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ABSTRACT

Ophthalmology, with its heavy reliance on imaging, is an innovator in the field of artificial intelligence

(AI) in medicine. Deep learning is what has made ophthalmology a pioneer in the field of implementing AI

in medicine, because ophthalmologists are increasingly reliant on imaging tests to monitor patients. For the

medical retina, imaging tests such as optical coherence tomography (OCT) are performed very frequently

and have provided the clinical datasets to train, test, and then apply AI decision support systems. OCT,

which can image retinal structures in vivo, has been widely applied in diagnostic ophthalmology due to its

ease-of-use, lack of ionizing radiation, and high spatial resolution. There are approximately 30 million OCT

procedures performed worldwide each year, with hundreds of consecutive B-scans comprising the majority

of each procedure. With OCT, ophthalmologists can see each of the retina’s distinctive layers. This allows

ophthalmologists to map and measure the thickness of the layers and/or identify abnormal lesions around

the layers. These clinical features aid with diagnosis, and also provide treatment guidance for glaucoma and

many different diseases of the retina, including age-related macular degeneration (AMD) and diabetic eye

disease. However, there are several challenges with handling such imaging datasets gathered from clinical

practice settings; data-imbalance, lack of annotations and noise on the imaging or annotations. Furthermore,

most of the existing AI approaches rely on a priori retinal layer segmentations being available or require

additional imaging data from other devices such as optical coherence tomography angiography (OCTA).

These retinal layer segmentations and OCTA instruments are not as widely available in clinical practices

as routine structural OCT instruments. This thesis presents practical and interpretable machine learning

systems and frameworks that do not require pre-processing nor expensive devices, but help with the mining

of large clinical datasets from around the world, and address key problems in eye-disease treatment based

on real world medical datasets. For Learning with imperfect datasets having limited annotations, I adopted

semi-supervised techniques where pseudo-labels were applied to samples in the unlabeled set by using a

model trained on the combination of the labeled samples and any previously pseudo-labeled samples, and

iteratively repeating this process in a self-training cycle. For the datasets with various noise on the images, I

present a multi-modal fusion network to maximally exploit the available information from the two imaging

resources, including cases when either one was noisy or of poor quality. The model was trained with a

sample reweighting scheme to mitigate bias in the datasets. All the presented models only rely on OCT

which is the most commonly used imaging modality in vitreo-retina practice. Major study focuses include

clinical outcomes research in AMD, glaucoma, and investigation of demographic and ocular factors relate

to OCT.
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CHAPTER 1

INTRODUCTION

1



1.1 Background
Every day, large amounts of health-related data are generated by medical institutions, health and care

services, and from other sources such as academic studies and research. These datasets consist of med-

ical treatment information, scans, or more general information such as local or national population data,

the number of babies being born or how many people are admitted to hospital on any day. The medical

databases are being utilized to gain profound medical knowledge. By accessing large amounts of collected

data, there have been impressive research results in a range of medical fields such as genetics, radiology,

neuroscience, diagnosis, patient outcome prediction or drug discovery. Particularly deep learning systems,

composed of millions of trainable parameters, require large amounts of data to learn meaningful represen-

tations robustly. Aside from quantity, the quality of the available patient-level data is particularly essential

for medical research. Highly diverse and well-curated training data empowers researchers to produce gen-

eralizable insights and reduces the risk of biased predictions when applied in practice.

Among all of this medical data, medical imaging contributes significantly to progress in scientific dis-

coveries and medicine. The purpose of medical imaging is to provide reliable information for accurate di-

agnosis and subsequent clinical decisions for effective patient care. Optical coherence tomography (OCT)

has become ubiquitous in ophthalmic diagnostic imaging over the last three decades [2, 3]. However, clini-

cal OCT image-quality is highly variable and often degraded by inherent speckle noise [4, 5], bulk-motion

artifacts [6, 7, 8], and ocular opacities/pathologies [9, 10]. Poor image-quality can limit visualization and

introduce errors in quantitative analysis of anatomic and pathologic features-of-interest.

In addition, medical datasets often suffer from the imbalance problem in which the majority of data in-

stances (examples) belong to one class and far fewer instances belong to others. While in many applications,

the minority instances actually represent the concept of interest, a classifier induced from an imbalanced

data set is more likely to be biased towards the majority class and show very poor classification accuracy on

the minority class. Despite extensive research efforts, data imbalance remains one of the most challenging

problems in data mining and machine learning.

Another issue is annotation cost. Semantic segmentation partitions raw image data into structured and

meaningful regions and thus enables further image analysis and quantification, which are critical for various

applications, including anatomy research, disease diagnosis, treatment planning, and prognosis monitoring.

However annotating medical images is a time-consuming, labor-intensive, and expensive process. Depend-

ing on the complexity of the regions of interest to segment and the local anatomical structures, minutes

to hours may be required to annotate a single image. Furthermore, label noise is inevitable in real world

applications of deep learning models. Such noise can result from systematic errors of the annotator, as

well as from inter-annotator variation. More than three domain experts are typically needed to generate

trustworthy annotations as any biases in the data can be transferred to the outcomes of the learned models.

Consequently, the lack of large and high quality labeled datasets has been identified as the primary limita-

tion of the application of supervised deep learning for medical imaging tasks. Crowdsourcing has become
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popular in this context as it is based on outsourcing cognitive tasks to many anonymous, untrained individ-

uals so-called “workers”, from an online community. It has proven to be a valuable tool for cost-effective

large-scale image annotation, in particular when the data cannot be processed by computers and is too large

to be annotated by individuals. While expert labeling is expensive and time-consuming, collecting labels

from crowdsourcing results in noise which may degenerate the accuracy of deep learning models. In many

applications, labels are acquired from nonexperts (e.g., Amazon Mechanical Turk [11]) and sometimes au-

tomatically generated from the source information (e.g., downloading from social media with tags [12],

extracting labels for x-ray images from associated radiology reports [13], [14]). These processes could

introduce potential error or label noise into the model training.

In the field of medical image, imaging techniques such as Computed Tomography (CT), Magnetic Res-

onance Imaging (MRI), Positron Emission Tomography (PET), and SinglePhoton Emission Computed

Tomography (SPECT) have provided clinicians with information of the human body’s structural charac-

teristics, soft tissue, and so on. Different imaging methods keep different characteristics, and different

sensors obtain different imaging information of the same part. The limited information provided by single

modal medical images often cannot meet the need of clinical diagnosis which requires a large amount of

information, making medical image fusion research become a hot field.

In summary, learning with imperfect datasets consisting of noisy images/labels, highly imbalanced la-

bels, having limited or lacking target domain annotations, or multimodal data fusion are four of the most

frequently encountered challenges in clinical applications.

1.2 Research Purpose
In this thesis, we aimed to present algorithms designed to gain profound medical knowledge from real

world ophthalmic imaging datasets where these data challenges are present. Ophthalmic imaging is a

highly specialized field of ophthalmology which helps doctors to diagnose and manage a wide variety of

eye conditions. This is a rapidly developing area, with new instruments and techniques allowing physicians

to better understand eye diseases and their treatments. One of the most remarkable developments in the

field of ophthalmic imaging is optical coherence tomography (OCT). OCT is an imaging technique which

generates cross-sectional images of tissue with high resolution. The basic OCT system and an example of

retinal layers captured by OCT instrument are illustrated in Figure 1.1 and Figure 1.2. In OCT many one-

dimensional scans (A-scans) are performed at several depths to create a two-dimensional image (B-scan).

