is observed. It is the inability to compare importance
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scores across different videos directly. To overcome this challenge, video captions are

introduced to represent video content semantically and it is employed for video anomaly

detection. (iv) Fourth, since normal video captioning models do not contain much com-

mon sense and cannot answer questions from people, it limits its application. Therefore,

pre-trained Large Language Models (LLMs) are employed to provide better interpretabil-

ity via communication and reduce incorrect video captions. However, since the cost of

fine-tuning large models is difficult to cover, therefore the knowledge selection is proposed

to apply related knowledge in the specific domain.

In future work, decreasing the cost of applying large models and evaluating the proposed

method on various video understanding tasks will be continually researched for a large-

scale interpretable video understanding model.
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Chapter 1

Introduction

This chapter offers insight into the background and motivations behind this research

and outlines the thesis structure.

1.1 Background

In contemporary society, the consumption of video content has become ubiquitous due

to the proliferation of digital media platforms and advances in web technology. The abil-

ity to understand and interpret visual narratives has become an essential skill as people

view endless streams of video ranging from entertainment to educational content. We

obtain this ability by viewing large amounts of video content, which takes a lot of time.

Therefore, we need a technology that can extract important information from all the video

content around the globe when needed. Video understanding is the tool that can help us.

It encompasses various tasks, including action understanding, natural language process-

ing, sound understanding, visual understanding, etc. The core of video understanding is

to comprehensively analyze and interpret the visual and semantic information delivered

through the medium of video. This multifaceted process includes extracting semantics

from each frame, recognizing objects, detecting actions, understanding spatial and tem-

poral relationships, and discerning contextual clues embedded in the visual narrative.

Recent advances in computer vision technology have played a key role in realizing

automatic video understanding models. These models employ various algorithms to un-

derstand and analyze video content. Object recognition and detection algorithms enable

the models to recognize objects and predict their category labels in each video frame.

Action detection algorithms analyze temporal frame sequences to detect specific inter-

actions between humans and objects. Moreover, video understanding explores semantic

information in video data to generate video descriptions or answer questions related to

video content. By training on vast amounts of annotated video datasets, video under-

standing models continuously improve their performance, leading to the development of

more helpful applications.
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Video understanding holds significant implications for various domains, including enter-

tainment, education, healthcare, and security. In the entertainment domain, the personal-

ized video recommendation function leverages video understanding techniques to analyze

user preferences and viewing patterns, thereby enhancing the user experience by providing

relevant content recommendations. Additionally, video understanding models are useful

to create interactive and adaptive learning environments in the education field. In such

environments, educational videos are tailored to the specific needs and learning styles of

individual students. In addition, video analysis techniques facilitate the interpretation

of medical imaging data, helping clinicians in diagnosis, treatment planning, and patient

monitoring. In the domain of security, video understanding approaches play a crucial

role in detecting and analyzing suspicious activities, identifying objects and individuals

of interest to ensure public safety.

While the technological advancements in video understanding have been remarkable,

there are still a number of challenges that hinder the application of video understanding

models. A significant challenge is the inherent complexity and variability of video data,

which encompasses diverse visual content and dynamic scenes. This makes deep learn-

ing models the preferred solution for video understanding tasks. However, for real-time

applications such as video anomaly detection, deep learning models may not be able to

output timely predictions. Furthermore, the large amount of video data generated every

day poses scalability and computational challenges for video understanding algorithms,

necessitating the development of efficient processing and analysis techniques. In addition,

many important domains require interpretation of prediction results, especially in secu-

rity and healthcare. We need a reasonable interpretation of each prediction to help us

understand and analyze the predictions of the model. In order to speed up the prediction

of the model and to interpret the prediction results rationally, many researchers have

proposed many effective algorithms through extensive research.

As the consumption of video content continues to grow rapidly, the need for advanced

video understanding models becomes more pressing. In order to promote the imple-

mentation of video understanding technology, I focus on two key issues that affect its

deployment: efficiency and interpretability, and use them as the motivation for our re-

search.

1.2 Motivation

There are two motivations behind this research on video understanding.

• The interpretability of predictions.
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Interpretability aims to help people fully understand the model’s prediction results.

It enables models to provide convincing explanations of predictions in a way that is

intuitively understandable to humans.

• The efficient comprehension of video content.

Efficiency aims for real-time processing. By focusing on the content of important

frames, the model’s understanding of the overall content of the video is promoted,

thereby reducing the size and amount of computation of the model and improving

computational efficiency.

Interpretability and efficiency are critical requirements not only in the field of video

understanding, but also for other AI models. I believe that the methods proposed in this

thesis will contribute to the development and application of AI models.

1.2.1 Interpretability

Interpretability is rooted in the need to bridge the gap between the complex inner

workings of artificial intelligence (AI) models and the need for transparency and account-

ability in video analysis tasks. Transparency and accountability are essential for a variety

of applications. For example, automatic video editing relies on the interaction between

AI models and humans. It is necessary for AI models to edit video content based on

human guidance. Consequently, the lack of explainability of prediction outcomes repre-

sents a significant barrier to the deployment of AI models. One solution to this problem

is to visualize the judgment basis of the model. Grad-CAM [84] uses pixel-based scores

to show the classification basis of the AI model. Similarly, using frame-based scores can

also show the influence of each frame on the prediction results, thereby helping humans

to understand the judgment basis of the model. However, this method can only cal-

culate the importance of frames within the same video, and it is difficult to use it in

long videos. Another more intuitive solution is to use text to generate content simi-

lar to explanatory text. This method is more aligned with human comprehension than

the score-based approach and enables direct comparison of diverse video content. More

comprehensive interpretability requires continuous dialogue between humans and mod-

els. Through dialogue, it is possible to gain insight into the underlying rationale of the

model and comprehend the logical structure of its decision-making process. This the-

sis proposes score-based, text-based, and communication-based methods to enhance the

interpretability and transparency of the video understanding model.
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1.2.2 Efficiency

With the growth of digital video content, the demand for efficient video understanding

solutions has never been greater. Due to the presence of similar frames in the video, this

adds redundant information and confuses the AI models. This makes video representation

learning difficult. The frame saliency-based method is proposed to learn the importance

of each frame and improve video representation by paying more attention to important

frames. The method makes video understanding tasks easy and reduces model size and

computational complexity. Improved efficiency leads to faster inference times, resulting in

real-time or near real-time video analysis, which is critical for application implementation.

For example, anomaly detection applications need to detect anomalous actions as soon

as possible to stop the anomalies from occurring. Therefore, the pursuit of efficiency in

video understanding models represents a significant step towards empowering AI models

widespread adoption across various domains.

1.3 Structure of the thesis

As shown in Figure 1.1, this thesis is structured as follows:

Chapter 1 introduces the background of the research and the two motivations, inter-

pretability and efficiency.

Chapter 2 provides an overview of the various approaches to video understanding. Ad-

ditionally, it discusses prominent video understanding tasks and their evaluation metrics

employed to assess model performance. Finally, several publicly available datasets suit-

able for training video understanding models are presented.

Chapter 3 dives into the interpretability of predictions and the efficient handling of

temporal information. To improve efficiency, the attention mechanisms is employed to

process temporal frames and explore temporal relationships. The visualized attention

scores present the importance of each frame for the final prediction result. In this way, the

predictions of models can be analyzed using attention scores. This approach is evaluated

on two public datasets, achieving state-of-the-art performance on the action spotting task.

Furthermore, extensive experiments are conducted to analyze the effect of chunk size and

the number of encoders for action spotting.

Chapter 4 addresses the heavy computation within the attention mechanism, espe-

cially for long-term videos. To mitigate this, a frame saliency module is proposed to pay

more attention to keyframes and enhance video representation. Similar to Chapter 3, the

visualization of saliency scores aids in interpreting predictions. Moreover, extensive ex-

periments are conducted on several public datasets, video understanding tasks, and base
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models to evaluate the robustness of the proposed method.

Chapter 5 proposes an interpretability approach semantically and evaluates it on the

video anomaly detection task. The caption-guiding module is introduced to direct models

in detecting specific anomaly actions via utilizing stored video captions of abnormal sit-

uations. This module generates an anomaly memory space to store abnormal prototypes

and leverages them to interpret detection results semantically. The evaluation on two

public datasets demonstrates considerable performance in video anomaly detection.

Chapter 6 extends the application of large language models (LLMs) to image under-

standing and explores the potential of LLMs for the communication-based interpretability

method. The chapter focuses on few-shot image classification performance and proposes

knowledge selection methods aimed at reducing the cost of fine-tuning.

Finally, Chapter 7 summarizes the key findings of this thesis and outlines the directions

of future research.
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Figure 1.1: Structure of the thesis.
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Chapter 2

Related Works of Video

Understanding

Before introducing the proposed methods for video understanding tasks, fundamental

knowledge of video understanding are provided in this chapter to aid in comprehending

this research.

Various video understanding models are presented in Section 2.1. Section 2.2 introduces

video understanding tasks and associated metrics used for evaluation. Section 2.3 intro-

duces several public datasets suitable for training video understanding models. Finally,

Section 2.4 provides a concluding summary of the related works of video understanding.

2.1 Video Understanding Models

Over the past decade, action understanding research has experienced a paradigm shift

from primarily shallow, hand-crafted approaches to deep learning techniques. In this new

paradigm, multi-layer artificial neural networks are capable of learning complex non-linear

relationships in structured data and achieve considerable performance. Several video

understanding models based on deep learning are presented and categorized according to

their building blocks in this section.

2.1.1 CNN-based

Convolutional Neural Networks (CNNs) [41] have revolutionized the field of computer

vision and have been widely adopted for video understanding tasks. A CNN is primarily

composed of convolutional, pooling, normalization, and fully-connected layers. CNNs are

useful in video understanding because the sharing of weights dramatically decreases the

number of trainable parameters and therefore reduces computational cost compared to

fully connected networks.

1-Dimensional CNNs (C1D), 2-Dimensional CNNs (C2D), and 3-Dimensional CNNs
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Figure 2.1: Convolution layer. An example of 2D and 3D convolutional layers are shown.
Figure is cited from [46].

(C3D) are key components of many approaches [61, 50, 108, 125, 94, 90, 14, 39]. They

use 1D, 2D, and 3D kernels, respectively. C1D is used for convolutions along the time

dimension of embedded features, while C2D and C3D are used for extracting feature

vectors from individual frames or frame sequences. 3D-convolution layer allows for a

temporal receptive field in addition to the standard spatial one. Single-channel examples

of 2D and 3D convolutions are shown in Fig. 2.1. When using multi-channel inputs,

the convolutional kernels must be expanded to include a depth dimension with the same

number of channels as the input tensor and the output is summed across channels. CNNs

are particularly well-suited for analyzing spatial features in video data, thanks to their

ability to automatically learn hierarchical representations from raw pixel values.

Numerous CNN architectures have been proposed and tailored specifically for video

understanding, achieving remarkable success across a variety of tasks. For instance, a

two-stream CNN architecture was introduced, consisting of separate spatial and temporal

streams for processing video frames and optical flow information, respectively [87]. This

model achieved considerable performance in action recognition tasks by effectively cap-
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turing both appearance and motion cues in videos. Similarly, 3D CNNs were proposed

to directly operate on spatiotemporal volumes of video data, achieving competitive per-

formance in action recognition tasks without the need for optical flow computation [28].

Moreover, the availability of pre-trained 2D-CNN models on large-scale image datasets

(e.g., ImageNet[82]) has facilitated the transfer learning and fine-tuning of CNN architec-

tures for video understanding tasks. They are often used as the frame feature extractors,

enabling efficient training with limited annotated video data.

2.1.2 RNN-based

3D convolution kernels handle temporal information like spatial information, however

it is counter-intuitive. Because video content can change in the next frame, therefore two

adjacent images can contain completely different content. It limits the performance of the

convolution kernel. Recurrent Neural Networks (RNNs) emerged as a powerful tool for

modeling sequential frames and capturing temporal dependencies in video understanding

tasks. Different from traditional feed-forward neural networks, RNNs are equipped with

recurrent connections that enable them to maintain internal state representations and

process sequential data over time. In video understanding, RNNs leverage their recurrent

connections to capture temporal dependencies and motion dynamics across video frames.

By processing video frames sequentially, RNNs can effectively model the evolution of

features and capture complex interactions within video data. Moreover, variants of RNNs

such as long short-term memory (LSTM) [42] and gated recurrent unit (GRU) [16] have

been specifically designed to address the challenges of vanishing gradients and long-range

dependencies, making them well-suited for modeling sequential data with varying lengths

and durations.

RNN architectures have been extensively explored and adapted for video understand-

ing, demonstrating their effectiveness in capturing motion dynamics and temporal context

in video data. For example, a LSTM-based RNN architecture was proposed for video un-

derstanding tasks [24]. This model combined convolutional layers for feature extraction

with LSTM layers for temporal modeling, achieving state-of-the-art performance in tasks

such as action recognition and video description generation. Similarly, an RNN archi-

tecture was employed to model long-range temporal dependencies in video sequences,

demonstrating significant improvements in video classification accuracy [116].
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2.1.3 Hybrid Models

Hybrid video understanding models combine multiple modalities or architectures to

leverage their complementary strengths in analyzing and comprehending video data.

These models integrate different types of neural networks, such as CNN, RNN, and

attention mechanisms, to capture both spatial and temporal information within video

sequences. Some focus on reducing the large computational costs of C3D: P3D [80],

R(2+1)D [33, 98], ARTNet [104], MFNet [15], GST [69], and CSN [96]. Others focus

on recognizing long-range temporal dependencies: LTC-CNN [100], NL [105], Timecep-

tion [45], and STDA [56]. Some unique modules include TSM [61] which shifts indi-

vidual channels along the temporal dimension for improved C2D performance, Trajec-

toryNet [123] which uses introduces a TDD-like [106] trajectory convolution to replace

temporal convolutions.

One common approach in hybrid models is to combine CNNs with RNNs or attention

mechanisms. CNNs are well-suited for extracting spatial features from individual video

frames, while RNNs or attention mechanisms are effective at capturing temporal depen-

dencies and long-range interactions across frames. For example, a two-stream architecture

was proposed [87], consisting of spatial and temporal streams. The spatial stream pro-

cesses RGB frames using CNNs to capture appearance-based features, while the temporal

stream computes optical flow between consecutive frames and feeds it through a separate

CNN to capture motion-based features. These streams are then fused at later stages to

make predictions, resulting in improved action recognition performance.

Another approach is to integrate CNNs with transformer-based architectures, such

as the Video Transformer Network (VTN) [76]. In this approach, CNNs are used to

extract spatial features from video frames, which are then fed into the transformer encoder

to capture temporal dependencies and global interactions across frames. This hybrid

architecture combines the strengths of CNNs in spatial feature extraction with the self-

attention mechanism of transformers to achieve state-of-the-art performance in various

video understanding tasks.

By combining multiple modalities or architectures, these models can effectively capture

both spatial and temporal information within video data, leading to more robust and

accurate video understanding capabilities.

2.1.4 Graph-based

Graph neural networks (GNNs) are often used for modeling complex relationships and

structures for video understanding tasks. Different from CNNs which generally operate
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on input data with fixed size, GNNs can effectively capture the spatial and temporal

dependencies inherent in video data by representing them as graphs. In the context of

video understanding, GNNs leverage the graph representation of video data to model

interactions between video frames, objects, and actions. By encoding the spatial and

temporal relationships as edges in the graph, GNNs can effectively propagate information

across the video sequence.

In recent years, several research studies handled video understanding tasks with have

explored the application of GNNs. For example, [117] apply the graph convolutional

networks (GCNs) over the graph to model the relations among different proposals and

learn powerful representations for the action classification and localization. [120] use a

graph convolutional network and a tracking network to derive person-object detections.

2.1.5 Generative Models

Generative models learn to generate representations of future timesteps for prediction.

It is generally used for action prediction, video generation tasks,

For the action prediction task, generative models produce future features and predict

class labels for them. For example, Conv3D [38] utilizes a C3D to generate unseen features

for prediction. RGN [122] utilizes a recursive generation and prediction scheme with a

Kalman filter during training. RU-LSTM [31] utilizes a multi-modal rolling-unrolling

encoder-decoder with modality attention.

2.1.6 Attention-based

The attention mechanism [101] has been widely used in various domains of deep learn-

ing in recent years, because of its powerful versatility. It allows models to dynamically

allocate resources to the most informative parts of the input data, thereby enhancing

their ability to capture fine-grained details and long-range dependencies in videos. In

video understanding tasks, attention mechanisms enable models to selectively focus on

relevant regions in frames and important temporal segments within video sequences. The

attention mechanism can be applied at different levels, including spatial, temporal, and

spatio-temporal attention. Spatial attention focuses on relevant regions within individual

video frames, while temporal attention highlights representative segments across the tem-

poral dimension. Spatio-temporal attention integrates both spatial and temporal cues

to selectively attend to relevant spatial regions and temporal segments simultaneously.