Those B-scans can be translated into a volumetric image (C-scan) of a retina (Figure 1.3). Since OCT is

completely noninvasive, it provides in vivo images without impacting the tissue that is imaged. OCT has

been applied in clinical research and practice in the ophthalmic field since the 90’s, and has become the

standard tool for imaging macular disease, diabetic retinopathy and glaucoma, to name a few examples

from a wide range of retinal applications. Time-domain (TD) OCT was the first model of in vivo evaluation

of the human retina and optic nerve until 1995, when Fourier-domain (FD) OCT was introduced for ocular
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imaging. The advantages of the Fourier-domain OCT are improved speed and resolution. Because each

A-scan is acquired all at once in Fourier-domain OCT, the acquisition rate is much higher at 16,000 to

40,000 A-scans per second. This acquisition rate allows for much faster scanning times, reducing motion

artifacts, and enables denser and other novel scan patterns. Fourier-domain OCT is also able to improve

axial resolution from 8-10 µm to 3-6 µm, which improves the ability to visualize intraretinal structures.

Fourier-domain OCT can be further divided into spectral-domain OCT (SD-OCT) and swept-source OCT

(SS-OCT). SD-OCT devices use a broadband near-infrared superluminescent diode as the light source with

a spectrometer as the detector, while SS-OCT instruments apply a tunable swept laser as the light source

with a single photodiode detector. OCT is now the standard-of-care in the management of macular diseases

and glaucoma. In our studies, we have developed deep learning models based on three real-world OCT

image datasets.

Figure 1.1: Optical Coherence Tomography. 1. White light source emits various wavelengths of light. 2.

Beam splitter sends some light to 2B a reference arm and 2A the sample arm. 3. In the reference arm,

light travels to a mirror where the distance to the mirror is known and constant. 4. In the sample arm, light

travels to tissue of varying distance, such as different layers of the retina. The reflected frequencies and

amplitudes of light are not constant, unlike the reference arm in 3. 5. The reflected light from the sample

and reference arms return to a detector. At the detector, the phase interference is measured, and an a-scan

is generated. 6. Multiple A-scans are stitched side-by-side together to create a b-scan, a cross-sectional

representation of the retina.
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Figure 1.2: Normal retinal tissue layers image shot by OCT instrument.

Figure 1.3: The breakdown of OCT scans. These are the different types of scans: 1. A-scans are a pixel-

thick line of interference values (1-D line). 2. A-scans stitched together yields a B-scan (2-D image

composed of a series of adjacent A-scans). 3. Multiple, aligned B-scans represents a volumetric scan (3D-

image composed of multiple B-scans). 4. In a volumetric scan, an en-face (C-scan) OCT image can be

generated where different slabs of the retina can be examined.

1.2.1 Glaucoma study

Glaucoma is a disease of the optic nerve head (ONH) characterized by loss of retinal ganglion cells and

their axons. Glaucoma patients undergo a chronic progressive optic neuropathy with corresponding and

characteristic patterns of visual field (VF) loss. VF tests are the benchmark for detecting and monitoring

glaucoma. In the majority of patients, VF changes are initially localized and as the disease progresses,

these focal areas become wider, deeper, and more numerous. However, test–retest variability of VF data

seriously degrades the capacity to recognize true VF progression.

On the other hand, glaucomatous damage in turn can lead to progressive thinning of the retinal nerve fiber

layer (RNFL) accompanied by structural changes within the optic nerve head (ONH). The ability of OCT

to capture retinal layers allows for thickness measurement, which improves glaucoma diagnosis. Hence,
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SD-OCT is a valuable clinical tool for glaucoma diagnosis and detection of progression. Circumpapillary

OCT (Cp-OCT) scans are a quick and common OCT scanning pattern that capture a circular OCT section

around the ONH. We thus considered that it would be beneficial if each point on VF could be accurately

predicted from Cp-OCT imaging (Figure 3.1).

A large database of anonymized clinical data was curated from three regionally different National Health

Service glaucoma clinics in the United Kingdom. Clinical data, imaging data, and VF data were extracted

for a total of 24,248 patients. After applying inclusion and exclusion criteria, the total number of eligible

study patients was 6,437 (11,025 eyes). Several challenges exist within the dataset. First, the dataset is

highly imbalanced; the majority of the patients have mild symptoms, and the number of cases that have

severe symptoms is limited. Second, quality assessment of the images was not performed in order to

build an algorithm which works on images that would be reflective of those acquired in standard clinical

settings.Therefore the dataset includes a certain amount of noisy images. To address these challenges, we

took a multi-modal approach to make our model robust on the noisy images, and handled data imbalance

by introducing weighting in the loss function. These will be discussed in detail in Chapter 3.

1.2.2 UK Biobank Foveal/Macular Curvature analysis

This project investigated foveal and macular curvature based on OCT imaging using data from the UK

Biobank (UKBB), one of the world’s largest single resources for comprehensive study of health and dis-

ease. The UKBB includes data from over 500,000 recruited adults and OCT data from more than 60,000

participants in the United Kingdom. For foveal curvature (FC), we aimed to understand the interindividual

variation in the general population, and what factors may be associated with these differences. The fovea is

a highly specialized retinal region at the center of the macula responsible for driving high visual acuity and

color vision [15]. Although our understanding of the mechanisms and functional implications of cytoarchi-

tectural and morphological foveal alterations is driven by studies in patients with absent or poorly formed

foveal depressions with presence of inner retinal layers in selective settings, the interindividual variation of

FC in the general population has not been explored well yet. The studies analyzing the OCT-derived foveal

slope have been limited to using small to moderate sample sizes (typically with less than 400 subjects). Our

objective is to address a gap in our knowledge by exploring the associations of sociodemographic, ocular,

and early life factors and OCT-derived FC features in healthy individuals. For macular curvature (MC),

we aimed to comprehensively and systematically investigate macular curvature in particular, the prevalence

of the dome-shaped configuration and to evaluate potential associations that can be tested in later studies.

Further insights into macular configurations and development might be of particular scientific interest for

myopia research, the study of ocular development, and to investigate the many ocular diseases associated

with this particular region, including AMD, the most common cause of legal blindness in the developed

world [16].

For the calculation of FC and MC, the boundaries of the retinal pigment epithelium (RPE) and inter-
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nal limiting membrane (ILM), and the RPE and RPE choroid (RPE/C) must be detected (Figure 1.2). In

clinical research, OCT image segmentation (delineation of boundaries to allow measurements) is often per-

formed manually by trained image graders. While highly accurate, such an approach is time-consuming

and therefore not feasible for large studies such as the UKBB. As OCT imaging is increasingly incorporated

into large, population-based epidemiological studies, approaches to allow for rapid, automated, quantita-

tive analysis of OCT image sets will become increasingly necessary. In this study, I present a fast and

fully-automated framework for generting OCT-derived FC and MC quantification that does not require any

human annotations. These will be discussed in detail in Chapter 4.

Figure 1.4: Macula and Fovea [1]

1.2.3 Double Layer Sign detection for age-related macular degener-
ation (AMD)

AMD is the fourth most prevalent ocular disease resulting in vision loss in the macula [17]. The macula

is located in the optical center of the human eye and is an important part of the retina. It is required for

reading, driving, watching TV, and performing many other daily activities [18]. Of all cases of blindness

worldwide, 8.7% are caused by AMD and the number of patients with AMD was estimated at around 196

million in 2020, which is predicted to rise to 288 million by 2040 [19]. AMD is broadly classified into non-

exudative or dry AMD and exudative or wet AMD. The difference between dry and wet AMD is that dry

AMD does not have any blood or serum leakage. Around 85% to 90% of AMD cases are dry [20]. Patients

suffering from dry AMD have a significant anomaly known as drusen in the RPE layer. The formation

of drusen leads to a thinning and drying out of the macula, which results in the loss of macular function.

Although patients with dry AMD may still have a good central vision, they may have significant functional
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limitations, including limited night vision, vision fluctuations, and reading difficulties due to a limited area

of central vision. Moreover, a certain percentage of dry AMD cases may develop into wet AMD as time

goes by [21]. In wet AMD, patients may see dark spots in their central vision due to blood or fluid leakage

under the macula. The main pathogenesis of wet AMD is choroidal neovascularization (CNV), which

occurs under the retina and macula. This neovascularization may lead to macular swelling and a reversible

loss of vision, or bleeding, which can be highly toxic to the overlying photoreceptors, sometimes even

causing irreversible vision loss [22, 23]. In wet AMD, vision loss may be rapid and progressive. Once

CNV has developed in one eye, the other eye is in a high-risk state and requires periodic eye examination

[24]. Type 1 macular neovascularization (MNV) is the most frequent MNV occurring as a complication

of AMD. This neovascularization arises from the choroid and grows under the RPE and resides between

Bruch’s membrane (BM) and the RPE [25]. In AMD, these nonexudative neovascular lesions have an

increased risk of progressing to exudation and vision loss [26, 27, 28]. Since early detection and treatment

of exudative AMD has been shown to result in better visual acuity outcomes, it is important to identify and

closely follow nonexudative MNV (neMNV) before exudation develops so that treatment can be initiated

once symptomatic exudation arises.

Type 1 neMNV is associated with the presence of a double layer sign (DLS) on OCT imaging. The DLS

consists of 2 highly reflective layers that correspond to a separation between the RPE and another highly

reflective layer beneath the RPE, which is presumed to be the BM. The presence of a DLS on structural

OCT scans has been shown to be a useful strategy for identifying non-exudative MNV [29]. The specificity

and sensitivity for identifying non-exudative MNV can be as high as 88% [29]. Thus we aimed to develop

a deep learning algorithm to detect DLS based on cross-sectional structural OCT B-scans. These will be

discussed in detail in Chapter 5.

A dataset of annotated structural B scans was fed into the algorithm to train the model. One hundred eyes

with nonexudative AMD from 94 patients were used in this study. Patients were enrolled in a prospective

OCT imaging study at the Bascom Palmer Eye Institute (BPEI). B-scans were annotated by graders from

BPEI. The institutional review board of the University of Miami Miller School of Medicine approved this

study. Informed consent was obtained from all patients. The study was performed in accordance with the

tenets of the Declaration of Helsinki and complied with Health Insurance Portability and Accountability

Act of 1996.

1.3 The organization of the thesis
The thesis comprises six chapters. Chapter 1 (this chapter) provides a general introduction to the medical

datasets along with the motivation for this research. The main body, starting from Chapter 3 through

Chapter 5, is devoted to the discussion of three groups of mutually interrelated topics. We shall finally

provide a summary of our findings and some concluding remarks on Chapter 6.
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2.1 Mitigating Data Imbalance Issues in Medical Image
Analysis

While AI has seemingly limitless potential to gather new insights from medical images, implementing

the technology in clinical settings comes with some major barriers. Many medical datasets suffer from the

imbalance problem [30] which hampers the detection of outliers (e.g. rare health care events). Most data

analysis methods assume an equal occurrence of classes and a standard classification learning algorithm

might be biased towards the majority class and ignore the importance of the minority class (class of interest),

which generally leads to the wrong diagnosis. In this way, analyzing medical datasets with imbalanced

data is a significant challenge for the machine learning and deep learning community. Generally, data

re-balancing during model training can be implemented in two ways: re-weighting or re-sampling. Re-

weighting focuses on tuning the loss for different classes to redefine the importance of each class or sample.

Re-sampling focuses on reconstructing a balanced dataset by either oversampling the minority classes or

under-sampling the majority classes.

2.1.1 Re-Weighting

Re-weighting (cost-sensitive learning) focuses on tuning cost or loss to redefine the importance of each

class or sample. Cost-sensitive re-weighting methods assign different weights to samples to adjust their

importance. The naive practice of dealing with an imbalanced dataset is to directly use label frequencies of

training samples for loss re-weighting, instead of heuristically using the number of classes [31] introduced

the concept of “effective number” of a class, which takes the information overlapping into consideration

for re-weighting. While these methods can successfully assign more weights to the minority samples, they

assign the same weights to all samples belonging to the same class, regardless of each sample’s importance.

Such a loss can be further improved by tuning the “influence” of label frequencies on loss weights, based

on a sample’s influence on forming a decision boundary [32] or the distribution alignment between model

prediction and a balanced reference class distribution [33]. Instead of using label frequencies of training

data, LADE [34] proposed to use the label frequencies of test data (if available) to post-adjust model

outputs, so that the trained model can be calibrated for arbitrary test class distribution.

Besides using a pre-defined weighting function, the class weights can also be learned from data. Shu et

al. [35] proposed a meta-learning process to learn a weighting function guided by a balanced validation set.

The weighting function which is approximated by a one-layer MLP is updated for fitting the long-tailed

distribution, so that a well-performed model on the uniform test set can be learned. The recent paper by

[36], based on empirical observations, raises a major concern about the impact of importance weighting

for the deep learning models which are generally over-parameterized. They observe from experiments

that there is little impact of importance weights on the converged deep neural network, if the data can be

separated by the model using gradient descent. An intuitive alternative is to shift the separator closer to a
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dominant class [37]. [38] proposed to integrate per-class margin into the cross-entropy loss (LDAM loss).

The margin is inversely proportional to the prior probability of a class and thus can enforce larger margins

between a tail class and other classes.

Another issue is that the classifier trained by the widely applied CrossEntropy Loss is highly biased on

long tailed datasets. The major reason is that gradients brought by positive samples are overwhelmed by

gradients from negative samples on tail classes. [39] devises Equalization Loss, which argues that the poor

performance of tail classes originates from the over-suppression of samples from head classes. Since tail

classes only contain few samples, they receive much more negative gradients than positive ones during

training, thus they are consistently in a state of being suppressed in most of the training time. In order

to prevent tail classifiers from being over-suppressed, Equalization Loss proposes to randomly drop some

scores of tail classes in the Softmax function that can effectively help balance the positive and negative

gradients flowing through the score outputs. Recently, [40] proposes Seesaw loss to adaptively re-balance

the gradients of positive and negative samples with two re-weighting factors, i.e., a mitigation factor and

a compensation factor. The mitigation factor reduces punishments to tail categories w.r.t. the ratio of

cumulative training instances between different classes, and the compensation factor up-weights the penalty

of misclassified instances to avoid false positives of tail categories.