By leveraging attention mechanisms, video understanding models can effectively extract
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Figure 2.2: Structure of Transformer. Figure is cited from [101].

salient features and capture complex interactions within video data.

Transformers, which made their debut in the natural language processing (NLP) field

in 2017 [101], are an encoder decoder sequence-to-sequence modeling schema that uses

self-attention rather than recurrent neural networks or convolution. Transformers excel at

capturing long-range dependencies and modeling complex interactions across sequences,
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making them well-suited for analyzing temporal data such as videos. A family of action

recognition models that employs vision transformers coalesced in 2020 and 2021. For

instance, TimeSformer [6] utilizes embeddings of frame patches augmented with posi-

tional information as a sequence of tokens for the transformer. VTN [76] is based off

a transformer model that processes long sequences of tokens. ViViT [1] employs an-

other pure-transformer architecture. MViT [27] which introduce resolution and channel

scaling in combination with the vision transformer. These models operate directly on

video frames or feature sequences, allowing them to capture global context and temporal

relationships efficiently.

Moreover, transformer-based models enable parallel processing of video frames, lead-

ing to faster inference and training times compared to recurrent architectures. With

their ability to handle long-range dependencies and capture temporal context effectively,

transformer-based models show promise for various video understanding tasks, includ-

ing action recognition, video captioning, and video generation. As research in this area

continues to advance, more attention-based approaches will be proposed to improve the

performance of attention-based models in video understanding domain.

2.1.7 Large-scale Models

With the burgeoning growth of online video platforms and the escalating volume

of video content, the demand for proficient video understanding tools has intensified

markedly. Given the remarkable capabilities of Large Language Models (LLMs) in lan-

guage and multi-modal tasks, many video understanding large language models (Vid-

LLMs) [118, 70] have been proposed. The emergent capabilities of Vid-LLMs are sur-

prisingly advanced, particularly their ability for open-ended spatial-temporal reasoning

combined with commonsense knowledge, suggesting a promising path for future video

understanding.

2.2 Tasks and Metrics

In this section, video understanding tasks are divided into two categories, action under-

standing task and text-based understanding task. In action understanding tasks, models

need to utilize videos as input and explore required information from them, such as the

class label of video content, and the timestamp that indicates when actions happened.

Action recognition and action detection tasks belong to action understanding tasks. Text-

based understanding tasks need models to comprehend multi-modality data (text and
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videos), and describe and explore video content using text. Examples of them include

video question and answer tasks.

2.2.1 Action Understanding Tasks

In this subsection, action understanding tasks are split into three groups according to

the complexity of output data. They are simple understanding tasks, temporal under-

standing tasks, and spatio-temporal understanding tasks. The simple understanding task

requires models to recognize specific activities in a video and predict class labels based on

video content. If the timestamps where specific actions happen need to be predicted, the

models should be trained by the temporal understanding task aiming to localize actions

based on timestamps in a video. Spatio-temporal understanding is more difficult than

previous tasks, which train models to identify both the when and where of events within

video frames.

■ Simple Understanding Tasks

Action Recognition and Video Classification. The goal of the task is to assign a

category to a video, known as action recognition or video classification. Action recognition

is a fundamental task in video understanding. The objective is to automatically recognize

and classify the actions performed by individuals or objects within the video frames.

Action recognition algorithms analyze the spatial and temporal features of video frames

to detect and classify different actions. The challenge lies in accurately identifying and

distinguishing between various action classes, considering factors such as appearance vari-

ations, motion dynamics, and contextual information. Action recognition models typically

learn to capture discriminative features that represent different actions and assign action

labels to videos.

Different benchmarks for activity classification are: Kinetic-400 [51], Kinetic-600 [10],

Kinetic-700 [11], SomethingSomething-V2 (SSv2) [71], ActivityNet [9], HACS [121], HMDB51 [54],

UCF-101 [89], and Diving-48 [59].

This task is evaluated using Top-K accuracy, confusion matrix, F1 score, etc. Top-K ac-

curacy measures the proportion of correctly classified videos when the ground truth label

can be found in the top-K predicted classes. Top-1 accuracy is referred to as accuracy. It

provides a straightforward measure of the ability to correctly identify actions. Addition-

ally, confusion matrix analysis is commonly employed to assess the performance across

different action classes. The confusion matrix provides insights into the model’s classifi-

cation errors, enabling researchers to identify challenging action classes for improvement.
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Considering both the ability to correctly identify positive instances (precision) and the

ability to capture all positive instances (recall), the F1-score provides a balanced measure

of precision and recall, offering a single metric to evaluate the overall performance.

Video Retrieval. The video retrieval task aims at finding videos containing spe-

cific actions, objects, or scenes. It is often used to train video recommendation models.

This task exists in the literature with different names including: Multi-Instance Retrieval

(MIR) [2], Paragraph-to-video (P2V) [92] retrieval. MIR focuses on both text-to-video

(T2V) and video-to-text (V2T) retrieval. The common benchmark for T2V task is EPIC-

Kitchen-100 [19], and the metrics are mAP for V2T retrieval and normalized Discounted

Cumulative Gain (nDCG) for T2V retrieval. P2V retrieval bridges the gap between lan-

guage and video, finding videos relevant to a paragraph (several sentences). Different

datasets to solve this task includes ActivityNet Captions [9] and CondensedMovies [3].

■ Temporal Understanding Tasks

Temporal Action Localization/Detection. Different from action recognition, which

only identifies the presence of actions in entire videos, temporal action localization/detection

(TAL/D) aims to pinpoint the exact moments within videos when specific actions occur

by providing both the action label and the temporal boundaries of each action instance.

This task is essential for various applications, including video editing and action analysis.

Temporal action localization/detection models output temporal segments that correspond

to the occurrences of the actions in the video.

The challenge lies in accurately identifying the start and end timestamps of the actions

within the video. Since there are many consecutive and similar frames exist in a video,

locating the temporal boundaries between actions of interest and backgrounds is difficult

for AI models.

Common benchmarks for this task are ActivityNet-v1.3 [9], HACS Segment [121].

The evaluation metrics are the intersection over union (IoU), the average precision

(AP) for each action category, and the mean average precision (mAP). Intersection over

union (IoU), which measures the overlap between the predicted temporal intervals and

the ground truth annotations. IoU quantifies the temporal localization accuracy by as-

sessing the extent of overlap between the predicted and ground truth intervals. Another

important metric is average precision (AP), which measures the precision of temporal

localization predictions across different confidence thresholds. AP provides insights into

the model’s performance at various levels of confidence, helping assess its robustness and

reliability in localizing actions. Mean Average Precision (mAP) measures the average

precision across multiple action categories. Recall at a fixed IoU threshold evaluates the
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proportion of ground truth actions that are successfully localized above a certain IoU

threshold. This metric highlights the model’s ability to accurately localize actions with

high overlap with the ground truth annotations, providing a measure of its sensitivity to

different levels of localization accuracy.

Video Anomaly Detection. Video anomaly detection is a special task under action

detection. It aims to automatically detect and localize abnormal activities, behaviors,

or events that deviate from normal patterns or behaviors in a given video stream. Since

anomaly rarely happens, this task is a few-shot action detection task. The difference

between action detection and anomaly detection is that action detection generally prepares

the action classes that need to be detected. While anomaly detection does not have a

specific action category since all abnormal situations cannot be listed. The definition of

anomaly will be difficult in difficult application scenarios. Video anomaly detection is

applied to the applications of security monitoring, industrial inspection, and healthcare.

In video anomaly detection, the challenge is to distinguish between normal activities

and anomalous events in video data, often with limited or no labeled anomaly data for

training. Anomaly detection models typically learn to capture the underlying distribu-

tion of normal behavior in video sequences and identify deviations or outliers that indicate

anomalies. These anomalies may manifest as sudden changes, irregular patterns, or un-

expected occurrences in the video data.

Common benchmarks for this task are UCF-Crime [91], ShanghaiTech [64] datasets.

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is commonly

used to assess the performance of video anomaly detection models, which is a conventional

threshold-independent metric [91, 111]. It measures the ability to distinguish between true

positive and false positive rates across varying threshold values, thereby quantifying its

discrimination performance.

Action Spotting

Action spotting [34] task requires models to output a multi-label classification prediction

for each frame. Different from the TAL/D task which detects a temporal boundary for

each action instance, action spotting needs the model to output the exact frame for each

action instance. The challenge of action spotting is the influence of consecutive similar

frames in videos, which makes classifying each frame with an action label become difficult.

Action spotting is necessary for applications that need accurate detection results, such as

autonomous driving, and detection of rule violations in sports competitions.

The benchmarks are SoccerNet-v1, SoccerNet-v2 dataset [34, 20].

Average-mAP [34, 20] is the main evaluation metric for action spotting task. If the

distance between the ground truth timestamp and the predicted timestamp is less than

∆ seconds, the prediction is considered positive. ∆ is a threshold ranging from 5-60
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28:19

goal action

Figure 2.3: Action spotting. The goal action is localized from a soccer video. The images
are cited from [34]

seconds using a 5-second step size. The average precision (AP) is calculated for each

action class and each ∆. The mean average precision (mAP) score is calculated by taking

the mean AP over all classes with ∆. The Average-AP is the average of 12 AP values

calculated over 12 tolerances ∆ for each class. The Average-mAP metric is the average

of 12 mAP values calculated over 12 tolerances ∆.

■ Spatio-temporal Understanding Tasks

Spatio-temporal Action Localization/Detection. Spatio-temporal action local-

ization/detection (SAL/D) task aims to locate both when and where specific actions

within a video. Notable datasets for this particular category are UCF101-24 [89], JHMDB-

22 [48], and UCF-MAMA [74]. These datasets contain annotations for each video frame.

Datasets like AVA [37], AVA-Kinetics [55] contain box-annotations at 1Hz sampling fre-

quency over a clip of 15 mins. The evaluation metric for this task is the f-mAP and

video-mAP measuring frame-level and video-level localization performance respectively.

Video Object Detection and Tracking. The objective of video object detection

(VOD) and tracking is detecting and tracking objects of interest within a video. VOD task
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typically aims to detect objects across frame sequences. Since videos typically contain a

lot of redundant temporal information, it helps detectors detect an object in the current

frame and anticipate the position in the subsequent [67, 127]. The tracking task aims

at identifying and following the movement of specific objects throughout a video. A

more fine-grained tracking approach known as point tracking has emerged, which tracks

specific points on the surface of an object regardless of pixel location. They are essential

for various applications, including video surveillance, autonomous driving, and augmented

reality.

Video object detection and tracking models need to analyze the spatial and temporal

features of videos to detect and localize important objects and track their movements

across consecutive frames. The challenge is handling factors such as occlusions, scale

variations, motion blur, and object appearance changes while maintaining accurate object

localization and tracking performance.

Benchmark datasets for VOD are ImageNet-VID [21]. Popular benchmarking datasets

for tracking are KITTI [32], UADETRAC [110], LaSOT [26].

Reported Metrics of VOD are generally mAP with results reported for different speeds of

motion of objects. HOTA [68] and Clear-MOT [5] are the evaluation metrics for tracking

tasks.

Referring Video Segmentation (RVS). RVS [49] segments the objects referred to

by either textual descriptions or the first frame’s segmentation. The benchmarks for RVS

using textual description are RefCOCOg [75], Refer-Youtube-VOS [85]. The evaluation

metrics for this task are mAP and mIoU.

2.2.2 Text-based Understanding Tasks

In this subsection, text-based understanding tasks are composed of video captioning

task and video question answering task. The video caption task focuses on generating

an appropriate textual description according to the input video content. Video question

answering task enables models to predict the answers to related questions based on video

content.

■ Video Captioning

Video captioning is a multi-modality task that generates textual descriptions of video

content. The goal of the tasks is to automatically generate human-like captions that ac-

curately describe the content and context of video sequences. Video captioning models

typically take video frames as input and produce corresponding textual descriptions that
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capture the temporal dynamics, objects, actions, and scenes depicted in the video. A

video captioning model should generate informative, coherent, and semantically mean-

ingful captions, providing a concise and accurate summary of the video content. The

challenge lies in understanding the visual content of the video and translating it into

natural language descriptions that convey relevant information to humans.

Popular benchmarks for this task are MSRVTT [112], Youcook2 [126], and MSVD

datasets [13].

The evaluation metric for this task are BLEU@4 [78], METEOR [4], ROUGE [60],

and CIDEr [103]. BLEU (Bilingual Evaluation Understudy) measures the n-gram over-

lap between generated and reference captions, providing insights into linguistic similarity.

METEOR (Metric for Evaluation of Translation with Explicit Ordering) offers a more

holistic assessment by considering synonyms and paraphrases, incorporating a weighted

harmonic mean of precision and recall. CIDEr (Consensus-based Image Description Eval-

uation) evaluates consensus between generated and human-judged captions, capturing

diversity and informativeness. ROUGE (Recall-Oriented Understudy for Gisting Evalua-

tion) computes recall-based scores for n-grams, assessing overlap and similarity between

generated and reference captions. These metrics collectively enable a comprehensive eval-

uation of caption quality and alignment with human judgments.

■ Video Question Answering (VQA).

VQA answers questions about the video content based on visual information and poten-

tially textual queries. According to the literature, this task is subdivided into three sub-

categories: Multiple-Choice (MC), Open-Ended (OE), and Long-Form (LF). MC-VQA

addresses multiple-choice question answering. OE-VQA answers subjective, creative, and

logical questions. LF-VQA goes beyond single answers, generating comprehensive expla-

nations that understand video content, reason temporally, and adapt to diverse question

types.

Common benchmarks for this subtask are TGIF-Action and TGIF-Transition [47],

MSRVTT-MC [114]. Common benchmarks for this subtask are TGIF-Frame [47] and

ActivityNet-QA [115]. Common benchmarks for LF-VQA subtask are ActivityNet-QA [115]

and VIOLIN [63].

VQA is evaluated using Top-1, Top-K accuracy as a metric.
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2.3 Video Understanding Datasets

2.3.1 Something-Something

Something-Something [36, 71] is a human-object interaction benchmark, released in

2017. Video creation was crowd-sourced through Amazon Mechanical Turk (AMT). The

dataset consists of 108,499 videos and 174 classes. 108,499 videos are divided with an

80/10/10 training/validation/test split. Each single-instance lasts for 2–6 seconds. Ex-

amples of the 174 classes contain holding something, turning something upside down, and

folding something. A second and larger version was released in 2018. It also added object

annotations, reducing label noise, and improving video resolution. These are important

benchmarks for human-object interaction due to their scale and quality.

2.3.2 UCF101

The UCF101 [89] dataset is a benchmark dataset for action recognition, containing

13,320 video clips across 101 action categories. It offers diversity in action types, actors,

environments, and camera viewpoints. The dataset is Widely used for evaluating the

performance of the action recognition task.

UCF101-24, the spatiotemporally labeled data subset of THUMOS’13, was produced

as part of the THUMOS’13 challenge. Examples of the 24 human action classes include

Basketball dunk, Ice dancing, Surfing, and Walking with dog. The majority of the classes

are sports. It consists of 3,207 videos from the original UCF101 dataset [89]. Each

video contains one or more spatio-temporally annotated action instances. While multiple

instances within a video have separate spatial and temporal boundaries, they have the

same action class label. The average video length is approximately 7 seconds. The dataset

is organized into three train/test splits.

2.3.3 Kinetics

The Kinetics [12] dataset is a large-scale dataset with over 650,000 video clips spanning

600 action categories. Sourced from YouTube, it offers diversity in video quality, cam-

era viewpoints, and actor demographics. It is valuable for training video understanding

models to recognize a broad spectrum of human actions accurately. The Kinetics dataset

family was produced as a large-scale, high-quality dataset of URL links to human action

video clips focusing on human-object and human-human interactions. Class examples

from Kinetics-400 [12] include hugging, mowing lawn, and washing dishes. Clips were
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Figure 2.4: UCF101. Images are cited from [89].

collected from YouTube and annotated by AMT crowdworkers. The dataset consists of

306,245 videos, and within each class, 50 and 100 are reserved for validation and testing,

respectively. Each single-instance video lasts for 10 seconds. Additional videos and classes

were added in 2018 and 2019. These are among the most cited human action datasets in

the field and continue to serve as a standard benchmark and pretraining source.
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Figure 2.5: The Kinetics dataset. Images are cited from [51].

2.3.4 HMDB51

The HMDB51 [54] dataset focuses on action recognition, comprising 6,766 video clips

across 51 action categories. Each clip is manually annotated with action labels. It is

suitable for benchmarking and comparing the effectiveness of different action recognition

algorithms, particularly in fine-grained action recognition tasks.