2.1.2 Re-Sampling

The basic idea of resample-based methods is to either oversample the minority categories or to under-

sample the frequent categories in the training process. Under-sampling discards part of the data in head

classes and over-sampling repetitively samples data from the tail classes. Oversampling can lead to over-

fitting to the tail classes [41] while under-sampling can potentially lose information about the head classes

but may yield good results if each sample of a head class is close to other samples of the same class. Class-

aware sampling [42] proposes to choose samples of each class with equal probabilities, which is widely

used in vision tasks [43]. It first uniformly samples a class from the whole classes, and then samples an

example from the selected class randomly. This process runs iteratively in each training epoch. In ad-

dition, [44] proposes to increase the sampling rate for classes with low performance after each training

epoch and balance the feature learning for under-privileged classes. While in class-balanced sampling,

each class has an equal probability of being selected, in instance-balanced sampling, each sample has an

equal probability of being sampled. In addition, square-root sampling [45] is a variant of instance-balanced

sampling, where the sampling probability for each class is related to the square root of sample size in the

corresponding class. Progressively-balanced sampling [46] interpolates progressively between instance-

and class-balanced sampling. Dynamic Curriculum Learning (DCL) [47] develops a new curriculum strat-

egy to dynamically sample data for class rebalancing. To be specific, the more instances from one class

that are sampled as training goes on, the lower the probabilities of this class being sampled later. Following

this idea, DCL first conducts random sampling to learn general representations, and then samples more
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tail-class instances based on the curriculum strategy to handle long-tailed class imbalance. Balanced meta-

softmax [48] developed a meta learning based sampling method to estimate the optimal sampling rates

of different classes for long-tailed learning. Specifically, the proposed meta-learning method, a bi-level

optimization strategy, learns the best sample distribution parameter by optimizing the model classification

performance on a balanced meta validation set. Feature Augmentation and Sampling Adaptation (FASA)

[49] proposed to use the model classification loss on a balanced meta validation set (as a metric) to adjust

feature sampling rate for different classes, so that the under-represented tail classes can be sampled more.

Bilateral-Branch Network (BBN) [44] develops two network branches (i.e., a conventional learning branch

and a re-balancing branch) to handle class imbalance based on a new bilateral sampling strategy. To be

specific, BBN applies uniform sampling for the conventional branch to simulate the original long-tailed

training distributions; meanwhile, BBN applies a reversed sampler for the rebalancing branch to sample

more tail-class samples for improving tail-class performance. The final prediction is the weighted sum of

the two network branches. Besides sampling for bilateral branches, Balanced Group Softmax (BAGS) [50]

puts classes with similar numbers of training instances into the same group and computes group-wise soft-

max cross entropy loss respectively. BAGS achieves relative balance within each group, thus avoiding a

severely biased classifier due to imbalance. Instead of division into several balanced groups, Ally Comple-

mentary Experts (ACE) [51] divide samples into several skills diverse subsets, where one subset contains

all classes, one contains middle and tail classes, and another contains only tail classes. Based on these

subsets, ACE trains different experts to have specific and complementary skills for ensemble learning.

Another recent line of research is re-sampling in the feature space rather than in the input space, such as

Deep Oversampling (DOS) [52], Feature-space Augmentation (FSA) [53], and Meta Semantic Augmenta-

tion (MetaSAug) [54]. These methods aim to augment minority classes in the feature space by sampling

from the in-class neighbors in the linear subspace, using learned features from pretrained networks [53], or

using an implicit semantic data augmentation (ISDA) algorithm [55].

2.1.3 Other types

[56] reveals that stronger augmentation for minority classes is beneficial to mitigate overfitting and im-

prove tail-class performance without sacrificing head-class performance. To generate diverse minority data,

recent works [57, 58] have proposed adversarial augmentations by adding small noise to the input images.

To this end, Majorto-minor Translation (M2m) [57] transfers knowledge from majority classes using a

pre-trained network, and Balancing Long-Tailed datasets (BLT) [Kozerawski] uses a gradient-ascent image

generator based on the confusion matrix. Since the data augmentation method is closely related to the

oversampling methods, some recent long-tailed recognition methods have used the mixup method. [44]

uses the mixup as a baseline method, and MiSLAS [59] uses mixup in its Stage1(=representation learning)

training. While these methods apply mixup without any adjustments, Remix [60] assigns a label in favor

of the minority classes when mixing two samples, and [61] proposes a balance-oriented data augmentation
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named Uniform Mixup (UniMix) to promote mixup in long-tailed scenarios, which adopts advanced mix-

ing factor and sampler in favor of the minority. [62] proposes a new oversampling method called Context

rich Minority Oversampling (CMO) to transfer the rich contexts of majority samples to minority samples

by applying CutMix [63] data augmentation; to diversify the limited context of the minority samples, an

original image from a minority class is cropped in various sizes and pasted onto the various images from

majority classes. Recently a new line of work approaches long-tailed image classification by decoupling the

representation learning and classifier learning into two stages[Kang, Zhou, Zhang]. Decoupling [Kang] was

the pioneering work that introduced the two-stage training scheme, which first trains a good representation

network with natural sampling and then finetunes the classifier with class-balanced sampling. Parallel to

this, the work [44] obtained similar conclusions empirically. In addition, a bilateral-branch network is pro-

posed in [44], where one branch uses random sampling to learn head data and the other branch uses revered

sampling to emphasize tailed data. The shared motivation of such work is that image feature learning and

classifier learning may favor different data sampling strategies and thus the focus is to identify suitable

sampling strategies for these two tasks. Specifically, they find that under cross-entropy loss, random data

sampling can benefit feature learning more while class-balanced sampling is a better option for classifier

learning. There are also attempts to modify the classifier to improve the performance on tail classes, e.g.,

using different classifiers for different groups of classes [50], or use two classifiers trained with different

data samplers [64]. However, multi-stage training methods may rely on heuristic design. More recently,

multi-expert frameworks have received increasing concern, e.g., BBN [44], RIDE [65], TADE [66] and

ACE [51]. BBN [44], which assigns two branches with normal and reversed sampling, respectively, incor-

porates a cumulative learning strategy to adjust the bilateral training. BBN merges the two-stage methods

into one, but still suffers from the same drawback of slight degradation of the head’s accuracy. RIDE

[65] are multi-expert architectures that learn diverse classifiers in parallel, combining knowledge distilla-

tion and distribution-aware expert selection. ACE [51] proposes to improve on this strategy by training

different experts optimized for specific class groups. TADE [66] explores the multi-expert scheme and pro-

posed to learn ensembling weights in an unsupervised manner at test time via contrastive learning to handle

test distribution-agnostic long-tailed recognition, where the test class distribution can be either uniform or

long-tailed. Ensembling strategies tend to achieve superior performance, which can be partly attributed to

increased capacity -each expert learns a different set of features in the last two blocks of ResNet models,

consistently increasing model capacity as new experts are introduced but can also leading to scalability

concerns.

Recent studies also explore contrastive learning for long-tailed problems. KCL [67] proposed a k-positive

contrastive loss to learn a balanced feature space, which helps to alleviate class imbalance and improve

model generalization. Following that, Hybrid [68] introduced a prototypical contrastive learning strategy

to enhance long-tailed learning. Parametric contrastive learning (PaCo) [69] further innovated supervised

contrastive learning by adding a set of parametric learnable class centers, which play the same role as a

classifier if regarding the class centers as the classifier weights. DRO-LT [70] extended the prototypical
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contrastive learning with distribution robust optimization [71], which made the learned model more robust

to data distribution shift.

2.2 Deep Multimodal Learning for Computer Vision
Unstructured real-world data can inherently take many forms, also known as modalities, often including

visual and textual content. In this section, we mainly focused on visual modalities, such as images as a

set of discrete signals from a variety of image sensors observing a common phenomena. There are many

practical tasks that benefit from the use of multimodal data. In ophthalmology, multimodality imaging is

widely considered to involve the incorporation of two or more imaging modalities concurrently or in a short

period of time, for the purpose of diagnosis, prognostication, management and monitoring of disease. There

has been rapid development in the field, from colour fundus photography, fluorescein angiography (FA),

near-infrared (NIR) reflectance, fundus autofluorescence (FAF) and indocyanine green angiography (ICG)

to high-resolution and swept-source optical coherence tomography (OCT), OCT-angiography (OCT-A) and

adaptive optics.

The underlying motivation to use multimodal data is that complementary information could be extracted

from each of the modalities considered for a given learning task, yielding a richer representation that could

be used to produce much improved performance compared to using only a single modality. According to

the fusion level in deep multimodal learning, we can distinguish three families of approaches: early fusion,

where the raw modalities are combined ahead of feature extraction; intermediate fusion where the features

respective to each modality are concatenated before classification; and late fusion, where the modality-wise

classification results are combined [72].

2.2.1 Data-level fusion (Early Fusion)

Data level fusion is a traditional way of fusing multiple sources of data before being used as input to a

machine-learning algorithm, either by removing correlations between modalities or representing the fused

data in a lower-dimensional common subspace [73]. Techniques that accomplish one or both of these

objectives include principal component analysis (PCA), independent components analysis, and canonical

correlation analysis. The fused data are then presented to a machine-learning algorithm.

Early fusion is applicable for raw data or pre-processed data obtained from sensors. Data features should

be extracted from the data before fusion, otherwise the process will be challenging, especially when the

data sources have different sampling rates between the modalities. For instance, the sampling rate between

different sensors could vary, or synchronized data from multiple data sources might not be available if

one source produces discrete data while another source provides a continuous data stream. Data can be

joined in many ways, however early fusion typically occurs through concatenation or pooling [74, 75]. The

14



assumption behind early data fusion is the conditional independence between the states of various sources of

information. This assumption is not always true as multiple modalities can have highly correlated features.

Another paper [76] also states that different modalities can contain information that are correlated to each

other at a higher level. Thus, the outputs of each modality can be assumed to be processed independently

of one another. Poria et al. [77] implemented early stage data fusion which involved concatenation of the

features in a multimodal stream; this can be assumed to be the simplest form of early stage data fusion.

2.2.2 Feature-level fusion (Intermediate Fusion)

Feature-level multimodal fusion includes all the approaches which combine the available input data be-

fore performing the objective task [78, 79, 80]. In this case, the number of features extracted from different

modalities must be combined in a unique vector (output) which will be considered as a unique input by the

objective task. Feature-level fusion in a deep learning multimodal context is a fusion of different modality

representations into a single hidden layer so that the model learns a joint representation of each of the modal-

ities. An important characteristic of deep learning is its ability to learn hierarchical representations(features)

from raw data. This characteristic can be exploited in multimodal learning to enable fine-grained control

over how learned features are fused. Features can be learned from different kinds of layers including: 2D

convolution, 3D convolution and fully connected. Different modalities can be fused simultaneously into a

single shared representation layer or this can be performed gradually using one or multiple modalities at a

time.

The main advantages of the feature-level multimodal fusion techniques are the need for a unique learning

phase for the combined feature vector and the possibility of taking advantage of the correlation between

multiple features from different modalities. Although this method is the most flexible method, allowing for

data fusion at different stages of model training, it may lead to model overfitting or the network may fail to

learn the relationship between each modality.

2.2.3 Decision-level fusion (Late Fusion)

Decision-level fusion refers to the aggregation of decisions from multiple regressors/classifiers, each

trained on separate modalities, and the goal is to find a decision rule that selects one one them, which is

inspired by the popularity of ensemble classifiers [81]. In general, these decision-level fusion strategies

are much simpler to implement than other fusion strategies, particularly when the different modalities vary

significantly in terms of data dimensionality, unit of measurement, and sampling rates. Various rules exist to

determine how to finally combine each of the independently trained models. Some of the most well-known

fusion techniques include linear weighted fusion [82, 83], Support Vector Machines (SVM) [84, 85], and

Bayesian inference [86, 87]. A drawback to late fusion is that direct interaction effects between the variables

are lacking because the variables of the model for one modality are never updated based on data from other

15



modalities.

2.3 Annotation-efficient deep learning for semantic seg-
mentation

In medical imaging, data is commonly sparse, and labeling it is costly. Additionally, many problems are

semantic segmentation problems, a task where each pixel in the image needs to be classified. Annotating

image data for a segmentation task is more time consuming, and in some domains like medical imaging,

has to be done by experts.

Recently, semi-supervised learning has gained attention in the medical image computing community. A

lot of semi-supervised methods have been proposed for medical image analysis [88, 89, 90, 91, 92]. All of

these methods combine both labeled and unlabeled data to train powerful and robust convolutional neural

networks (CNNs) models.

The core challenge in semi-supervised settings lies in how to effectively utilize the unlabeled images.

Entropy minimization and consistency regularization are two common strategies for SSL. The entropy min-

imization strategy argues that the unlabeled data can be used to ensure classes are well-separated, which can

be achieved by encouraging the model to output low-entropy predictions. Popularized by the self-training

pipeline, this strategy leverages unlabeled data in an explicit bootstrapping manner, where unlabeled data

is assigned with pseudo labels to be jointly trained with manually labeled data. On the other hand, the

intuition behind consistency based approaches is that the model output should remain unchanged when the

input is perturbed. The consistency regularization enforces the current optimized model to yield stable and

consistent predictions under various perturbations on the same unlabeled data.

2.3.1 Semi-supervised learning with Entropy minimization

Self-training via pseudo labeling is an explicit and classical method originating from around a decade

ago. In the semi-supervised setting, particularly, it has been revisited in several tasks, including image

classification [93], and object detection [94]. Recently it has been applied for semi-supervised segmen-

tation [95, 96, 97, 98]. Pseudo segmentation maps on unlabeled data are obtained from a segmentation

model previously trained on labeled data and then used to retrain the segmentation model. The process

can be iterated several times. Various schemes are used for the pseudo segmentation maps. A naive way

to generate pseudo segmentation maps is to directly use prediction from the model previously trained on

labeled data, and apply iterative training for further improvement [89]. However, such pseudo labels are

unreliable. Observing that it is difficult for a single model to counter its own prediction errors, [95, 96]

use multiple networks leveraging inter-model disagreement between different models to locate pseudo la-

bel errors by training with diversity loss [95] or a dynamically re-weighted loss function, called Dynamic
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Mutual Training [96]. [97] applied strong data augmentation to make better use of the unlabeled data.