2.3.5 ActivityNet

ActivityNet [9] is a large-scale dataset designed for activity recognition and temporal

localization. The ActivityNet dataset [9] family was produced for both action recognition

and detection. Example human action classes include Drinking coffee, Getting a tattoo,

and Ironing clothes. ActivityNet 100 (v1.2) is a 100-class dataset divided into a 4,819

videos (7,151 instances) training set, a 2,383 videos (3,582 instances) validation set, and

a 2,480 videos test set. It was expanded to ActivityNet 200 (v1.3) with 200-classes di-

vided into a 10,024 videos (15,410 instances) training set, a 4,926 videos (7,654 instances)

validation set, and a 5,044 videos test set. On average, action instances are 51.4 sec-

onds long. Web videos were temporal annotated by AMT crowd-workers. ActivityNet

remains as a foundational benchmark for TAP and TAL/D because of the dataset scope

and size. It enables the evaluation of models for action recognizing within untrimmed

videos, reflecting real-world scenarios.
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Figure 2.6: HMDB51. Images are cited from [54].

2.3.6 Charades

The Charades [86] dataset focuses on daily activity recognition in home environments.

Charades was produced as a crowd-sourced dataset of daily human activities (e.g., pour-

ing into cup, running, and folding towel). The dataset consists of 9,848 videos (66,500

temporal action annotations) with a roughly 80/20 training/validation split. Videos were

filmed in 267 homes with an average length of 30.1 seconds and an average of 6.8 ac-

tions per video. Action instances average 12.8 seconds long. Charades-Ego used similar

methodologies and the same 157 classes. However, in this dataset, an egocentric (first-

person) view and a third-person view are available for each video. The dataset consists of

7,860 videos (68.8 hours) capturing 68,536 temporally annotated action instances. Cha-

rades serves as a TAL/D benchmark along with ActivityNet [9], but it is also useful as

a multi-label AR benchmark because of the high average number of actions per video.

Charades-Ego presents a multiview quality unique among large-scale daily human action

datasets. It is useful for evaluating models on complex and realistic activity recognition
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Figure 2.7: ActivityNet. Images are cited from [9]

tasks in naturalistic settings.

2.3.7 SoccerNet

SoccerNet-v2 contains 765 hours of videos of 500 soccer games, with 300,000 anno-

tated timestamps and 17 action classes, such as goal, ball out of play, and yellow card.

SoccerNet-v2 is divided into training, validation, and test sets as 300, 100, and 100 games,

respectively [20]. The frame rate of videos is 2 frames for each second. The ground truth

for each frame is a label vector. The label vector contains 17 different action labels as

well as a label for the background. The action label in the label vector is set as 1 if the

corresponding action occurs in the frame and other labels are set as 0. If none of the 17

actions appears in the chunk, then the background label is set to one.

SoccerNet-v1 [34] contains the same soccer videos as SoccerNet-v2, however it only

includes three action classes and 6,637 annotations.

2.3.8 ShanghaiTech Campus

ShanghaiTech Campus dataset [64] contains 437 videos from 13 campus surveillance

scenes with complex light conditions and camera angles. It contains 130 abnormal events

and over 270,000 training frames. In this dataset, 238 videos are used for training and 199

videos for testing in the weakly-supervised setting. Moreover, the pixel-level ground truth

of abnormal events is also annotated in the dataset. Different from the previous dataset

which only contained videos captured with one fixed-angle camera, it includes multiple

scenes with multiple view angles to increase scene diversity Further, it introduces the

anomalies caused by sudden motion in this dataset, such as chasing and brawling in our
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Figure 2.8: SoccerNet-v1. Images are cited from [34]

dataset, which are not included in previous datasets.

2.3.9 UCF-Crime

The UCF-Crime [91] dataset contains 1900 surveillance videos covering 13 real-world

anomalous classes such as robbery, explosion, and road accident. It contains 1610 train-

ing videos and 290 test videos. Compared to ShanghaiTech [64], which mainly includes

pedestrian activities in a university setting, the scenes in the UCF-Crime dataset are more

diverse and complex.

2.4 Conclusion

Video understanding is a critical research in computer vision, which encompasses var-

ious tasks aimed at comprehending video content and context. Because it is required in

various applications, such as surveillance, security monitoring, industrial inspection, and

healthcare. Since the complexity and large volume of video data, deep-learning mod-
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Figure 2.9: SoccerNet-v2. Images are sampled from [20]

Figure 2.10: ShanghaiTech Campus dataset. Images are cited from [64]

els have become the mainstream of video understanding. Typical video understanding

approaches are introduced and categorized by the model structures.

To achieve automatic video understanding, video-related tasks are proposed, such as

action recognition, action spotting, and object tracking. These tasks involve analyzing

video content and identifying actions, objects, events, or anomalies within video sequences.

To evaluate the performance of these tasks, several metrics are used. These include

Intersection over Union (IoU), Average Precision (AP), accuracy, recall, F1-score, Mean

Average Precision (mAP), coverage, and redundancy. These metrics provide quantitative

measures of model performance, enabling researchers and practitioners to assess accuracy,
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Figure 2.11: UCF-Crime dataset. Images are cited from [91]

localization, summarization quality, and anomaly detection capabilities across different

video understanding tasks. Video understanding tasks and their evaluation metric are

introduced in Section 2.2. Some of the tasks are used to evaluate my proposed methods

in the following chapters.

To support these tasks, Many datasets are released to train and evaluate video un-

derstanding models, as such: UCF101 [89], ActivityNet [9], and SoccerNet-v2 [20]. The

datasets are demonstrated in the Section 2.3.
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Chapter 3

Interpretable Action Spotting Based

on Transformer

As shown in Chapter 2, various action-related tasks are proposed to train video under-

standing models, such as action detection, action recognition, and action spotting. Since

the actions that happen in a video can provide significant information, comprehending

each action in a video is necessary for video understanding. Action spotting, which

temporally localizes specific actions in a video, is an important task for understanding

high-level semantic information. Different from action detection, it is required to find the

most relevant frame where the action occurred. Fewer frames need to be focused on the

action spotting task. It is helpful to evaluate the interpretability of models. Therefore,

we propose an interpretable model for the action spotting task in this chapter.

The scene encoder, which is similar to the transformer encoder, is proposed to recognize

actions/scenes from input videos. It utilizes self-attention to model temporal relationships

in a video segment. Furthermore, the attention scores are visualized to present the impor-

tance of frames in an input video. The attention score is used to analyze the predictions.

The experimental results on the public dataset, SoccerNet-v1 and SoccerNet-v2, demon-

strate state-of-the-art accuracy. By using embedding features, our method obtains an

Average-mAP of 75.3%, which is close to human-level accuracy.

This chapter shows the background and motivation of the proposed action spotting

model in Section 3.1 and demonstrates model architecture in Section 3.2. Two public

datasets are used to evaluate the proposed method and extensive experiments are con-

ducted to analyze the effectiveness of the proposed method in Section 3.3. At last, a

conclusion of the chapter is provided in Section 3.4.

3.1 Introduction

Automatic or semi-automatic video editing algorithms are required by many applica-

tions. For example, the generation of summary videos will reduce the time from event
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Figure 3.1: Action spotting. A Goal action is shown in sub-figure (a), which consists of
running, shooting, and cheering scenes. The top and bottom of sub-figure (b) show an Offside
and a Corner action, respectively. The temporal duration of these actions is different. Note that
the action happens in zero second as the center image of each example. Frame images are cited
from [20].

to broadcast in sports. To approach this task, understanding video content is significant.

Action spotting is a video understanding task of localizing an event anchored to a single

timestamp.

There are two main challenges in action spotting. The first challenge is how to ad-

equately explore temporal information in videos. A video generally includes sequential

images that are visually similar, but have a different context. For instance, the football

field is typically the image background in a football scene, as shown in Figure 5.1. There-

fore, it is important to consider not only visual information but also underlying temporal

information for action spotting in such videos [35, 73].

The second challenge is interpreting predictions of action spotting. A deep learning

model [84] could provide visual clues for image classification tasks and interpret classifica-

tion results. However, the importance of each frame in a video still cannot be represented.

Without interpretability, it is difficult to apply an AI model in a real-world application.
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To address these issues, self-attention is employed to model the temporal patterns

and utilize attention scores to interpret prediction results. Furthermore, the structure

of multiple encoders is introduced and action-aware chunk size is applied to improve the

performance of action spotting. Chunk size is the temporal length of the input video.

One may consider an action to be composed of different subactions, e.g., a Goal action

is often composed of Running, Shooting, and Cheering subactions. A Yellow card action

typically includes a scene of a player falling and a scene of the referee raising the card.

The novel model based on multiple encoders is proposed for action spotting to tackle

these challenges. Specifically, as shown in Figure 3.2, first image features are extracted

from sequential frames of a video as a chunk. The chunk is split into multiple segments,

and fed into multiple transformer encoders, respectively, to recognize scene content and

capture the changes of scene in an action. Finally, the proposed model classifies actions

by recognizing the scene sequence. Each type of action generally has a different duration,

since they include different subactions. Therefore, different actions should utilize a differ-

ent chunk size to learn the pattern of action and employ the action-aware chunk size with

the aim of increasing action-related frames and reducing unrelated frames in a chunk.

In summary, the interpretable action spotting model is proposed based on scene en-

coders, which utilizes the self-attention mechanism to model temporal relationships and

employ the attention score to interpret predictions. Additionally, the performance is fur-

ther improved by the multiple encoder structure and the action-aware chunk size. More-

over, the proposed model achieves the state-of-the-art Average-mAP of 75.3% for action

spotting on the SoccerNet-v2 dataset and evaluates the model design choices in ablation

studies.

3.2 Transformer-based Model for Action Spotting

In this section, a novel model with multiple encoders is proposed, as shown in Figure 3.2.

The extracted features are split into multiple subsets with the same duration. They are fed

into a scene encoder, respectively. The structure is designed to learn semantic information

in each subset to recognize scene sequences.

3.2.1 Scene Encoder

To recognize a scene in each video segment, the scene encoder is introduced in the

proposed model. The scene encoder employs the structure of a transformer encoder. To

accommodate different features, which may have different dimensions, an MLP layer is
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Figure 3.2: Proposed Model Architecture. Images of a football game are cited from [20].

utilized as the first layer of the scene encoder to map features to a fixed length E. The

temporal information is injected to model the temporal relationship between frames by the

positional encoding layer. The positional encoding is represented as a sinusoidal function,

as proposed in [102].

After the positional encoding layer, the multi-head self-attention mechanism [102] is

used to explore latent patterns from the temporal relationship among frames. The number

of scene encoders, the number of stacked encoder layers, and the number of heads in the

multi-head attention are denoted as N , L and H, respectively. The attention calculated

by the query matrix Qn = ϕn
q ({ft}

T
N
t=1), the key matrix Kn = ϕn

k({ft}
T
N
t=1) and the value

matrix V n = ϕn
v ({ft}

T
N
t=1), where ϕq, ϕk and ϕv are MLP layers and n is the index of the

encoder.

The attention of the hth attention head in the nth encoder is calculated by

headn
h = Attentionp

n(Qn, Kn, V n), (3.1)

On = ϕn
o ([headn

h]Hh=1), (3.2)

where ϕn
o is an MLP layer, and the Attention function is the scaled dot-product attention

in [102]. The output of nth encoder is denoted as On. The query, key, and value matrices

are three different representations of the same frames. In Attention, the dot-product of Q

and K represents the correlation of every two frames. Two similar frames have a strong

correlation because their features are similar. The result is used as the weight on V to

31



help the model focus on similar frames. Since the frames in a scene are generally similar,

self-attention can find scenes in a segment by finding similar images.

The scene encoder is used to extract scene features in each subset. The outputs of all

encoders, which present the scene features in the subsets, are merged via averaging them

temporally. A sigmoid layer and a dropout layer are used to avoid overfitting. Finally,

an MLP ϕr layer and a sigmoid layer are employed to classify an action as:

C = [O1;O2; ...;On], (3.3)

m =
1

T

T∑
t

ct, (3.4)

y = σ(ϕr(dropout(σ(m)))), (3.5)

where [;] is a concatenation operator, and ct is the presentation vector of the tth frame

output by encoders.

3.2.2 Model Architecture

Here action spotting is formulated to the task of recognizing scene sequences in each

chunk. To recognize scene sequence in a video, the multiple encoder structure is proposed,

as presented in Figure 3.2. The set of input feature vectors are partitioned into multiple

subsets and each subset are handled by a respective encoder. If not specified otherwise,

the number of scene encoders is set to two. Every scene encoder contains 8 heads and 2

encoder layers.

3.2.3 Implementation Details

For training models, the Adam optimizer [52] and the binary cross entropy loss function

are used, and a starting learning rate is set to 0.002. The dropout rate is set to 0.1, the

batch size to 128 and the chunk size to 15 seconds on training and validation datasets.

The training process is stopped once the mAP metric on the validation dataset stops

increasing for 6 continuous epochs.

■ Video Encoding

The frames are sampled at 2 fps from videos with a resolution of 224×224. The frame

of an input video at the time index t = 1, 2, . . . , T is denoted by xt ∈ RH×W×C , where T is

the number of frames in a chunk, H and W are height and width, and C is the number of
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image channels. A feature vector of d-dimensional per frame is denoted by ft ∈ R1×d. A

ResNet-152 [41], which is pre-trained on ImageNet [21], is utilized as a feature extractor.

As a result, the feature extractor outputs a 2,048-dimensional vector for every frame. The

features are remapped to a 256-dimension vector per frame.

■ Training

During training, a long video is divided into multiple non-overlapping chunks. The

proposed model is trained to predict the label of the actions that happened in each

chunk. Since multiple actions can occur within a chunk, action spotting is formulated as

a multi-label action classification task.

■ Inference

There are two types of inference processes: using a fixed chunk size for all actions and

using an optimal chunk size for each class, called action-aware chunk size. When using

a fixed chunk size, the prediction of each chunk is used as the classification result of its

center frame. The prediction result for the entire video is obtained by sliding chunks

frame by frame, to predict the classification results of all frames. The inference process

with the action-aware chunk size is shown in Figure 3.3. The features with different

chunk sizes are fed into the trained model to obtain the classification result. The result

using an action-aware chunk size is taken as the classification result of the corresponding

action. For example, the 20-second chunk result is used as the classification result of

penalty action. In this manner, chunks are slid frame by frame to obtain the results of

every frame. The appropriate chunk sizes are selected based on the performance of the

validation dataset.

■ Non-Maximum Suppression (NMS)

For reducing positive action spotting results with low confidence, non-maximum sup-

pression is used on confidence of a whole video in each class, following previous works [34,

18, 20, 35]. The NMS process is shown in Figure 3.4. For each class, the first peak of

confidence from all frames is kept, and the confidence of the rest frames in a NMS win-

dow are set to 0. Then, the next peak is located and the same process is performed until

all peaks above the NMS threshold are found. Finally, the confidence scores below the

threshold are set to 0. There are two hyper-parameters in the process, the NMS threshold

is 0 and the NMS window size is 60 frames (30 seconds).
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Figure 3.3: Inference. Models A and B are trained with the chunk size of 15 and 20 seconds,
respectively.

3.3 Experiments

In this section, the proposed model is compared with several existing methods on the

SoccerNet-v2 dataset [20]. The influence of chunk size for action spotting is analyzed to

evaluate the effectiveness of chunk size optimization. Moreover, some ablation studies are

conducted to confirm the design choices of the method. Finally, the model is evaluated

on the SoccerNet-v1 [34] dataset to show the generalizability of the method.
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Figure 3.4: Non-Maximum Suppression (NMS).

3.3.1 Dataset and Evaluation Metric

The SoccerNet-v2 [20] is used to train and evaluate the method. SoccerNet-v2 contains

765 hours of videos of 500 soccer games, with 300,000 annotated timestamps and 17

action classes, such as goal, ball out of play, and yellow card. It is divided into training,

validation and test sets as 300, 100 and 100 games, respectively [20].

SoccerNet-v1 is the predecessor of SoccerNet-v2, released by the same authors. It has

6,637 temporal annotations, including three classes of actions (goal, card, and substitu-

tion). SoccerNet-v1 contains fewer annotations and thus longer intervals between actions

than SoccerNet-v2. There are no 120-second frame intervals containing more than five

actions in the SoccerNet-v1 dataset. On the contrary, SoccerNet-v2 has up to 14 actions

in 120-second intervals.
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Table 3.1: Action spotting on SoccerNet-v2. The ResNet is a pre-trained ResNet-152 and
PCA is principal component analysis. Ours(1) uses 15 seconds as the chunk size. Ours(2) uses
an optimal chunk size for each action. Number of data is the number of samples in every class.
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NetVLAD ResNet+PCA 31.4 47.4 42.4 32.0 16.7 32.7 21.3 19.7 55.1 51.7 45.7 33.2 14.6 33.6 54.9 32.3 0.0 0.0

AudioVid ResNet+PCA 39.9 54.3 50.0 55.5 22.7 46.7 26.5 21.4 66.0 54.0 52.9 35.2 24.3 46.7 69.7 52.1 0.0 0.0

CALF ResNet+PCA 40.7 63.9 56.4 53.0 41.5 51.6 26.6 27.3 71.8 47.3 37.2 41.7 25.7 43.5 72.2 30.6 0.7 0.7

NetVLAD++ ResNet+PCA 50.7 67.7 59.6 70.2 70.3 35.3 37.1 38.3 56.0 68.2 65.3 62.4 43.4 55.2 78.9 50.0 1.5 1.7

NetVLAD++ ResNet 53.4 79.3 62.1 71.6 68.7 39.3 39.3 41.0 57.0 70.3 69.0 64.2 44.4 57.8 79.7 56.7 4.0 3.7

Ours(1) ResNet 54.7 75.8 60.8 72.0 70.6 38.6 41.8 40.2 60.6 71.3 70.3 63.5 49.2 59.9 81.6 53.4 8.0 11.5

Ours(2) ResNet 55.2 68.7 60.8 72.0 70.6 42.2 41.8 42.2 60.6 73.1 72.3 63.4 49.2 59.9 83.6 53.9 15.9 7.2

Number of data 173 2566 1703 2839 2098 5820 5256 7896 31810 18918 11674 10521 2200 4836 2047 55 46

The evaluation metric of action spotting is Average-mAP value. If the temporal offset

between prediction and its closest ground truth is less than a given tolerance ∆, the

prediction is regarded as positive. The average precision (AP) for the prediction per class

within the threshold ∆, averaged over action classes to calculate the mAP. The Average-

AP is the average of AP values calculated over 12 error tolerance values ∆ (from 5 to 60

seconds, the step size is 5 seconds), respectively, for each class. The Average-mAP is the

average of 17 Average-AP.