These strong augmentations are likely to shift the distribution of natural images and lead to a domain gap

between training images and testing images. In order to avoid the distribution shift caused by strong data

augmentation, they propose distribution-specific batch normalization (DSBN). [98] proposes a self-training

framework that performs selective re-training via prioritizing reliable unlabeled samples to safely exploit

the whole unlabeled set in an easy-to-hard curriculum learning manner; stability of produced pseudo masks

during the supervised training phase serves as a measurement for reliability. There is another group of

works applying Generative Adversarial Networks (GANs) [99] based methods to tackle this task, using the

discriminator for distinguishing the predictions and the ground-truth segmentation to select high-confident

segmentation predictions on unlabeled images as pseudo segmentation. [100] used a GAN framework to

add large fake visual data to enforce real samples to be close in the feature space, which, in turn, improves

multiclass pixel classification. [90] proposed an adversarial network that consists of a segmentation net-

work and an evaluation network which assess segmentation quality by distinguishing between segmentation

results of unannotated images and annotated ones. [101] and [102] turn to adversarial learning, and a dis-

criminator or a multi-label mean teacher (MLMT) branch is added to select reliable predictions as pseudo

labels. [103] extended the GAN Framework and added a secondary model to correct the predictions from

the segmentation model.

2.3.2 Semi-supervised learning with Consistency regularization

Consistency regularization is widely studied in semi supervised semantic segmentation. It enforces the

consistency of the predictions with various perturbations, e.g., input perturbation by augmenting input im-

ages [104, 105], feature perturbation [Ouali], and network perturbation [106]. The effectiveness of consis-

tency regularization is often attributed to the cluster assumption, which states that decision surfaces should

lie in low density regions of the data distribution. This typically holds in classification tasks, but there are

often no low-density regions along class boundaries in semantic segmentation. [104] argue that the cluster

assumption to which effectiveness of consistency regularization has been partially attributed does not hold

in semantic segmentation. They augment the input images randomly and impose the consistency constraint

between the predictions of augmented images, so that the decision function lies in the low-density region

by applying Cutout [107] and CutMix [63]. [108] also studied pseudo supervision in a way similar to [104]

with the CutMix augmentation but using consistency between dual differently initialized models. Pseu-

doSeg [109] adapts the weak-to-strong consistency to segmentation scenarios and further applies a calibra-

tion module to refine the pseudo masks. The approach combines the idea of both consistency regularization

and pseudo-labeling in segmentation; refining pseudo-labels with self-attention grad-CAM and a calibrated

prediction fusion, and consistency training by enforcing pseudo labels to be robust to strongly-augmented

data.

One potential weakness of consistency learning is that it assumes accurate predictions for unlabelled
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images; incorrect predictions from one model will deteriorate the training for the other model, and vice

versa. [110] extended the Mean Teacher model to improve the segmentation accuracy of unlabelled training

images with a new auxiliary teacher and the replacement of Mean Teacher’s MSE loss (as a consistency

loss) with a stricter confidence-weighted CE loss (ConfCE) that allows strong convergence and overall

better training accuracy. [111, 112, 108] manage to tackle this task with simpler mechanisms, such as

enforcing similar predictions under multiple perturbed embeddings [111], under two different contextual

crops [112], and between dual differently initialized models [108].

2.4 Summary
In this chapter, we summarized three common challenges that deep learning faces in medical image

datasets and discussed previous scientific studies, in a systematic manner, which have attempted to address

them. In the following chapters 3, 4, and 5, we present the deep learning frameworks we have developed

for each case study where we faced these same challenges.
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CHAPTER 3

MULTIMODAL DEEP LEARNING FOR

PREDICTING VISUAL FIELDS FROM THE

OPTIC DISC AND OCT IMAGING

．
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3.1 Introduction
Glaucoma is a disease of the optic nerve head (ONH) characterized by loss of retinal ganglion cells and

their axons. This in turn can lead to progressive damage to the visual field (VF) with specific patterns

determined by the arcuate trajectories followed by the axons as they enter the ONH. In clinical practice,

glaucomatous damage can be detected and monitored through functional and structural evaluations. VF

tests are known for requiring strong cooperation from the patient and, as currently implemented, are af-

fected by considerable test-retest variability, especially in people with advanced VF damage. Structural

evaluations of the macular region and the ONH are often done with imaging devices, most commonly fun-

dus cameras and Spectral Domain Optical Coherence Tomography (SD-OCT). The latter has the advantage

of providing cross-sections of the retina and of the ONH that allow precise evaluation of their layers. Struc-

tural damage from glaucoma often manifests itself as thinning of the retinal nerve fiber layer (RNFL, where

the ganglion cell axons reside). Circumpapillary OCT (Cp-OCT) scans are a quick and common OCT

scanning pattern that capture a circular OCT section around the ONH. In some devices, this is coupled

with a two dimensional Scanning Laser Ophthalmoscopy (SLO) image of the ONH, often used to track eye

movements during the acquisition. An example of Cp-OCT, SLO images, and VF test of a patient with

glaucoma is showen in Figure 3.1.

Figure 3.1: An example of a disc (A) and OCT (B) images alongside the corresponding HVF (C). T =

temporal; S = superior; N = nasal; I = inferior.

Matching VF testing and structural data in glaucoma has proven problematic for several reasons. The

first challenge is posed by the complex non-linear spatial mapping of Standard Automated Perimetry (SAP)

locations to the ONH. Although empirical maps exist to describe average trajectories, these are often dif-

ficult to customize for individual patients and become unreliable with increasing distance from the ONH.

Moreover, structural measurements are often affected by a strong measurement floor effect, whereby little

change in structure is observed for large variations in function, especially for more advanced damage. Previ-

ous work has shown the potential of machine learning techniques to model such a complex problem. More

recently, advancements in the field of Artificial Intelligence (AI) and deep learning (DL), especially for
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image analysis with the introduction of Convolutional Neural Networks (CNN), have reignited the interest

around structure-function predictions in glaucoma. Recent attempts focused on predicting SAP sensitivity

from segmented CpRNFL thickness profiles. Although simple, such an approach relies on segmentations

being available and correct. Moreover, it discards valuable information from OCT reflectivity. Finally, little

effort has been put into predicting VF data from ONH planar pictures. Despite providing only limited direct

quantitative data, these images are rich with contextual information, for example on the general shape of

the ONH and the position of the blood vessels, that can be efficiently exploited by CNN architectures. Our

work tested the hypothesis that a hybrid DL method combining information from paired ONH and Cp-OCT

images can not only improve the prediction of SAP sensitivity directly from structural data without seg-

mentation but also lead to a fully AI-derived structure function mapping. We used a large clinical database

acquired from routine glaucoma clinics to develop two separate DL sub-models, each able to provide an es-

timate of VF sensitivity from either OCT or infrared SLO images. A third policy DL model then combines

the two predictions by evaluating feature vectors generated by the two sub-models. Compared to previous

work, our work focused on developing a model to predict VF sensitivity values from a combination of

different imaging modalities in an agnostic fashion, particularly without any use of segmented OCT data.

3.2 Multi-modal Policy model
We aimed to develop and validate a deep learning (DL) system for predicting each point on VF from disc

and OCT imaging and derive a structure-function mapping. We train input specific deep neural networks

for each input source, show the potential of forging them together into a multi-modal architecture and train

a novel policy network that learns to choose between them. Our approach is considered as a feature level

fusion (intermediate fusion) (See Section 2.2). For implementing early fusion, there is no straightforward

way to directly align and combine the two input image modalities; one being an en-face fundus image

and the other being a peripapillary OCT scan described in a polar coordinate system. Besides, observing

the generated feature maps from each modality may include richer context rather than labels, we assume

combined feature maps serve as a better indicator for the final policy decision. Our experiments suggest

that the OCT information is more informative than the disc images for the task of VF sensitivity prediction.