3.3.2 Performance of Action Spotting

■ Evaluation on SoccerNet-v2

Table 3.1 shows the results of the methods and several state-of-the-art methods (NetVLAD [81],

AudioVid [99], CALF [18] and NetVLAD++[35]). As seen in Table 3.1, the method

achieves an Average-mAP of 55.2% on the test dataset. The Average-mAP is an ab-

solute 1.8% higher compared to NetVLAD++. This improvement is consistently seen

for 12 of the 17 action classes, especially for classes with few examples (Red Card and

Yellow→Red). This indicates the advantage of modeling the temporal relationship in

every subset, especially for actions with few samples. The proposed method adequately

utilizes the temporal relationship due to the multiple encoder structure.

Performance has a low correlation with the number of samples as seen in Table 3.1. In

several actions where there are distinctive patterns of frame changes such as corner and

goal, a better performance is achieved even with few samples. On the other hand, on

actions with less distinctive patterns, such as indirect free-kick, the performance is lower.

For better recognition of temporal patterns, it is important to consider optimal chunk
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Table 3.2: Evaluation results for different chunk sizes. ResNet-152 is used as the feature
extractor. The Average-AP on the validation dataset changes with chunk size on three actions
(direct free-kick, corner and yellow card).

Chunk Size 10 15 20 25 30

Direct free-kick 52.7 57.4 52.8 49.7 46.4

Corner 83.0 81.1 77.8 74.6 69.6

Yellow card 54.9 54.7 55.7 52.3 52.6

Table 3.3: Action spotting on SoccerNet-v1. The proposed method compares with prior
works on SoccerNet and achieves the best performance.

Model Feature Extractor Average-mAP

NetVLAD [81] ResNet+PCA 49.7

AudioVid [99] ResNet+PCA 56.0

CALF [18] ResNet+PCA 62.5

NetVLAD++ [81] ResNet+PCA 61.1

Ours ResNet+PCA 64.5

Ours ResNet 66.8

size because as many as action-related frames are included and the number of unrelated

frames are decreased in chunks (see next subsection).

■ Evaluation on SoccerNet-v1

SoccerNet-v1 [34] contains the same soccer videos as SoccerNet-v2, but only includes

three action classes and 6,637 annotations. The proposed model is evaluated on the

SoccerNet-v1 dataset [34] comparing with related works. The model obtains an Average-

mAP of 66. 8%, exceeding CALF [18] by 4.3%, as shown in Table 3.3. When using

ResNet and PCA as feature extractor, the proposed method exceeds CALF [18] by 2%.

3.3.3 Interpretability Based on Attention Score

■ Visualization of Confidence Score

For further analysis of the results, the confidence scores of several classes are visualized

in Figure 3.5.

Figures 3.5 (a) and (d) show examples of the confidence score of corner action on a

temporal axis. As seen in these figures, the confidence score is high for frames where
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Frame of Ground TruthConfidence

Figure 3.5: Confidence score examples. Ground truth labeled frames of different actions
are shown in frames within red boxes. The blue line represents the change in confidence scores
in the time series axis. The confidence scores for adjacent frames are shown as circles in the
graphs above.

several people are shown in a close-up view. Such frames ordinarily last for around 10

seconds; therefore, an appropriate chunk size of corner action would be 10 seconds, as

shown in Table 3.2.

The confidence of the direct free-kick action is high for frames where players gather in

front of a goal. As shown in Figure 3.5 (b), the confidence score increases in frames where

players gather in front of the goal. On the other hand, in Figure 3.5 (e), such frames

appear for only a few seconds. Consequently, the confidence becomes low.

In the yellow card action, we often observe scenes of a player falling and a referee

appearing. In contrast, no referee appears in Figure 3.5 (c), however, the yellow card

information is displayed on the screen. The confidence score is low in this case. In

another case, we observe a high confidence score in Figure 3.5 (f) as the scene of a falling

player followed by a referee scene. 10−20 seconds is an appropriate range of chunk size for

yellow card actions. Because the scenes where a player falls often happen 3 − 10 seconds

before a Yellow card action, there is often a replay scene where a player falls, increasing

the appropriate chunk size for yellow cards to over 10 seconds.

■ Visualization of Attention Score

To evaluate the interpretability based on attention score for action spotting, three

attention score graphs are plotted in Fig. 4.5 The attention score is calculated by the last

frame attention estimation module in the model. The stride length is set to 15 seconds in

inference, and it is equal to the chunk size used in training. The attention scores in every

chunk are concatenated to obtain the attention of all frames. As shown in Figures 4.5
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Figure 3.6: Attention Score Examples. Labeled actions from the SoccerNet-v2 dataset [20]
are shown in frames marked by red boxes. The attention scores for the adjacent frames are
marked by circles in the graph. The translucent red rectangle indicates the range within 5 seconds
from the ground truth timestamp.
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Table 3.4: Evaluation of chunk size optimization. In Fixed size, every class uses a 15
second chunk size. Results with and without chunk size optimization are shown in Fixed and
Optimized. The optimized chunk size of action classes is shown in the row of Chunk Size. For
most action classes, performance improvement is observed by chunk size optimization.

P
en

al
ty

K
ic

k
-o

ff

G
oa

l

S
u

b
st

it
u

ti
on

O
ff

si
d

e

S
h

ot
s

on
ta

rg
et

S
h

ot
s

off
ta

rg
et

C
le

ar
an

ce

B
al

l
ou

t
of

p
la

y

T
h

ro
w

-i
n

F
ou

l

In
d

ir
ec

t
fr

ee
-k

ic
k

D
ir

ec
t

fr
ee

-k
ic

k

C
or

n
er

Y
el

lo
w

ca
rd

R
ed

ca
rd

Y
el

.→
R

ed
ca

rd

A
v
g-

m
A

P
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(a) and (b), the high attention scores appear in the frames where the center of a football

ground appears. The center of the football field is related to the kick-off scene. Another

example of an indirect free-kick is shown in Figure 4.5 (c). Attention scores in frames

in which a player is standing next to a ball are high. The attention mechanism takes

such frames as a clue to locating indirect free-kick actions. Unlike the confidence scores

providing the chunk-level importance scores, the attention scores can predict the frame-

level importance scores based on the temporal relationship of frames. Therefore, attention

scores are more helpful for interpreting predictions.

3.3.4 Analyses

■ Action-aware Chunk Size

To find an appropriate chunk size for each action, the model is trained with different

chunk sizes, ranging from 10 to 40 seconds (5 seconds as step size). Then, the chunk

size that achieves the best performance in the validation dataset is selected. The optimal

chunk sizes are shown in Table 3.4. As presented in this table, each action requires its

own chunk size. Thanks to this optimization, several improvements of performance are

reached. For example, the Average-AP of offside is improved by 3. 6% using the 20-

second chunk size. The Average-AP of shot-off target is also improved by 2% with the

chunk size of 10 seconds. The Average-AP of few-shot actions, such as red card and

yellow→red card, varies considerably with chunk size, and the lack of training samples

makes it challenging to select an optimal value. On the other hand, actions containing

many samples have similar optimal chunk sizes in the test and validation datasets. The

Average-mAP is improved by 0.5%.
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Table 3.5: Comparison of different number of encoders. Models are evaluated by the
Average-mAP with the number of encoders from 1 to 5. The ResNet-152 [41] is used as the
feature extractor. The highest value is obtained by a model using two encoders. Chunk Size
shows the best fixed chunk size for each model.

Num. of Encoder 1 2 3 4 5

Average-mAP(%) 52.1 54.7 53.5 52.9 52.2

Chunk Size(s) 15 15 15 15 15

Table 3.6: Comparison of different feature extractors. The performance of the proposed
method is evaluated using three feature extractors. Length shows the feature vector length of each
feature extractor.

Feature Extractor ResNet+PCA ResNet Embedding

Average-mAP(%) 52.9 54.7 75.3

Length 512 2048 8576

■ Influence of Scene Encoders

To analyze the influence of encoders, models with different numbers of encoders are

developed and evaluated, respectively. For each model, the hyper-parameters including

chunk size are tuned to obtain a better performance. Note that a fixed chunk size is used

for all models in this experiment, and the best performance is obtained with a 15-second

chunk size. Models with multiple encoders achieve better results than the single encoder

model, as shown in Table 3.5. Interestingly, the performance of models with more than

two encoders is decreasing as the number of frames in each chunk is reduced when covering

the same time window. The model with two encoders achieves the best performance on

SoccerNet-v2, modeling pre-action and post-action windows with a duration of 7.5 seconds

each.

■ Influence of Video Features

The proposed method is evaluated using three feature extractors (ResNet, ResNet +

PCA, and Embedding feature extractor [128]). The results are shown in Table 3.6. The

embedding feature extractor [128] consists of TPN [113], GTA [40], VTN [76], irCSN [97],

I3D-Slow [28]. The Average-mAP increases to 75.3% using embedding features. To

extract scene context in videos, it is required to correctly acquire important information

in frames. Therefore, the selection of feature extractor has a significant effect on action

spotting accuracy.
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3.4 Conclusion

In this chapter, a novel action spotting model with the attention mechanism is pro-

posed. The multiple scene encoders are employed to learn from the temporal relationship

in subsets. Each scene encoder utilizes the attention mechanism to handle temporal

information and represents the importance of frames with attention scores to interpret

predictions. Furthermore, the multiple encoder structure and the action-aware chunk size

demonstrate their effectiveness for analyzing action information from videos. According

to the results of the experiments, the proposed model increases the state of the art by 1.

8% utilizing the attention mechanism to learn the temporal patterns of each action. The

proposed model obtains an Average-mAP of 75.3% with embedding features.
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Chapter 4

Interpretable and Efficient Video

Understanding Based on Frame

Saliency

In the last chapter, the effectiveness of the attention mechanism has been evaluated

on the action spotting task. In addition, the visualized attention scores can interpret

which frames are focused by the model. They can help us analyze the limitations and

advantages of models. However, the heavy calculation of self-attention limits the real-time

applications.

To address this problem, a novel model is proposed for video understanding tasks.

Every video contains some similar frames, which cannot provide important information

and require an equal amount of features to represent.

The large number of similar frames poses a challenge for recognizing actions in videos.

Therefore, the frame saliency weighting module is proposed to focus on keyframes and

use frame saliency scores to represent the importance of frames and interpret predictions.

The proposed model contains two encoders, for pre-action and post-action time windows,

to encode video context. We validate our design choices and the generality of the pro-

posed method in extensive experiments. In the public SoccerNet-v2 dataset, the method

achieves an average mAP of 57.3%, improving over the state of the art. Using embedding

features obtained from multiple feature extractors, the average mAP further increases to

75%. Reducing the model size by over 90% does not significantly affect performance.

Additionally, we use ablation studies to prove the effectiveness of the saliency weighting

module. Moreover, considering high performance on action spotting could not show the

generic of the proposed method, evaluation tasks are extended from action spotting to

other video understanding tasks. The frame saliency weighting strategy is shown to be

applicable to existing methods on more general action datasets, such as SoccerNet-v1,

ActivityNet v1.3, and UCF101.

The structure of this chapter is as follows. Section 3.1 introduces the concept of the

proposed method, and Section 3.2 demonstrates the proposed model. Section 3.3 shows
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the experiment results of video understanding tasks. Section 3.4 concludes this chapter.

4.1 Introduction

Sa
lie
nc
y

Estimate feature saliency

Time
25:20 25:45

…

Extract key frames

…

… …

Recognize and spot action

25:34 “Goal”

Figure 4.1: Action Spotting. The action can be recognized from a single frame showing a
cheering player. The proposed method estimates frame saliency in order to focus on discrimina-
tive keyframes for efficient action spotting.

Video understanding has been researched for decades, and many models have been

proposed, as mentioned in Chapter 2. Most of them focus on the expression of the

temporal relationship.

A less explored research direction is understanding video content efficiently by focus-

ing on keyframes. Videos contain many similar frames, which provide little information

related to the task at hand. Much like a storyboard or cartoon strips, actions, and their

context can be expressed in far fewer pictures if they contain sufficient information. To

locate keyframes in videos, the saliency score is proposed to represent the importance

of frames based on the similarity of frame features. In this work, the frame saliency

weighting module is proposed to calculate a saliency score for each frame and use these

as weights of frame features. Different from traditional saliency calculation methods, the

proposed method improves video representation and saliency scores based on the cosine
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similarity of frame features. Experiment results show that this module has significant

benefits in terms of guiding the model to extract meaningful representations from videos.

They demonstrate that frame saliency is efficient and highly effective in improving video

representation while being significantly less complex than models that use self-attention

such as transformers [101]. As an additional benefit, focusing on the salient features al-

lows the model to understand videos with fewer parameters and reduce the model size by

over 90% while maintaining high action spotting precision. On SoccerNet-v2 [20], the pro-

posed model reaches a 57.3% Average-mAP for action spotting, an absolute improvement

of +3.9% with respect to the current state of the art. The confidence scores and saliency

scores are leveraged to analyze the performance of the proposed model in detail. Using

multiple feature extractors and computing the embedded features of them, the Average-

mAP metric further increases to 75.0%. In extensive experiments, the model structure,

feature extractors, and hyper parameter choices are evaluated for video understanding

tasks. To highlight its generality and versatility, the proposed module is evaluated on

various public datasets and improves the performance of existing models.

In this chapter, the frame saliency weighting module is proposed to focus on salient

information in videos by using temporal saliency weighting of feature vectors within tem-

poral windows. Extensive experiments are conducted to analyze the proposed method

on video understanding tasks, As a result, the proposed model achieves state-of-the-art

performance in SoccerNet-v2 [20] on the task of action spotting and improves existing

methods on several tasks of video understanding.

4.2 Frame Saliency Weighting Module for Video Un-

derstanding

The videos contain many similar frames in temporal segments (chunks) that are redun-

dant for action spotting. Additionally, when an action occurs, the content of the video

changes, and the changed frame is different from others. Such frames appear when actions

occur, consequently, they should be focused on. The proposed method explicitly addresses

the two facts. Considering that simply removing similar frames would reduce the duration

of actions and change the content of video, an efficient frame saliency weighting module

is proposed, which reduces the weight of redundant information and highlights keyframes

that are important for the action spotting task. Action spotting models benefit from such

distinct frames, which have low inter-frame similarity and high saliency.
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4.2.1 Frame Saliency Weighting

To focus on keyframes efficiently, frame features are weighted by saliency, which is used

to represent the importance of frames. The formula for computing a weighted frame

feature is as follows.

ki =

Nf∑
j=1

e−(si,j−θ)∑Nf

m=1 e
−sm,j

fi, (4.1)

where fi means the ith feature in a chunk, ki is the weighted feature vector of the i-th

frame, Nf is the number of frames in a chunk, and θ is a hyper parameter to adjust

feature weights. When not explicitly stated, the value of θ is 0. By weighting features

with saliency, model could locate keyframes and improve video representation efficiently.

When an action happens in a video, the frame and frame features change. Consequently,

we can consider that locating distinct frames according to the similarity of frame features

is an efficient way to detect actions. si,j represents the similarity of i-th and j-th frame

features. The calculation of si,j is as follows:

si,j = fT
i fj. (4.2)

If si,j is high, the i-th and j-th frames are consider similar and the content of them

redundant.

To further improve the representation, two fully connected layers and a ReLU layer are

used to remap features.

kremap = max (0,kW1 + b1)W2 + b2 + f , (4.3)

where W1 and W2 are the weights and b1 and b2 are the biases of the fully connected

layers, respectively. f means the features of all frames in a chunk and k represents the

weighted features. This step improves the representation ability of the model via mapping

features into a higher-dimensional space and projecting them back into the original space.

Finally, a residual structure is leveraged to solve the gradient degradation problem and

two layer-normalization are used to make training more stable.

4.2.2 Model Architecture

The structure of the proposed model is shown in Figure 4.2. When an action occurs,

the scenes before and after the action are generally different, especially in soccer videos.

In order to locate actions by detecting scene changes before and after an action, video
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Figure 4.2: Proposed Model. The proposed model consists of two encoders. An encoder is
stacked by frame saliency weighting modules. A frame saliency weighting module consists of a
frame saliency estimator, feature weighting, and remapping.

clip features are split into two parts of the same length, pre-action and post-action. Two

encoders are used to process each part, respectively. Given an image feature dimension

L and the number of frames in a chunk Nf , the shape of the output of the feature

extractor is Nf × L. A fully connected layer reduces the dimensions of the features for

efficiency and for a fair comparison among different feature extractors, which output

features with different lengths. The size of the matrix output by the fully connected layer

is Nf ×E, where E is the output dimension of the fully connected layer. The input of the

remapping module is an Nf × E matrix, which is expanded to an Nf × 2E matrix by a

fully connected layer. After an activation layer of ReLU, it uses another fully connected

layer to remap the features to a Nf × E matrix. In this manner, the shape of the input

data of the frame saliency module is the same as the output data. Therefore, an encoder

can contain the N frame saliency weighting module. In the last multilayer perceptron

(MLP) module, the output of two encoders is concatenated and averaged in the temporal

direction. Finally, the action classification result is output through a softmax activation

layer, a fully connected layer, and a sigmoid layer.

4.2.3 Implementation Details

A binary cross-entropy loss is used to train proposed model. An Adam optimizer

with an initial learning rate of 0.003 is leveraged to optimize gradients of the model. To
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Table 4.1: Action Spotting on SoccerNet-v2. Evaluation results in terms of Average-mAP,
where available, on the SoccerNet-v2 dataset with two different stride values during testing. N
is the number of frame saliency weighting modules and E is the dimension of the features that
output by the first fully connected layer.

Model Feature Extractor Stride 1 Stride 20 Size/Param

NetVLAD ResNet+PCA 31.4 - 7.50MB/0.66M

CALF ResNet+PCA 40.7 - 6.64MB/0.58M

MaxPool ResNet+PCA 18.6 - 0.11MB/0.01M

NetVLAD++ ResNet+PCA 50.7 46.7 7.50MB/0.66M

NetVLAD++ ResNet 53.4 48.1 19.50MB/1.70M

Ours [N = 1, E = 512] ResNet+PCA 56.0 51.0 27.24MB/2.38M

Ours [N = 1, E = 64] ResNet 54.0 49.5 1.93MB/0.17M

Ours [N = 2, E = 256] ResNet 56.9 53.0 18.19MB/1.59M

Ours [N = 1, E = 512] ResNet 57.3 53.1 66.29MB/3.16M

reduce the false detection rate, low-confidence predictions are filtered using non-maximum

suppression (NMS), which is the same as in previous work [34, 18, 20, 35]. The batch

size is set to 64 and the chunk size is set to 15 seconds. The non-maximum suppression

(NMS) [34] is carried out over a 30 second window with a threshold 0. The model obtaining

the highest mAP value on the validation dataset is used as the final model. It is used to

evaluate on the test dataset.

4.3 Experiments

In this section, the performance of the proposed model is evaluated. The confidence

graph as well as the saliency graph are visualized to interpret the results and conduct

extensive experiments to analyze the influence of chunk size and the number of encoders,

etc. To evaluate the effectiveness of the frame saliency weighting module, the fixed saliency

is compared with the proposed learnable saliency. Furthermore, to evaluate the generality

of the proposed method, the proposed module is tested on action spotting, temporal action

proposal generation, and video classification tasks using SoccerNet-v1, Activity-v1.3, and

UCF101, respectively.
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4.3.1 Datasets

To demonstrate the applicability of the proposed model to different public datasets and

different tasks, the evaluation results are presented on four datasets, SoccerNet-v1 [34],

ActivityNet v1.3 [9], UCF101 [89], and SoccerNet-v2 [20]. Experiments were conducted

for three video understanding tasks, action spotting, temporal action proposal generation,

and action recognition.

■ SoccerNet-v2

The public SoccerNet-v2 dataset [20], which contains video footage and annotations of

500 soccer games, is used to train and evaluate the method. It is split the dataset into

training, validation, and testing sets following the same procedure as the original paper

(300, 100, and 100 games, respectively). The frame rate of videos is 2 frames for each

second. The ground truth for each frame is a label vector. The label vector contains 17

different action labels, as well as a label for the background. The action label in the label

vector is set as 1 if the corresponding action occurs in the chunk, and other labels are set

as 0. If none of the 17 actions appears in the chunk, then the background label is set to

one. If there is a goal action and two play out of ball actions happen in the chunk, the

labels of goal and play out of ball are 1 and other labels are 0 in the label vector.

■ SoccerNet-v1

SoccerNet-v1 is the predecessor of SoccerNet-v2, released by the same authors. It has

6,637 temporal annotations, including three classes of actions (goal, card, and substitu-

tion). SoccerNet-v1 contains fewer annotations and thus longer intervals between actions

than SoccerNet-v2. There are no 120-second frame intervals containing more than five

actions in the SoccerNet-v1 dataset. On the contrary, SoccerNet-v2 has up to 14 actions

in 120-second intervals.

■ ActivityNet v1.3

ActivityNet v1.3 [9] is a large-scale dataset consisting of 19,994 videos with 200 activity

classes for action recognition, temporal action proposal generation and detection.
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■ UCF101

The UCF101 dataset consists of 13,320 video clips, which are classified into 101 cate-

gories. All the videos are collected from YouTube and have a fixed frame rate of 25 FPS

with a resolution of 320 × 240.

4.3.2 Evaluation Metric

The performance of action spotting is evaluated by the Average-mAP. If the distance

between the ground truth timestamp and the predicted timestamp is less than ∆ seconds,

the prediction is considered positive. ∆ is a threshold ranging from 5-60 seconds using

a 5 second step size. The average precision (AP) is calculated for each action class and

each ∆. The mean average precision (mAP) score is calculated by taking the mean AP

over all classes with ∆. The Average-AP is the average of 12 AP values calculated over

12 tolerances ∆ for each class. The Average-mAP metric is the average of 12 mAP values

calculated over 12 tolerances ∆.

4.3.3 Performance on Video Understanding Tasks

■ Action Spotting on SoccerNet-v2

Table 4.1 shows the results of the proposed model as well as the models from the

literature. The proposed model achieves 57.3% Average-mAP, representing an absolute

increase of 3.9% over the previous state-of-the-art. NetVLAD [81] and MaxPool pooled

features regardless of their temporal relationship between frames. The NetVLAD++

model uses two NetVLAD pooling modules to handle the first and second half of every

chunk, respectively. However, it does not consider the importance of frames within each

half chunk, treating them equally. In contrast, the proposed model uses the saliency of

frames as feature weights to focus on keyframes and learn the importance of each frame.

Performance decreases when increasing the stride value from 1 to 20 frames, however,

with an Average-mAP of 53.1% it is an absolute 5% higher than NetVLAD++. This

means that the model can run the inference at a significantly higher speed for a similar

average mAP value. Additionally, the model still outperforms NetVLAD++ in terms of

Average-mAP at one-tenth of the model size. Consequently, the frame saliency weighting

module is an elegant and efficient structure for action spotting.
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Table 4.2: Results on SoccerNet-v1. The Average-mAP is used a the evaluate metric.

Method Feature Extractor Average-mAP

NetVLAD ResNet+PCA 49.7

CALF ResNet+PCA 62.5

NetVLAD++ ResNet+PCA 61.1

Ours ResNet+PCA 65.0

Ours ResNet 68.1

■ Action Spotting on SoccerNet-v1

In this experiment, the Average-mAP is reported for evaluation. The results of SoccerNet-

v1 are shown in Table 4.2. Consistent with the results of SoccerNet-v2, the proposed

method achieves the highest Average-mAP with 68.1% using ResNet features, an in-

crease of +7.0% over NetVLAD++. An interesting observation is that in contrast to the

SoccerNet-v2 dataset, CALF [18] outperforms NetVLAD++ on the SoccerNet-v1 dataset.

The loss function in CALF defines six temporal segments around each ground-truth ac-

tion to include temporal relationships. When actions occur frequently in a dataset such as

SoccerNet-v2, their temporal segments may overlap, resulting in decreasing performance.

Therefore, CALF is better suited for datasets with fewer annotations and longer intervals

between actions, such as SoccerNet-v1.

■ Temporal Action Proposal Generation on ActivityNet

Using ActivityNet v1.3, the methods are evaluated by the performance of temporal

action proposal generation. To adapt the approach to the task, the saliency weighting

module is added as the first module in SSTAP [109], named by the SSTAP (+saliency)

model. SSTAP is a temporal actions detection method based on self-supervised learning.

The average recall (AR) is measured for different average numbers of proposals (AN) as

AR@AN, and calculate the area under the AR vs. AN curve (AUC) as the metric on

ActivityNet v1.3, where AN varies from 0 to 100. The results are shown in Table 4.3.

SSTAP with the added saliency module improves the AUC score by 0.1%, confirming the

effectiveness of the saliency module for the task of generating temporal action proposals

and improving video features. In addition, using the proposed module, the importance of

frames could be provided to interpret the prediction of existing models.
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Table 4.3: Temporal Action Proposal Generation on ActivityNet v1.3 [9]. The re-
sults are obtained on fully-supervised training. SSTAP (+saliency) use frame saliency weighting
module to improve video presentation before the SSTAP model.

Method AUC (%)

SSTAP 67.5

SSTAP (+saliency) 67.6

0.58 0.38 1.0 0.44

Figure 4.3: Saliency Score of the Archery Action.

■ Action Recognition on UCF101

To confirm the effectiveness of the proposed model for action recognition, another model

is developed by combining the proposed module with SlowFast [29], denoted by Slow-

Fast(*), and compare it with SlowFast using the UCF101 [89] dataset. The SlowFast

is pre-trained on Kinetics 400 dataset [12]. As shown in Table 4.4, the performance is

improved by 3.2% by using the proposed model as another branch. The proposed model

could capture important information that the SlowFast model might miss.

To evaluate the interpretability of the proposed method, the proposed method generates

some saliency scores of the archery action using the video from the UCF101 dataset, as

shown in Figure 4.3. The durations of the videos from the UCF101 dataset are short

and each video only contains one type of action. Therefore most of the frames in the

videos are related to the action label. The saliency scores of these videos are higher than

other datasets. The saliency score is higher in the third frame, where a man is holding

a bow and an arrow than in other frames. The frame is related to the action of archery.

Therefore, the proposed model could recognize the action by locating keyframes.
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Table 4.4: Action Recognition on UCF101. SlowFast(*) is the combination model of
SlowFast and the proposed model.

Model Accuracy

SlowFast 85.4

SlowFast(∗) 88.6
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Figure 4.4: Confidence Score Examples. Labeled actions from the SoccerNet-v2 dataset [20]
are shown in frames marked by red boxes. The confidence scores for the adjacent frames are
marked by circles in the graph. The translucent red rectangle indicates the range within 5 seconds
from the ground truth timestamp.

4.3.4 Interpretability Based on Frame Saliency Scores

■ Confidence Score

To analyze the experiment results, the results is visualized using a confidence score

graph as shown in Figure 4.4. The confidence score is the prediction of the model before

being processed by NMS. From (a) and (d) in Figure 4.4, for the goal action label,

the confidence is high after the action itself, corresponding to the celebration scenes of

players and fans. Offside actions typically include scenes where a referee raises a flag.

In Figure 4.4 (b), the scene where a referee raises the flag occurs for 6 seconds after the

offside action itself. In Figure 4.4 (e), no referee scene appears, and the confidence of

an offside action is low. Figure 4.4 (c) shows a substitute action, and confidence is high

for the frames 10 seconds before and after the action, as the camera typically focuses for

several seconds on the player running to the sideline and the substitute player entering

the field. The confidence in the substitution action is close to zero after a substitution, as

shown in Figure 4.4 (f). The confidence score could indicate the scenes related to specific

actions.
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Figure 4.5: Saliency Score Examples. Labeled actions from the SoccerNet-v2 dataset [20]
are shown in frames marked by red boxes. The saliency scores for the adjacent frames are marked
by circles in the graph. The translucent red rectangle indicates the range within 5 seconds from
the ground truth timestamp.

■ Saliency Score

To explore whether the saliency score is critical for action spotting, the saliency score

graphs of six examples are plotted. The saliency score is calculated by the last frame

saliency estimation module in the model. The stride length is set to 15 seconds in infer-

ence, equal to the chunk size used in training and concatenate the saliency scores in every

chunk to obtain the saliency of all frames. From Figures 4.5 (a) and (d), it is observed

that high-saliency scores appear at the time when a referee appears or players fall to

the ground, which are salient features to spot a foul action. For goal actions, the model

focuses on the frames in which the ball enters the goal. Because the saliency score is high

on such frames, shown in Figures 4.5 (b) and (e). In Figures 4.5 (c) and (f), the frames

in which a referee raises a yellow flag have high saliency scores, which are focused when

locating off-side action. Based on these results, the saliency score of the frames that are

related to actions is high. Therefore the frame saliency weighting module can focus on

action-related frames and improve video representation by using the saliency scores as

feature weights. Furthermore, the saliency score can be helpful in interpreting the predic-

tion results and helps the proposed model be applied in the areas where interpretability

is required. The frame-level saliency scores are helpful to improve model performance.
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4.3.5 Analyses

■ Influence of Chunk Size and Number of Encoders

The effectiveness of the chunk size and the number of encoders are analyzed using the

Average-mAP metric. The results are presented in Table 4.5.

Chunk Size. Because the model is trained to recognize action in every chunk, the

chunk size is a necessary hyper parameter. If the chunk size is too large, a chunk would

contain multiple actions that can affect each other and make the training challenging.

If there is at most one action within a chunk, the adjacent chunks do not affect each

other. The model needs to memorize C + 1 types of patterns, where C is the number of

action classes in the dataset. If at most two actions occur in a chunk, the model needs

to memorize C2 + 1 types of patterns. On the other hand, if the chunk size is too small,

video chunks where no action happens would increase and result in a more unbalanced

dataset. Therefore, selecting an appropriate chunk size is important for action spotting.

As shown in Table 4.5, 15 seconds is an appropriate chunk size, which is also reported in

NetVLAD++[35]. The appropriate chunk size is determined by duration of frames which

are related to specific actions. Detailed analysis has been done in the Chapter 3.

Number of Encoders. When an action occurs, the scene of the video would change.

For example, before a goal action, players are running to the goal, while after a goal is

scored, players celebrate and assemble. A model with two encoders is able to detect such

scene changes easily, by learning from pre-action and post-action scenes, respectively. The

model with two encoders performs best, as shown in Table 4.5. Models with three or four

encoders increase the complexity of model structure while not further improving accuracy.

When increasing the number of encoders with a fixed chunk size, the temporal segments

fed into each encoder will be smaller and they will contain less temporal information. It

increases the difficulty in capturing temporal correlations among frames in a chunk.

■ Influence of Model Architecture and Feature Extractor

The effect of the model and feature extractor are analyzed. The proposed module is

compared with self-attention mechanism using the Average-mAP metric. The results are

presented in Table 4.6 and Table 4.7.

Model Architecture. The proposed model is compared with NetVLAD++ [35] and

a transformer-based model [101] using different feature extractors. As shown in Ta-

ble 4.6, the proposed method achieves the best performance. NetVLAD++ leverages two

NetVLAD encoders to learn temporal information, however it could not capture the im-

portance of each frame. The transformer-based model only has one encoder, which leads
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Table 4.5: Comparison of Chunk Sizes and Numbers of Encoders. The Average-mAP is
calculated for different chunk sizes from 10 to 30 seconds, while changing the number of encoders
from 1 to 4, using ResNet-152 as the feature extractor. The highest value was obtained for a
model using two encoders and a chunk size of 15 seconds.

Chunk size (s)
Number of encoders

1 2 3 4

10 50.98 54.92 54.96 54.30

15 52.90 57.32 55.51 55.47

20 50.81 54.97 53.69 54.01

25 48.12 53.30 53.03 51.41

30 45.69 50.99 49.55 49.52

Table 4.6: Comparison of Model Architectures and Feature Extractors in terms of
Average-MAP. The proposed method achieves the best performance in all choices of the feature
extractor.

Feature Extractor Transformer NetVLAD++ Ours

ResNet+PCA 47.8 50.1 56.0

ResNet 48.3 53.4 57.3

Embedding 73.8 74.1 75.0

to the difficulty of locating the frame changes before and after actions.

Feature Extractor. The embedding features extracted by five models [128] greatly

improve the performance of all methods, highlighting the importance of efficient video

representations for the action spotting task. For any feature extractor, the proposed

method achieves a better result than other models. Consequently, the proposed method

would improve the presentation of video features by increasing the weights of keyframes.