However, for a relatively large number of products (∼ 8%), the disc CNN is correct while the OCT CNN is

wrong, indicating a potential gain from using a multi-modal architecture. We show that we can train a deep

policy to choose between the two models and give a performance improvement over both state-of-the-art

networks.
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3.2.1 Single modality DL model

Two separate DL models were trained using an EfficientNet B2 architecture [113], one for the disc and

one for the OCT. EfficientNet is one of the state-of-the-art architectures, that designed for a specific input

resolution and optimized by a scaling method that uniformly scales each dimension of depth, width and

resolution with a fixed set of coefficients. The input resolution for EfficientNet B2 is 260× 260 pixels. For

training, the batch size was set to 32, NAdam was used as the optimizer, and the initial learning-rate was

set to 5× 10−3. The last layer of the model had 54 nodes corresponding to the 54 VF sensitivity points on

the 24-2.

3.2.2 Multi modality Policy DL model

A policy deep learning model was constructed to take the feature maps from both models and combine

using a 1 × 1 convolutional layer after concatenation of the feature maps. We then used a final fully

connected layer which was tasked with learning the relevant connections between the individual values

in the 1 dimensional tensor, regardless of strict spatial proximity in the original image space. A network

diagram of the complete end-to-end multimodal deep learning model is shown in Figure 3.2, along with a

detailed description of the loss function for the policy network.

For each training sample, we generated our target of a binary 54 element vector where each location

was labeled as 0 for the disc prediction being closer to the true (observed) HVF and 1 for OCT prediction

being closer to true (observed) HVF. The output of the policy network was a 54 dimensional vector where

each element was a floating point value from 0 to 1, where 0 represents an absolute preference for the

disc model prediction and 1 represents an absolute preference for the OCT model prediction at each VF

location. Since this value was generated by a sigmoid function, we chose 0.5 as the threshold to decide

between adopting the prediction from the disc or OCT model. The multimodal network also could be

trained on VF sensitivities directly, instead of preference between disc and OCT. We purposely chose such

an approach considering the importance of interpretability. With our policy model, the prediction indicates

“reasoning” of how to select preference among the two sub-models to achieve the best prediction as shown

in Figure 3.5 with interpretability plots.

We used the same training settings (learning rate, optimizer, and batch size) as for the base models, with

a weighted binary cross-entropy loss function. Considering the limited size of the dataset, we trained policy

network while holding all the parameters in the base models “frozen”.
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Figure 3.2: A) Process overview of VF prediction from the DL model using the IR SLO image (top) and

the OCT image(bottom). B) Model architecture of SLO and OCT models. C) Model architecture of Policy

model. The feature maps obtained via EfficientNet from the IR SLO and OCT images were concatenated.

We then applied a 1x1 convolution to obtain a multimodal feature representation while holding all the

parameters in the base models “frozen” during the training of the policy model. The output of the policy

network (54-dimensional vector) represents the policy preference for each VF location ranging from 0 to

1, generated by a fully connected layer. Values closer to 0 indicate a preference for the disc model, values

closer to 1 indicate a preference for the OCT model. Since the target labels of the policy model were binary

(0 = disc preferred, 1 = OCT preferred), we used a class weighted binary cross-entropy loss function. We

also applied a pointwise “risk weight”” which reflects how much the error increases when the wrong choice

is made.
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3.3 Mitigating data imbalance

3.3.1 Sensitivity-weighted loss function

One important aspect for us was to evaluate the performance of our system in a clinical setting. We used

a large clinical database acquired from routine glaucoma clinics as it is, and did not perform any quality

assessment on the images. The dataset was highly imbalanced; the majority of VF sensitivity values were

around 30 dB, which caused the model to fail to learn patterns of advanced VF loss. To overcome this

limitation, we employed the sensitivity-weighted mean square error for the loss function

1

n

n∑
i=1

1

1 + αti
(ti − pi)

2,

where ti is 1 × 54 true sensitivities and pi is 1 × 54 predicted sensitivities and the mean was calculated

over samples in the same training batch. In this case α is a hyperparameter that controls how strongly the

model weighs lower sensitivities. We used α = 2 for our training. The MAE reported for the test dataset

was calculated without applying any sensitivity-weights.

3.3.2 Risk-weighted loss function for policy network

For the policy model where output has a binary form (0 =Disc preferred, 1 =OCT preferred), class

weight that would cancel out the class imbalance in the dataset has been applied in binary cross-entropy

loss. However, the hard labeling still does not reflect how much the error (i.e. the gap between a true and a

predicted sensitivity) increases when the wrong choice is made. We therefore applied the “risk weight” for

each sample point. Since the target labels of the policy model were binary (0 =Disc preferred, 1 = OCT

preferred), we used a class weighted binary cross-entropy loss function. We also applied a pointwise “risk

weight” reflects how much the error increases when the wrong choice is made, that is calculated as follows.

max{|pdisci − ti|, |pocti − ti|}

3.4 Experiment

3.4.1 Data preparation

Clinical data, imaging data, and HVF data were extracted for a total of 24,248 patients. After applying

inclusion and exclusion criteria, the total number of eligible study patients was 6,437 (11,025 eyes) . A

flow chart of the patient selection process is shown in Figure 3.3. The training, validation, and held-out

test set contained 11,417 HVF-OCT pairs for 3,725 patients, 4,845 pairs for 1,323 patients, and 5,078 pairs

for 1,389 patients, respectively. Note that each VF could be paired with multiple OCTs in the training set,
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Final dataset

Full dataset

Visual fields Eyes Patients

223,942 47,800 24,248

No IVT injections

Visual fields Eyes Patients

218,240 46,383 23,910

No other ocular diseases

Visual fields Eyes Patients

179,737 37,818 20,411

Reliable (FP ≤ 15%)

Visual fields Eyes Patients

165,175 37,189 20,239

No neurological defects

Visual fields Eyes Patients

163,843 36,921 20,097

24-2 (SITA/FT)

Visual fields Eyes Patients

173,345 37,680 20,343

Paired with OCT scan

Visual fields Eyes Patients

21,340 11,025 6,437

Figure 3.3: Flowchart of the selection process from the full dataset of VF tests. FP = false positive; FT =

full-threshold; IVT = intravitreal; SITA = Swedish interactive threshold algorithm; VF = visual field.

but only with the closest OCT for the validation and test sets . Descriptive statistics for the three mutually

exclusive sets of patients are shown in Table 3.1.

OCT scan patterns of the optic nerve from Heidelberg Spectralis (either OCT-1 or OCT-2) were identified

in the database. Each HVF was linked to OCT scans performed within 7 days. For the training set, we

retained all possible pairs, because any variation in the data within such a short time interval could be

attributed to test retest variability; this effectively served as a form of data augmentation. For the validation

and test sets, we only retained pairs with the OCT scan closest to the HVF, within the selected time-frame.

The infrared reflectance (IR) image of the optic disc and the circular B-scan set at 3.5 mm were then

preprocessed. For the disc IR image, the manually selected central point of the optic disc during acquisition

by the photographer was used to crop a 260×260 pixel image at a native resolution as an eight-bit grayscale

image. The circular OCT B-scan was resized to a 1:1 aspect ratio and resized to 260 × 260 as an eight-

bit grayscale image. Each of the paired HVFs was collapsed to a one-dimensional 54 element vector

representing each sensitivity point on the 24-2 VF. Two blind spot locations (X = 15; Y = +/ 3 degrees for

a right eye) were discarded from the 54 dimensional vector at the time of evaluation. The VF sensitivity

values were clipped between 0 and 40 dB and normalized to be between 0 and 1. The upper bound was

chosen as it is commonly considered the highest plausible dB value in visually healthy subjects in standard

testing conditions. The imaging data was normalized to be between 0 and 1. The data were partitioned into
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Table 3.1: Descriptive Statistics of the Selected Sample. Continuous variables are reported as median

[interquartile range]. F = female; FP = false positive; IOP = intraocular pressure; M = male; MD = mean

deviation; OCT = optical coherence tomography; PSD = pattern standard deviation.