■ Comparison with Self-attention Model.

In order to compare with self-attention, two self-attention-based models with a trans-

former encoder and two transformer encoders are developed, respectively. The method

reaches a higher Average-mAP, as presented in Table 4.7. I consider that it is because the

frame saliency weighting module does not have three fully connected layers to calculate

the vectors K, Q, V in a transformer encoder [101]. The calculation of K, Q, V changes

the mapping results of the feature extractor and reduces the ability of capturing the sim-

ilarity among frames. In addition, the three fully connected layers increase the model

parameters. Different from them, the model learns to calculate the saliency of each frame
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Table 4.7: Comparison with Self-attention. ResNet-152 is used as a feature extractor.
The two self-attention based models with an encoder and two encoders are developed respectively.

Model Average-mAP Size (MB)

Self-attention (1 encoder) 48.3 97.2

Self-attention (2 encoders) 53.0 249.0

Ours (2 encoders) 57.3 66.3

Table 4.8: Comparison with Keyframe Extraction Methods. The Average-mAP on
SoccerNet-v2 is used as the metric and ResNet152 with PCA is used as the feature extractor.
The chunk size is 15 seconds, and frame rate is 2.

Method Average-mAP

Sampling-based 49.0

Shot-based 38.0

Cluster-based 46.9

Ours 56.0

based on the similarities of the learnable frame features.

■ Influence of Frame Extraction Methods

To further demonstrate the effectiveness of the method, three frame extraction meth-

ods are leveraged to select frames before feeding features into the proposed model. The

proposed model is compared with different methods. Keyframe extraction is an effi-

cient method used to clearly express the important contents of a video file by extracting

a set of representative frames and removing the duplicated ones. The techniques of

keyframe extraction can be classified into three main classes: sampling-based, shot-based

and clustering-based techniques [83]. The implementation details are as follows. The

sampling-based method randomly selects 10 frames from every chunk that contains 30

frames. The shot-based method splits every video chunk into several shots and uses the

center frame in each shot as a keyframe. The cluster-based method clusters all 30 frames

in every chunk into 10 frames. The model without a keyframe extraction module achieves

the best performance, as shown in Table 4.8. Selecting frames would change the original

temporal information and influence the performance of action spotting. Compared to

them, the method can focus on the keyframes and learn to locate keyframes based on the

inter-frame similarity and annotation labels automatically without changing the original

temporal relationship. Therefore, the proposed method achieves the best performance.
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Table 4.9: Comparison of Fixed Saliency and Variable Saliency. In the model with
fixed saliency, all saliency scores are set to 1 to ignore the influence of saliency.

Model Average-mAP

Fixed saliency 49.5

Variable saliency 56.0

Table 4.10: Comparison NetVLAD++ with and without proposed method.
NetVLAD++(*) denotes NetVLAD++ with the saliency weight module. Training time is the
time used to obtain the highest mAP on the validation dataset.

Model Average-mAP Training time(Second)

NetVLAD++ 53.4 368.9

NetVLAD++(∗) 54.5 292.7

■ Importance of Learnable Saliency

The performance of the method is compared with fixed and learnable saliency on

SoccerNet-v2 dataset to analyze the influence of the proposed saliency weighting mod-

ule. The features are extracted using ResNet with PCA. To remove the influence of the

saliency score, all saliency scores in the pre-trained model are set as 1. As a result, the

weight of every frame is equal, and the influence of saliency score can be ignored. Without

saliency weighting, the average mAP of the model drops to 49.5%, a decrease by absolute

6.5% as shown in Table 4.9. The saliency weighting module improves the Average-mAP

for action spotting by weighting frames using learnable saliency scores.

■ Efficiency of Saliency

To prove that the frame saliency weighting module could find the keyframes and im-

prove feature representation by weighting features through saliency scores, a model is

introduced by adding a frame saliency weighting module before the NetVLAD++ model,

denoted by NetVLAD++(∗). The learnable frame saliency weighting module could be

seen as a preprocessing module. As shown in Table 4.10, by using the frame saliency

weighting module to improve frames, the performance of NetVLAD++ is improved by

1.1%. Additionally, by using frame saliency, the training time is reduced. As presented

in Figure 4.6, NetVLAD++ obtains the highest mAP at epoch 20 using 368.9 seconds,

whereas NetVLAD++(∗) obtains the highest mAP at epoch 11 with 292.7 seconds. The

frame saliency module gives larger weights to keyframes, which encourages the model to
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Figure 4.6: Change of mAP with respect to Epochs on the Validation Dataset. The
changes of NetVLAD++ and NetVLAD++(∗) during training are shown respectively.

focus on important frames and understand video content from keyframes effectively.

4.4 Conclusion

The problem of redundant information in videos is addressed by paying more attention

to important frames. The frame saliency weighting module, which weights frames ac-

cording to feature similarity, is proposed to reduce the influence of redundant frames and

improve frame saliency and video representation. The performance of the proposed model

is analyzed and the proposed model achieved state-of-the-art accuracy on SoccerNet-v2,

obtaining 57.3% Average-mAP. Additionally, the proposed model obtains the 75. 0%

average mAP using embedding features. Furthermore, the saliency weighting module can

be effectively applied to existing video understanding methods.
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Chapter 5

Interpretable Video Anomaly

Detection Based on Video Captions

The frame saliency module is proposed to improve video representation and interpreted

predictions based on frame saliency in the last chapter. However, there is a limitation of

the score-based interpretability. It is the importance scores of frames in a video cannot

be compared with the importance scores from the other videos directly. The scores are

calculated based on the frame features in a video. Therefore, when the input is a long

video, the calculation would be heavy. If a similar action happens in the video at different

timestamps, the importance scores of different actions may not be correct.

Therefore, a novel interpretation method is required to resolve these problems. Differ-

ent from scores, language can be understood directly by humans. With the development

of natural language processing (NLP), AI models can more correctly understand the

semantic meaning of each sentence. It is a fundamental technology for text-based inter-

pretability. To comprehensively evaluate the idea, the video anomaly detection task is

used as the objective goal of this work. The video anomaly detection task is a specific ac-

tion detection task. Most video anomaly detection approaches are based on non-semantic

features, which are not interpretable, and prevent the identification of anomaly causes.

To address the issue, a caption-guided interpretable video anomaly detection framework

that explains the prediction results based on video captions (semantic) is proposed. It

utilizes non-semantic features to fit the dataset and semantic features to provide common

sense and interpretability to the model. It automatically stores representative anomaly

prototypes and uses them to guide the model based on similarity with these prototypes.

Specifically, we use video memory to represent the content of videos, which includes video

features (non-semantic) and caption information (semantic). The proposed method gen-

erates and updates a memory space during training, and predicts anomaly scores based

on the memory similarities between the input video and the stored memories. The stored

captions can be used as descriptions of representative anomaly actions. The proposed

module can be easily integrated with existing methods. The interpretability and reliable
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detection performance of the proposed method are evaluated through extensive experi-

ments on public benchmark datasets.

The structure of this chapter is as follows. Section 5.1 introduces the problems in

existing anomaly detection tasks. Section 5.2 shows the proposed method. Section 5.3

shows the results of the experiment and analyzes them. Section 5.4 provides a conclusion

to this chapter.

5.1 Introduction

The large number of monitoring videos has made video anomaly detection an increas-

ingly daunting task for human operators. Consequently, video anomaly detection has

become more crucial than ever before. Furthermore, depending on how anomalies are

defined, anomaly detection techniques can be applied to various video understanding

tasks, such as action detection, action recognition, and video classification. Given its

significance, video anomaly detection has been extensively researched for decades. How-

ever, developing a video anomaly detection model is challenging, as the definition of an

anomaly is subjective and depends on the specific application scenario. For instance,

fighting is considered an abnormal behavior in daily life, yet it is a normal action in

boxing matches. Additionally, the predictions of models lack interpretability. Most pre-

vious approaches [124, 30, 93, 111] extract visual features from videos based solely on

pixel changes across frames, without understanding the video content. This results in

unexplainable prediction results and limits their practical application.

To address these problems, it is necessary to understand the semantic content of the

videos. Semantic features are similar to human understanding. People understand video

content based on the information of objects in the image and the interactions between

them. Such information is typically included in video captions. Furthermore, cap-

tions are more easily understood than other explanation methods [84]. For example,

visual information-based approaches, such as Gradient-weighted Class Activation Map-

ping (Grad-CAM [84]). Grad-CAM offers limited visual interpretability since it cannot

provide clear boundaries between objects of interest and the background.

As shown in Figure 5.1, captions include important information needed for anomaly

detection. Therefore, detection models can easily identify the positions of related objects

from the image and video caption. Additionally, semantic features tend to be more stable

than video features because they are less affected by object appearance or capture condi-

tions. The caption embeddings generated by a pre-trained language model also contain

common sense knowledge. For example, the semantic similarity between fighting and vi-
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Figure 5.1: Semantic similarity. The similarity based on semantic information provided in
captions is closer to the understanding of humans because it contains high-level information,
such as objects and their interactions. Images from [91].

olence is greater than that between walking and violence. Therefore, video captions and

caption embeddings can be utilized as semantic features to identify abnormal situations

based on the similarity of video memories, where each memory contains a video feature,

a video caption, and a caption embedding. Representative anomaly video memories are

stored as the definitions of abnormal situations, guiding the anomaly detection model and

explaining its predictions. This video memory is used to represent the content of a video.

And the similarity among the memories is used to guide the model and predict anomaly

scores.

In summary,

• To address the lack of interpretability in anomaly detection models that rely on

non-semantic features, the video memory is introduced to represent video content

and a novel caption-guided interpretable framework is proposed for video anomaly

detection, which utilizes text as semantic features to guide the model and explain

predictions.

• The anomaly actions stored in the memory space are visualized to understand what

constitutes an anomaly for the models. To analyze the utility of the proposed
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method and demonstrate the necessity of video captions, extensive experiments are

conducted.

• The method achieves state-of-the-art performance on the ShanghaiTech [64] dataset

and shows the interpretability and efficiency of the proposed approach using the

UCF-Crime [91] dataset.

5.2 Caption-guided Model for Video Anomaly De-

tection

In this section, the caption-guiding module, the architecture of the proposed model,

and implementation details are introduced.

Figure 5.2: The overview of the proposed method. The proposed method contains two main
modules, a memory generator and a caption-guiding module. The memory generator extracts se-
mantic and non-semantic features as the video memory to represent video content. The caption-
guiding module stores anomaly video memories to guide the model and interpret predictions using
video captions. The snippet images on the left are cited from [44].

5.2.1 Caption-guiding Module

To enable the interpretability of text-guided models, a novel module is introduced. It

can utilize text as part of the video representation and guide the model based on this rep-

resentation, allowing the text to generate interpretable predictions. The anomaly scores

are calculated based on similarities with the stored memories. Since similar memories
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provide redundant information, it is important to store only representative memories

in the memory space to ensure each memory represents a distinct anomaly situation.

On the other hand, since the parameters of the base model change during training, the

video memory will also evolve. Therefore, old memories should be removed to optimize

the memory space. The caption-guiding module has three key functions: prediction of

anomaly scores, generation of the memory space, and optimization of the memory space.

Prediction of anomaly scores. The anomaly scores AS are calculated based on the

memory similarities between the input memory minput and the stored memories {mi |
mi ⊂ M} in memory space M . minput consists of a video feature f input, a video caption

cinput, and a caption embedding einput. To accurately characterize the relationship of video

content, the memory similarity contains the non-semantic similarity based on the video

features and the semantic similarity based on the caption embeddings. The calculation

of non-semantic similarity sf is presented as follows:

sfi = f input · fi , (5.1)

sf = mean

(
topK
max

(sf0 , s
f
1 , s

f
i , ..., s

f
I )

)
, i ⊂ [0, I] , (5.2)

where I is the number of memories stored in the memory space, K is a hyperparameter,

and sfi is the non-semantic similarity between f input and fi. The number of memories I

stored in the memory space changes during training.

To reduce the influence of outliers, we use the mean of the topK similarities instead of

the maximum or mean of all memories to represent the non-semantic similarity sf . The

semantic similarity se based on caption embeddings is calculated as follows:

sei =
einput · ei

∥einput∥∥ei∥
, (5.3)

se = mean

(
topK
max

(se0, s
e
1, s

e
i , ..., s

e
I)

)
, i ⊂ [0, I], (5.4)

where sei represents the semantic similarity between einput and ei. The semantic features

are utilized to calculate anomaly scores because the similarity of captions is more akin to

human understanding than video features, and video captions can be directly interpreted.

Additionally, the common sense included in the pre-trained language model can guide the

model using the caption embeddings.

The anomaly score AS is calculated based on the non-semantic and semantic similari-

ties:

AS =
sf + θse

1 + θ
, (5.5)
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where θ is a temperature parameter that adjusts the weight of the semantic similarity.

Note that if the memory space is empty, the anomaly score is set to 0.5, as shown in

Figure 5.3. The anomaly score AS also represents the memory similarity between the

input memory minput and the stored memories mi. When the input memory is similar

to the stored memories, the content of the input video is similar to the representative

anomaly situation, and consequently, the anomaly score AS would be high. The anomaly

score AS is calculated based on both the semantic and non-semantic features. The non-

semantic features can fit the training samples, while the semantic features can provide

video understanding that is closer to common sense.

Figure 5.3: Prediction of anomaly scores and generation of memory space. The left subfigure
shows that when the memory space is empty, the anomaly score (AS) of the anomaly video
candidate is 0.5, and the memory would be added to the memory space. The right subfigure
shows that when the memory space is not empty, the anomaly score is calculated based on the
memory similarity with all stored memories. If the anomaly score is greater than a threshold α,
the anomaly memory candidate will be added to the memory space.

Generation of memory space. The memory space is the core of this module. It

stores anomaly memories and outputs anomaly scores based on similarities to the stored

memories. It is generated for two purposes: to explain the prediction results and to

guide the model in detecting anomalies. To make full use of memory space, each memory

needs to represent a different anomaly situation, and the memory space needs to store

representative and distinct memories.

There are two steps in adding a new memory to the memory space. The first step is

to locate the anomaly memory candidates manomaly from the anomaly videos. Anomaly
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videos contain both anomaly snippets and normal snippets. If the memories of normal

snippets are put into the memory space, the model would mistakenly classify normal

actions as anomalies. Therefore, normal snippets from the anomaly videos should be

filtered out.

The anomaly memory candidates are located by selecting the snippets from anomaly

videos that have low similarities to the snippets from normal videos. Specifically, we

calculate the memory similarities between the snippets of an anomaly video and the

snippets from a normal video and take the mean of the memory similarities with the

snippets from a normal video as the normal score for each snippet from an anomaly video.

The snippet with the lowest normal score is selected as an anomaly snippet candidate from

each anomaly video.

The second step is to decide whether each anomaly memory candidate needs to be

added to the memory space. To store representative and distinct memories, only the

memory candidates with low similarities to the stored memories should be added to the

memory space. To find such memories, the memory similarities between an anomaly

memory candidate and all stored memories {mi | mi ⊂ M} in the memory space are

calculated. This process is the same as the calculation of the anomaly score AS, therefore

both calculations are completed concurrently, as depicted in Figure 5.3.

If the AS of an anomaly memory candidate is smaller than a threshold value α, then

the input memory is considered to represent a new type of anomaly situation and add

it to the memory space. α is initially set to 1 and is updated through the optimization

of the memory space. In this manner, the memory space is generated automatically and

filled with representative anomaly memories. Therefore, the memory space can guide the

model in finding anomaly actions based on the memory similarities between the stored

memories.

Optimization of memory space. Due to changes in the parameters of the base

model during training, the video features f and the video memories m would also change.

Consequently, the meaning of old memories may become outdated, and some stored re-

dundant memories could misguide the model. To detect anomalies efficiently, distinct

and representative anomaly memories should be kept, while redundant memories should

be removed. The optimization of the memory space is shown in Figure 5.4. To find

redundant memories, the redundancy Rei of the ith memory is calculated as follows:

Rei = mean ({smij | smi0, s
m

i1, ..., s
m

iI}) ; j ̸= i , (5.6)

smij = fi · fj + θ
ei · ej

∥ei∥∥ej∥
, (5.7)
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Figure 5.4: Optimization of memory space. To optimize the memory space, the redundancy of
each memory are calculated and only the L memories with the lowest redundancy are kept in the
memory space.

where smij denotes the similarity between mi and mj. i and j both represent memory

numbers, with the same range of [0 ∼ I].

The memory mi with a higher Rei contains less useful information. The L memories

with the topL minimum redundancy are kept and the others are removed to optimize the

memory space. Because the base model would update its parameters to fit the training

dataset, the similarity of the video features would change. Therefore, the threshold α

needs to be updated to adapt to these changes and suppress the addition of similar

memories to the memory space. The threshold α is updated as follows:

α = max

(
topL
min

(Re0, Re1, Re2, ..., ReI)

)
, (5.8)

where L is a hyperparameter to limit the number of memories retained. If the number of

memories in the original memory space is greater than L, only L memories are stored.

5.2.2 Model Architecture

As shown in Figure 6.2, multiple instance learning (MIL) is employed to tackle the

weakly-supervised video anomaly detection task, as the public datasets only contain video-

level annotations. At first, an anomaly video and a normal video are split into 32 video
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snippets, respectively. Subsequently, the frozen memory generator extract non-semantic

and semantic features from the video snippets. Specifically, the pre-trained I3D [28] model

is used to extract raw video features of length 2048. Additionally, the pre-trained Swin-

BERT [62] model is employed to generate video captions and the pre-trained MPNet [88]

employed to extract caption embeddings from these video captions. The MPNet is chosen

for extracting caption embeddings because it is a widely-used model for calculating sen-

tence similarity. A caption embedding is a vector of length 786. The base model is used

to project raw video features into vectors of length 32 as the optimized video features.

This base model is a simple composition of three fully-connected layers. Note that the

base model could be replaced by any existing model capable of representing video content

through feature vectors.

A video memory m is defined as the representation of a video snippet, which consists

of an optimized video feature vector f , a video caption c, and a caption embedding e.

Feature f is a non-semantic feature, while c and e are semantic features. Video memories

are fed into the caption-guiding module to generate the memory space, which stores

important video memories related to anomaly actions. The stored memories are used to

predict anomaly scores based on memory similarities, guide the model, and explain the

predictions. A sigmoid layer is added after the caption-guiding module, a mean pooling

layer, and another sigmoid layer is added after the base model. Finally, a residual structure

is employed to reuse the optimized video features. The model outputs the snippet-level

anomaly scores by combining the outputs from these two sigmoid layers. With the help of

the stored video memories, the proposed method can locate anomalies based on semantic

and non-semantic features, and provide interpretable predictions.

5.2.3 Implementation Details

Since most anomaly detection datasets only have video-level annotations, multiple

instance learning (MIL) is used to train anomaly detection models, following previous

work [91, 111, 93]. For a fair comparison, the I3D model [28] pre-trained on Kinetics-

400 [12] is adopted for video feature extraction. On the ShanghaiTech dataset, the model

is trained using the Adam [52] optimizer with a learning rate of 10−3, following the train-

ing procedure of S3R [111]. On the UCF-Crime dataset [91], the model is trained using

the AdaGrad optimizer with an initial learning rate of 0.1, reducing it by a factor of 10 af-

ter epochs 25 and 50, respectively. During inference, the memory space is not be changed.

The anomaly score is calculated based on the similarity with the stored memories.

Regarding the hyperparameters of the proposed model, the top-K parameter is set to

5, the number of stored memories L is set to 7, and the temperature parameter θ is set
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to 1. Additionally, memory space optimization is conducted every 3 iterations. THE

optimization would be skipped if the number of stored memories falls below 10.

5.3 Experiments

In this section, extensive experiments are conducted to evaluate the performance and

interpretability of the proposed method on two datasets: ShanghaiTech [64] and UCF-

Crime [91]. Both datasets are used for weakly-supervised video anomaly detection.

5.3.1 Dataset and Evaluation Metric

■ Dataset

The ShanghaiTech dataset [64] contains 437 videos from 13 campus surveillance scenes.

In this dataset 238 videos are used for training and 199 videos for testing in the weakly-

supervised setting. The UCF-Crime [91] dataset contains 1900 surveillance videos covering

13 real-world anomalous classes such as robbery, explosion, and road accident. It contains

1610 training videos and 290 test videos. Compared to ShanghaiTech, which mainly

includes pedestrian activities in a university setting, the scenes in the UCF-Crime dataset

are more diverse and complex.

■ Evaluation Metric

For evaluating the model performance on video anomaly detection, the Area Under

Curve (AUC) is calculated. It is a conventional threshold-independent metric, has been

used in previous work [91, 111].

5.3.2 Performance of Video Anomaly Detection

To evaluate the performance of the proposed method for anomaly detection, MLP and

S3R are used to evaluate the proposed method on ShanghaiTech and UCF-Crime datasets,

respectively.

As shown in Table 5.1, when using S3R [111] as the base model, the proposed method

achieves an AUC score increase of 0.21%, reaching state-of-the-art performance on the

ShanghaiTech dataset. Because the proposed method can detect anomalies based on

caption embeddings, allowing it to leverage semantic information to improve the existing

method.
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Table 5.1: Comparison of frame-level AUC performance for video anomaly detection on the
ShanghaiTech dataset. The proposed method uses S3R as the base model.

Method Feature AUC (%)

GCN-Anomaly [124] C3D [95] 76.44

GCN-Anomaly TSN [107] 84.44

MIST [30] C3D 93.13

MIST I3D 94.83

RTFM [93] C3D 91.51

RTFM I3D 97.21

MSL [57] C3D 94.81

MSL I3D 96.08

S3R [111] I3D 97.48

Ours (S3R) I3D + Caption 97.69

Table 5.2: Comparison of frame-level AUC performance for video anomaly detection on the
UCF-Crime dataset. MLP is an MLP-based model that contains 4 fully connected layers. The
proposed method uses an MLP model excluding the last fully connected layer as the base model.

Method Feature Interpretable AUC (%)

GCN-Anomaly [124] TSN 82.12

MIST [30] I3D 82.30

MLP I3D 82.81

RTFM [93] I3D 84.30

S3R [111] I3D 85.99

Ours (MLP) I3D+Caption 84.64

Moreover, the interpretability and performance of the proposed method are evaluated

on the public UCF-Crime dataset for video anomaly detection, as presented in Table 5.2.

Using a multi-layer perceptron (MLP) with the fully connected layers as the base model,

the proposed approach achieves an improvement in the AUC score of 1. 79% over the

standalone MLP model. The S3R model is not used as the base model on the UCF-Crime

dataset due to the limitation of GPU resources. However, the method still reaches a

comparable performance even with the MLP model as the base model, as video captions

provide the necessary clues for anomaly detection. The UCF-Crime dataset contains

untrimmed videos, which makes it difficult to generate accurate video captions. For

example, many videos contain a logo scene and some scenes repeat several times within a

video. This limitation reduces the effect of the video captions. Despite these challenges,
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the proposed model can still interpret the predictions using the available video captions.

More analyses are provided in Section 5.3.3.

5.3.3 Interpretability Based on Language

Interpretability is a critical function for an anomaly detection model, as it requires the

model not only to detect anomalous actions but also to understand the video context. The

proposed model represents the video content using semantic and non-semantic features,

detects anomaly actions based on memory similarities with the stored anomaly memories,

and explains the predictions via video captions. Various experiments are conducted to

analyze the interpretability of the proposed method.

Figure 5.5: Change of memory space during training. The influence of anomaly memories is
evaluated by analyzing the relationship between the number of anomaly memories in the memory
space and the AUC score.

Meaningful predictions. As shown in Figure 5.6, only the moment when a man sets

fire is annotated as an anomaly. However, the fire grew larger and the situation became
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Figure 5.6: Comparison of predictions from the models with caption embeddings and with video
features. The figure shows video frames at the bottom, with the timestamps of selected frames
plotted as red points. The graph displays the predicted anomaly scores of two models and the
annotated ground truth. The blue line represents the ground truth of the anomaly. The green
line represents the anomaly scores of the model that use video features as video memory. The
orange line represents the anomaly scores of the proposed method that utilizes both video features
and caption embeddings. The frames are taken from the UCF-Crime dataset [91].

more dangerous after that initial moment. The model using only video features outputs

small anomaly scores for the scenes where the fire grows larger. In contrast, the model

using caption embeddings predicts increased anomaly scores in scenes where the room is

full of smoke. This is because the semantic similarity between smoke and the descriptions

of representative anomaly situations, such as explosion and fire, is large. The meaningful

predictions from the model using caption embeddings are more suitable for real-world

applications. The definition of anomaly and the annotations in datasets are subjective.

If the model is trained solely to fit the annotation data, it would lack common sense

and ignore some dangerous situations. However, using video captions to guide the model

allows it to output more meaningful anomaly scores.

Change of memory space during training. The stored memories guide the model

to detect anomaly actions based on the memory similarities. If there is a video memory

related to fighting in the memory space, it helps the model to detect fighting actions.

Therefore, if the memory space stores more anomaly memories, the performance will im-

prove. The change in the number of anomaly memories in the memory space is analyzed

and the performance is evaluated by the AUC score during training. After each training

epoch, the memory space would be optimized if the number of memories is larger than

ten. As a result of the optimization, only seven representative memories are kept, and

each stored memory is determined whether it is an anomaly memory based on the cor-

responding caption. As shown in Figure 5.5, the number of stored anomaly memories

increases, and the AUC score improves during training. The stored memories guide the

model via semantic similarity to reach better anomaly detection performance.

Stored memories. For further analysis, several stored captions and frames are shown
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Figure 5.7: Examples of stored video memories. Five frames are sampled from each video to
show the video content. The video caption is generated by the memory generator and stored in
the memory space. They are the definition of anomalies for the model. The video is from the
UCF-Crime dataset [91].

in Figure 5.7. The stored captions describe the anomaly actions, allowing the proposed

method to recognize related anomaly actions through the memory similarities with the

input video snippet. For example, the caption two men are in a store and they are

fighting with each other contains the word fighting, which is associated with violence

and has a high semantic similarity with video captions including violence-related words.

By storing such memories in the memory space, the model is guided to detect anomaly

actions based on these semantic similarities. Furthermore, an interesting phenomenon

is observed. The memory space stores some captions that describe the scenes preceding

the anomaly actions, such as a person is throwing a package onto a door of a house.

These captions can help the model detect anomalies earlier. As training progresses, the

memory space becomes more stable, as the updates to the base model become less frequent

and slower. Eventually, the memory space holds the appropriate memories for effective

anomaly detection.
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Table 5.3: Comparison with different memory types. To evaluate the performance of semantic
features, three different features are leveraged as video memory.

Memory type AUC (%)

Caption embedding (CE) 62.40

Video feature (VF) 82.60

Ours (CE+VF) 84.64

5.3.4 Analyses

To analyze the importance of memory space optimization and the influence of the

proposed method on training and inference time, additional experiments are conducted.

Strength of caption embeddings.

The method is the first to use visual captions (semantic features) for anomaly detection.

Previous work extracted video features to detect anomalies. However, these features

cannot be directly interpreted. In contrast, the proposed method introduce a semantic

video representation by using video captions as a part of video memory to represent video

content. To show the usefulness of semantic features, three different memory types are

compared. They are video features (VF), caption embeddings (CE), and the proposed

memory type (CE+VF), which contains both video features and caption embeddings.

The results are shown in Table 5.3. Using caption embeddings (CE) as memory, the

AUC score is 62.4%. We attribute this to the fact that the untrimmed videos in the dataset

lead to some incorrect video captions, limiting the effectiveness of the caption embeddings.

Although CEs contain important information and common sense to guide the model,

they have less information than video features (VF) and are influenced by inaccurate

captions. In contrast, VFs include detailed information from the videos, allowing the

model to fit the training samples and achieve an AUC of 82.6%. In contrast to VF,

the proposed memory type (CE+VF) contains common sense information that guides the

model without extensive training, enabling it to understand video content and achieve the

best performance. Furthermore, the proposed memory type can leverage video captions to

explain the prediction results, as shown in Figure 5.7. Moreover, using caption embeddings

as part of the video memory allows the model to output meaningful predictions.

■ Memory Space Optimization

The optimization of the memory space removes redundant memories from the memory

space and updates the threshold α to suppress the addition of similar memories. The three
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Table 5.4: Comparison of different optimization methods. The three calculation methods which
based on three different feature types are compared. The fixed threshold α is compared with the
variable threshold. Note that only the feature types used for optimization are changed and all
models use CE+VF as the video memory.

Feature type for optimization Threshold α AUC (%)

Video feature (VF) variable 83.09

Caption embedding (CE) variable 82.55

CE+VF 0.3 83.33

CE+VF 0.4 83.56

CE+VF 0.5 83.94

CE+VF 0.6 83.54

CE+VF variable 84.64

Table 5.5: Comparison of training and inference times. The number of video snippets processed
per second is reported.

Method Training time (h) Inference time (snippets/s) AUC (%)

S3R 38.33 41.67 ± 2.26 97.48

Ours (S3R) 42.67 36.29 ± 1.92 97.69

methods of calculating memory redundancy are compared: based on the similarity of video

features, based on the similarity of caption embeddings, and based on the similarity of

video memories, respectively. Selecting redundant memories based on the video memories

reaches better performance, as shown in Table 5.4. This suggests that leveraging video

memory can correctly identify representative anomaly memories. To demonstrate the

need for updating the threshold α, a variable threshold is compared with a fixed threshold.

The experiments show that the variable threshold results in the best performance. This

is because the base model projects the same video feature into different feature vectors

to fit the training dataset during training, changing the distances among video memories.

Therefore, the threshold is updated based on the stored memories to prevent adding

similar video memories to the memory space.

■ Training and Inference Time

To assess the impact of the proposed method on both training and inference times,

several experiments are conducted for comparing with the S3R model on the ShanghaiTech

dataset. The method builds upon the S3R model as the base model. Both models are
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trained for 15,000 epochs on an NVIDIA® A100 GPU and recorded the time taken to

achieve optimal performance as the training time. As shown in Table 5.5, due to the

additional computations involved in the caption-guided memory module, the method

requires more time for both training and inference compared to the S3R model. However,

the approach offers interpretability through video captions and demonstrates improved

performance over the base model.

■ Failure Case

Figure 5.8: Failure Case. The figure shows ten frame images of the video at the bottom,
the timestamps of selected frames are presented in the graph using the red points. The blue line
presents the ground truth of the anomaly. The orange line presents the anomaly scores of the
proposed method. The video frame images are cited from [91].

A failure case is depicted in Figure 5.8, where an arrest scene is obscured by a yellow

door in the sixth and seventh frames. The model assigns high anomaly scores to all scenes,

including normal ones, due to this obscured critical event. The absence of arrest related

terms in video captions further complicates anomaly detection. To improve performance,

exploring anomaly detection based on changes in video captions is important.

5.4 Conclusion

To provide interpretability based on text, the text-guided interpretable framework is

proposed for the task of video anomaly detection. By incorporating video captions, the

proposed module offers interpretability to the predictions and guides the model in detect-

ing specific anomalies. Through extensive experiments, the method has demonstrated

performance gains on two public anomaly detection datasets, while also shedding light

on the interpretability. Furthermore, the introduced video representation, termed video

memory, enables the model to produce meaningful predictions grounded in common sense,

drawing from pre-trained video captioning models.
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Chapter 6

Efficient Fine-tuning

Vision-Language Models Based on

Knowledge Selection

In Chapter 5, the proposed method utilizes video captioning models to extract semantic

representation from each video segment to detect anomaly situations and provide text-

based interpretability.

However, limited by the accuracy of video captioning models, the performance of

anomaly detection could not be improved significantly. Inspired by the large-scale lan-

guage models (LLMs), we consider the application of common sense in previous works

to help generate correct captions. Therefore, a communication-based interpretability

method is introduced in this chapter using LLMs. Following previous work, the high

cost of fine-tuning large models is a big challenge before utilizing common sense. Con-

sequently, knowledge selection is proposed to decrease the cost of applying large models.

Limited by the resource environment, the knowledge selection method is only employed

on image-based visual tasks. In future work, we will apply it to video understanding

tasks.

The structure of this chapter is as follows. Section 6.1 presents the background of

large models and their fine-tuning methods. Section 6.2 introduces the proposed method,

knowledge selection. Section 6.3 demonstrates the performance of knowledge selection-

based large models. Section 6.4 offers a conclusion of this chapter.

6.1 Introduction

With the development of large language model (LLM) technology in recent years, many

natural language processing tasks have achieved outstanding results using LLMs. These

tasks include text translation, semantic analysis, question answering, and more. The

success of large language models has also demonstrated their immense potential for ap-
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plication in other fields, such as image recognition, document understanding, and video

understanding. In addition, due to extensive text training, large models acquire a certain

degree of common sense. This capability is crucial for interpretable models, as human

cognition of the world is largely based on fundamental common sense. Such common

sense is challenging to acquire by training models on typical image datasets. By applying

large language models to the visual domain, the interpretability of visual models can be

improved.

However, the vast number of parameters in large models poses a significant limitation,

as fine-tuning these models requires substantial training samples and time. To reduce the

cost of fine-tuning and promote the application of large models, various methods have

been proposed. For example, the LoRA method reduces the number of training samples

needed and speeds up the fine-tuning process by freezing the parameters of the large

model and adding a trainable adapter alongside the original attention layer. Unlike other

fine-tuning methods, the knowledge selection method proposed in this chapter improves

the performance of large models by first extracting the required knowledge for various

domains and then selecting the corresponding knowledge based on the input data. This

field-specific knowledge is then input into the large model.

6.1.1 Large Models

Large models have achieved remarkable performance on various tasks across multiple

domains. Because they are trained with large-scale data, which provide many insights to

help large models understand the world. As a result, large models generally have some

common sense and a novel in-context learning capability. For that, they are extended to

various tasks in visual domains. In this section, large-scale language models and vision

language models are introduced.

■ LLM

The emergence of large language models pre-trained on extensive datasets has intro-

duced a novel in-context learning capability. This allows them to handle a variety of NLP

tasks using prompts without the need for fine-tuning. ChatGPT is the first groundbreak-

ing application built on this foundation. This includes capabilities like generating code

and invoking tools or APIs of other models for their use.

Large language models (LLMs) have advanced rapidly, recently. They are advanced

artificial intelligence models designed to understand and generate text based on vast

amounts of training data. These models, such as ChatGPT, are trained on extensive
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datasets containing text from various sources, including books, articles, websites, and

more.

By leveraging sophisticated deep learning techniques, LLMs can generate coherent and

contextually relevant text across a wide range of topics and styles. They have demon-

strated remarkable capabilities in natural language understanding, text generation, trans-

lation, summarization, and question answering. LLMs are increasingly being used in di-

verse applications, including content generation, language translation, customer service

automation, and academic research.

■ VLM

Vision language models are the product of applying LLMs on vision domain tasks.

They combine the capabilities of computer vision and natural language processing to un-

derstand and generate content that involves both images and text. These models are

generally trained with datasets containing pairs of images and corresponding textual de-

scriptions or captions. By leveraging deep learning techniques, such as convolutional

neural networks (CNNs) for image processing and transformer-based architectures for

text understanding, vision-language models can analyze visual content and generate co-

herent and contextually relevant textual descriptions. They enable tasks such as image

captioning, visual question answering (VQA), image-text retrieval, and image generation

conditioned on text prompts. Vision-language models have shown impressive performance

in understanding the semantics of images and generating accurate and meaningful textual

descriptions, making them valuable tools for applications in multimedia understanding,

and content generation.

6.1.2 Fine-tuning Methods

Since large models have large-scale parameters, fine-tuning them becomes difficult.

However, fine-tuning is a necessary process for employing large models on specific datasets.

For that, several fine-tuning methods are proposed for large-scale models.

■ Instruction Tuning

Instruction tuning [119] refers to the process of optimizing and fine-tuning instructions

provided to a machine learning model to enhance its performance on specific tasks or

datasets. This technique involves adjusting various hyperparameters, such as learning

rate, batch size, optimization algorithms, and model architecture, to achieve better results.
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Instruction tuning is crucial in machine learning because different datasets and tasks

may require different configurations to achieve optimal performance. By systematically

adjusting these parameters based on experimentation and evaluation, instruction tuning

aims to improve the model’s accuracy, generalization ability, and efficiency. This iterative

process often involves conducting experiments, analyzing results, and iteratively refining

the instructions until satisfactory performance is achieved. Instruction tuning plays a

vital role in the development and deployment of machine learning models across various

domains.

■ LoRA

LoRA [43] reduces the number of trainable parameters by learning pairs of rank-

decomposition matrices while freezing the original weights. This vastly reduces the stor-

age requirement for large language models adapted to specific tasks and enables efficient

task-switching during deployment all without introducing inference latency. LoRA also

outperforms several other adaptation methods including adapter, prefix-tuning, and fine-

tuning.

The QLoRA [22] is an efficient fine-tuning approach that reduces memory usage enough

to fine-tune a 65B parameter model on a single 48GB GPU while preserving full 16-bit

fine-tuning task performance. QLoRA backpropagates gradients through a frozen, 4-bit

quantized pre-trained language model into Low Rank Adapters (LoRA).

■ P-tuning

P-tuning [66], also known as Prompt Tuning, is a technique where the parameters of a

pre-trained model are frozen, and learnable prompts are added to the input of the model

for adjustment. The main advantage of this approach is its low computational cost since

it only requires updating a small number of parameters. Instead of modifying the model

itself, P-Tuning optimizes the prompts to make the model output the best results. The

principle behind P-tuning is to overlay a trainable model P on top of an already trained

model L. By optimizing P without changing L, the combined output P(L) is optimized.

Since the input to L is essentially the prompt, this method is called Prompt Tuning.

Prompt Tuning can be implemented manually or achieved through automatic training.

However, P-Tuning performs poorly on some complex natural language understanding

tasks. Therefore, P-Tuning V2 [65] is proposed based on P-Tuning and Prefix-Tuning [58].

P-Tuning V2 introduces Deep Prompt Encoding and Multi-task Learning.
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6.1.3 Motivation

Large language models have demonstrated impressive performance across a wide range

of natural language processing tasks, making them indispensable in numerous domains.

However, a significant challenge arises when it comes to fine-tuning these models for

specific tasks. Fine-tuning typically demands substantial computational resources and

often leads to the forgetting of previously learned knowledge. Despite the emergence of

various fine-tuning methods aimed at mitigating this issue, they still possess inherent

limitations, particularly in leveraging knowledge from related tasks or domains. Most of

them try to prune the model structure or propose a novel adapter. They do not utilize

the knowledge from other related samples. Given the impossibility of encompassing all

knowledge within a single model, the need to selectively incorporate relevant knowledge for

each task becomes paramount. Hence, we propose a knowledge selection method designed

to reduce the computational cost associated with fine-tuning while ensuring optimal task

performance.

6.2 Knowledge Selection

Fine-tuning a large model requires extensive data and resources, along with some sac-

rifice in its original accuracy. Due to the continual expansion of knowledge worldwide,

selectively leveraging learned knowledge and applying it to corresponding tasks becomes

crucial. Therefore, the knowledge selection is proposed to address the problem. The

knowledge space composed of various domain knowledge is generated at first. When us-

ing the large model for inference, a domain knowledge is selected based on the input data

from the knowledge space. The related knowledge is loaded into the large model and

improves the performance in a specific domain. The method can reduce the sacrifice of

original performance and apply the large model in some specific domains easily.

6.2.1 Knowledge Space

■ Generation of Knowledge Space

The knowledge space KS contains domain knowledge K, support sets S, and queries

Q. Each domain knowledge Ki has corresponding support sets Si and queries Qi, where i

is the index of the knowledge record. A support set is composed of image features related

to a specific domain, and queries contain some instructions used to fine-tune the model

in a domain.
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Figure 6.1: Generation of Knowledge Space.

The generation of knowledge space KS is demonstrated in Figure 6.1. A small-scale

dataset Di is prepared to fine-tune the large model based on LoRA method for the gener-

ation of related domain knowledge. The small-scale dataset d contains some instructions

Id, some images Vd, and some corresponding annotations Gd. In a bird-related dataset,

instructions Id contains some questions, such as What type of bird is this?, Which species

of bird is this?. The annotation of each image is created automatically using templates,

for example, The species of this bird is {class name}. The annotated class name would

replace {class name} in the templates. When fine-tuning a large model, a question sam-

pled from instructions Id and an image sampled from Vd are fed into the large model and

trained to predict a text that is similar to the corresponding annotation. After fine-tuning,

the parameters in LoRA modules are stored as the domain knowledge Kd.

Additionally, dataset features are extracted from dataset D to represent the domain

knowledge from visual and semantic perspectives. The knowledge representation is uti-

lized to select related knowledge from the knowledge space in inference. To generate the

visual representation of domain knowledge, 100 images are sampled from the dataset D,

and ViT extracts visual representation from each image.

The domain knowledge Kd, instructions Id, and a support set Sd are denoted as a

knowledge record Ki in the knowledge space KS. A support set Si and instructions Ii

of each domain knowledge are denoted as the visual representation and semantic repre-

sentation of the knowledge record. They are used to locate the most related knowledge

based on visual similarity and semantic similarity.
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Figure 6.2: Overview of Knowledge Selection.

■ Knowledge Similarity

In the proposed method, the domain knowledge is selected based on the knowledge sim-

ilarity, which is composed of visual similarity and semantic similarity. Semantic similarity

is calculated based on the input question Qinput and stored instructions I = {Ii|i = 1, 2, ..},

which is the semantic representation of all domain knowledge.

Ssemantic = CosSim(Qinput, I)

If the semantic similarity of top-1 is greater than the similarity of top-2 more than θ, the

knowledge related to the instruction with the highest similarity. It is selected and loaded

into the base model. If not more than θ, the visual similarity would be calculated based

on the similarity of the input image Iinput and the support sets S = {Si,j|i = 1, 2, ...; j =

1, 2, ...} for a further selection.

Svisual = CosSim(Iinput, S)

The related knowledge is selected according to the support set with top-1 visual similarity.

6.2.2 Model Architecture

The overview of the proposed method is shown in Figure 6.2. An appropriate domain

knowledge is selected from the knowledge space based on the input image Iinput and

question Qinput. The selected knowledge is loaded into the per-trained large model to

predict the answer. With the help of related domain knowledge, the large model can

predict better results and improve performance.
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In the knowledge space, various domain knowledge is stored. Each domain knowledge

contains the domain knowledge LoRA modules k, a support set s, and a query q. The

domain knowledge k contains the parameters of the LoRA modules. A support set s

includes some images related to domain knowledge k. For example, the support set of

dog breed knowledge contains images of different dogs. Similarly, query q contains the

questions related domain. For example, What is the type of this dog? is a query for dog

breed knowledge.

A related domain knowledge is selected based on two similarities: Image Similarity Si

and Text Similarity St. Image Similarity Si is calculated based on the image features. Text

Similarity St is calculated based on the sentence similarity between the input question

and all queries in the knowledge space. The selected knowledge is loaded into the large

model to improve the performance of the model. The input image and question are fed

into the improved large model to predict a better result for corresponding tasks.

If the input question is related to bird classification, bird-related knowledge would

be loaded into the base model automatically. This architecture can help researchers

understand the output of the base model and improve it. For example, if the base model

cannot reach considerable performance in a specific domain, generating related domain

knowledge could improve the performance.

6.2.3 Implementation Details

The VisualGLM [25, 23] is used as the base large model. The second and fourteenth

attention layer of VisualGLM is added to a LoRA module respectively. The rank of the

LoRA module is 10.

6.3 Experiments

In this section, the datasets and evaluation metrics are introduced first. Some important

experiment results and analyses of the results are provided in the following subsections.

6.3.1 Dataset and Evaluation Metric

We use 13 datasets to evaluate the proposed method. For coarse-grained image classifi-

cation, the Caltech101, Caltech256, and Cifar-FS [7] datasets are used. Stanford cars [53]

(Car), CUB-200-2011(Bird), FGVC-Aircraft [72] (Aircraft), Food-101 [8] (Food), Oxford-

IIIT Pet [79] (Pet), and Oxford 102 Flower [77] (Flower) dataset are used for fine-grained
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Table 6.1: Five-shot Image Classification.

Method Caltech101 Caltech256 Car Bird Aircraft Food Pet Flower DTD

VisualGLM 6.3 2.2 0 1.2 0 3 1.1 8.2 5.5

VisualGLM[Fine-tuned] 57.6 84 35 4.7 11 68.1 43.8 42.4 46

Ours 95.1 93 74.9 64.9 41 72.5 60.5 86.5 56.2

Table 6.2: Five-shot Image Classification comparing with the meta-learning meth-
ods.

Method CIFAR-FS Bird

GPICL 41.5 94.5

SNAIL 71.1 92.8

CAML 85.5 97.1

Ours 98.0 56.2

image classification.

DTD [17] is used for unnatural image classification. DTD is a texture database, con-

sisting of 5640 images, organized according to a list of 47 terms (categories) inspired from

human perception.

The effectiveness of the proposed method is evaluated on few-shot image classification.

To comprehensively assess the effectiveness of the method, we use the BLEU@1 score and

accuracy to evaluate the performance of the proposed method.

6.3.2 Few-shot Image Classification

As presented in Table 6.1, the knowledge selection method could improve the perfor-

mance of the base model VisualGLM on all few-shot datasets. As shown in Table 6.2, the

proposed method reached the best performance on the CIFAR-FS dataset. We consider

that common sense stored in the pre-trained large model can help the model recognize

objects. However, on the fine-grained image classification tasks, limited by the architec-

ture of the base model, the performance is difficult to improve. The base model uses the

pre-trained ViT [1] to extract image features as an image encoder. As the pre-process,

images would be resized to 224x224 images before being fed into the image encoder. It

limits the image representation, and results in the poor performance of the base model.
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6.4 Conclusion

In this work, knowledge selection is proposed to reduce the cost of fine-tuning large

models. Via the proposed method, domain knowledge can be applied flexibly. By in-

troducing targeted knowledge into large models, the performance of large models can be

improved. Several public datasets are used to evaluate the proposed method on few-shot

image classification.
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Chapter 7

Conclusion and Future

7.1 Conclusion

Chapter 2 introduces a variety of video understanding models and categorizes them

according to their structure. In order to understand the application of video understand-

ing techniques, Section 2.2 describes video understanding tasks and evaluation metrics.

Section 2.3 shows several datasets used for the video understanding task.

In Chapter 3, an interpretable action-spotting model is proposed. Action spotting is a

key component in high-level video understanding and aims to locate specific actions from

each frame. In order to efficiently process the input video and interpret the predicted re-

sults, the self-attention mechanism is utilized to handle the temporal relationships among

frame features, and attention scores are used to interpret predictions of the action spotting

task. Since an action is composed of several subactions/scenes, the action spotting task

is formulated as scene sequence recognition, and a model with multiple scene encoders

is proposed to capture scene changes in videos. An input video is divided into multiple

subsets to reduce the influence of temporally distant scene contexts, and every subset is

fed into a scene encoder to recognize the scene in each subset. Considering the differ-

ent duration ranges of different action types, the influence of chunk sizes of each action

type for action spotting is analyzed. Based on the analyses, the action-aware chunk size

is proposed. The experimental results on the public SoccerNet-v2 dataset demonstrate

state-of-the-art accuracy and effectiveness of the proposed model and action-aware chunk

size. The predictions can be interpreted by visualizing the attention scores.

The frame saliency weighting module is proposed in Chapter 4 to address the efficiency

issues in the approach of Chapter 3. Unlike previous models, the frame saliency weighting

module uses saliency scores to interpret the prediction results, and it is evaluated in

several video understanding tasks. A large number of similar frames can affect the video

representation and pose a challenge to the video understanding task. To address the

influence of similar frames and improve the efficiency of models, frame saliency is proposed

to represent the importance of frames. Frame saliency is calculated on the basis of the
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cosine similarity of frame features. It is employed as the weight of frame features in

the proposed model to improve video representation and direct the model to focus on

keyframes. The proposed model contains two encoders that encode the video context

with pre-action and post-action time windows, respectively. On the public SoccerNet-v2

dataset, the method achieves an average mAP of 57.3%, improving over the state of the

art. With the frame saliency weighting module, reducing the model size by more than 90%

does not significantly affect performance. In addition, extensive experiments validate the

design choices and generalizability of the proposed method. The frame saliency weighting

strategy is applicable to existing methods that use more generalized action datasets, such

as SoccerNet-v1, ActivityNet v1.3, and UCF101.

In Chapter 5, the limitations of score-based interpretability were considered, i.e., the

inability to compare the importance scores of different videos. To address the problem,

video captioning models are introduced to provide language-based interpretability for the

video anomaly detection task. Most video anomaly detection methods are based on non-

semantic features, which are not interpretable, and therefore cannot identify the cause

of the anomaly. A caption-guided interpretable video anomaly detection framework is

proposed to explain the prediction results based on video captions (semantic). It auto-

matically stores representative anomaly prototypes and uses them to guide the model

based on similarity with these prototypes. The proposed method generates and updates

the memory space during training, and predicts anomaly scores based on the memory sim-

ilarities between the input video and stored memories. The stored captions can be used

as descriptions of representative anomalous actions. The interpretability and reliable de-

tection performance of the proposed method are evaluated through extensive experiments

on public benchmark datasets.

In Chapter 6, common sense from pre-trained large models is employed for vision tasks.

A knowledge selection method is proposed for large models to improve their performance

on few-shot tasks and reduce the cost of fine-tuning. The method utilizes the LoRA

method to extract the necessary knowledge for each domain and selects appropriate do-

main knowledge before inference to decrease the cost of fine-tuning large models and

improve large models. The proposed method is evaluated on several public datasets,

reach the SoTA performance on the CIFAR-FS dataset, and improve performance of the

original large model on other datasets through knowledge selection.
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7.2 Future Work

With the development of large-scale models, many foundational models of video under-

standing have reached the SoTA performance on various tasks. However, to apply large-

scale models in real-world applications, fine-tuning is necessary, therefore the knowledge

selection has been proposed.

In future work, we will continue to decrease the cost of fine-tuning large-scale models

and employ them to video understanding tasks. We believe a large-scale model can be a

pace to the AGI era. We will continue to focus on making models more interpretable and

efficient.

In future work, one research direction is to reduce the cost of fine-tuning large-scale

models and applying them to downstream video understanding tasks. At the same time,

improving the interpretability of models based on the dialog capabilities of large models

is also a major direction for future research.
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