60%, 20%, and 20% for training, validation and held-out test sets at the patient level, respectively.

3.4.2 Results

To visualize the trained model predictions, a mean-occlusion mask was iteratively applied to each pixel

position and the change in the predicted VF sensitivities was quantified. Videos of the occlusion affecting

the HVF were generated by iterating the occlusion over each position as a separate frame. The heatmap

describing magnitude of each difference was projected back onto the 24-2 to determine the occlusion lo-

cations that led to the greatest change in the predicted HVF. The final performance of the disc, OCT, and

multimodal policy DL models was assessed in the final held-out test set at the end of the study. Point-

wise mean absolute error (PMAE) and standard deviation (STD) were assessed by taking the mean of the

absolute difference for each sensitivity point between the predicted VF and the true clinical VF.

The final PMAE of the single modality DL model using the IR SLO image of the disc alone was 3.62 dB

(95% CI: 3.54 to 3.68 dB). The PMAE of the single modality DL model using the OCT alone was slightly

better at 3.19 dB (95% CI: 3.13 to 3.25 dB). EfficientNet has been shown to achieve better performance

compared to other well-known CNN architectures such as ResNet and DenseNet with a smaller amount of

parameters. For comparison, we report the prediction performance of our model with different architectures

in Table 3.4 and 3.3. Other methods of combining outputs from each single modality DL model were
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examined and are reported in Table 3.2. The best performing model was the policy fusion DL model that

combined the predictions from the OCT and disc sub-models with a PMAE of 3.13 dB (95% CI: 3.07 to

3.19 dB). The details are shown in Table 3.3. Clinical examples of the policy DL model are shown in Figure

3.5 with interpretability plots of the policy model displaying the confidence in choosing the model output

from disc or OCT. Failure examples where the model predictions deviated from the clinical HVF are shown

in Figure 3.6.

Table 3.2: Prediction performance using other fusion algorithms. Mean: average the two base model

outputs, Blending: calculate multiplication by predicted probability to blend model outputs proportionally,

Policy (selected approach): use either prediction from disc model or OCT model with threshold=0.5. For

each cell, MAE with 95% Confidence Intervals are reported.

Mean Blending Policy

3.37

(3.31 to 3.43)

3.21

(3.15 to 3.26)

3.13

(3.07 to 3.19)

Table 3.3: Prediction performance on other EfficientNet types. For each cell, MAE with 95% Confidence

Intervals are reported.

Architecture Disc to HVF OCT to HVF Policy

EfficientNet B4
3.81

(3.74 to 3.88)

3.36

(3.30 to 3.42)

3.24

(3.18 to 3.30)

EfficientNet B3
3.48

(3.41 to 3.56)

3.22

(3.16 to 3.28)

3.17

(3.10 to 3.23)

EfficientNet B2
3.62

(3.54 to 3.69)

3.19

(3.13 to 3.25)

3.13

(3.07 to 3.19)

EfficientNet B1
3.55

(3.48 to 3.62)

3.11

(3.05 to 3.17)

3.08

(3.01 to 3.14)

EfficientNet B0
3.89

(3.81 to 3.96)

3.46

(3.39 to 3.52)

3.29

(3.23 to 3.36)

To fairly assess the final model performance across the full range of sensitivities, the pointwise error was

plotted for each sensitivity threshold from 0 to 36 dB in the held-out test set (Figure 3.4). In order to probe

the structure-function mapping learned by the model, a mean-occlusion mask was iteratively applied to

each pixel position on the disc and OCT, thereby measuring the effect on HVF predictions. A remapping of

the areas leading to the largest magnitude change for both models is shown as heatmaps in Figure 3.8B (for

the disc SLO), Figure 3.8C (for the OCT), and Figure 3.8D (for the Policy). The structure-function mapping

for the whole held-out test set is reported in Figure 3.9 for the Cp-RNFL. The map was built by plotting
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Table 3.4: Prediction performance using DenseNet. Two different architectures were used to train the disc

model and OCT model. The parameter size of DenseNet 201 is comparable with EfficientNet B4, and the

parameter size of DenseNet 121 is comparable with EfficientNet B2. EfficientNet achieved a better MAE.

For each cell, MAE and 95% Confidence Intervals are reported.

Architecture Disc to HVF OCT to HVF

DenseNet201
4.48

(4.39 to 4.56)

3.51

(3.45 to 3.57)

DenseNet121
4.29

(4.21 to 4.37)

3.48

(3.42 to 3.54)

Table 3.5: Prediction performance with different allowed time gaps between imaging and visual field test.

For each cell, MAE with 95% Confidence Intervals are reported.

Interval Disc to HVF OCT to HVF Policy

7 days
3.62

(3.54 to 3.68)

3.19

(3.13 to 3.25)

3.13

(3.07 to 3.19)

30 days
3.8

(3.74 to 3.87)

3.38

(3.32 to 3.43)

3.26

(3.20 to 3.32)

60 days
3.81

(3.75 to 3.87)

3.19

(3.13 to 3.25)

3.32

(3.26 to 3.37)

90 days
3.67

(3.61 to 3.73)

3.26

(3.20 to 3.31)

3.18

(3.13 to 3.24)

the distribution of the circumpapillary angles at which the highest peak of the heat-map was located, in

polar coordinates. The map was also compared with previously reported structure-function maps based on

anatomical data [114, 115, 116, 117, 118]. We demonstrated that the policy network implicitly optimizes

the multimodal architecture accuracy, by explicitly learning to choose between single modality networks.

However, it is not clear on what basis the policy network makes such a choice. The observation that the

preference of the policy network appeared to be influenced by the quality of each image raises an interesting

question: is the policy choice linked with the actual superiority on the prediction performance of the two

models? To answer this question, we added several levels of noise to either SLO or OCT to degrade its

performance on one of these models, and then observed how that affected the policy choice. As the level of

noise on SLO increased and as the prediction performance from the SLO network degraded (PMAE: from

3.62 to 4.61), the policy network adopted the prediction from OCT model more (Policy choice: from 63.6%

to 67.7%). On the contrary, it trusted the prediction from the SLO model more (Policy choice: 63.6% to

50.4%) as the level of noise on OCT increased and the prediction performance from OCT network degraded

(PMAE: from 3.19 to 8.84). Throughout the experiments, our policy network kept a stable performance
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(PMAE: from 3.13 to 3.16 with noise on SLO, PMAE: from 3.16 to 3.23 with noise on OCT). The detailed

results are shown in Figure 3.7.
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Figure 3.4: A, Predictions from the two sub-models and the policy network for each level of sensitivity.

The diagonal line indicates perfect agreement. B, Relationship between the prediction Mean Absolute Error

(MAE) from the two sub-models and the final average choice from the policy network. Higher MAE in the

disc to HVF model is generally associated with a preference for the OCT to HVF model and vice-versa.

The diagonal line indicates equivalent MAE. HVF = Humphrey visual field; MAE = mean absolute error;

OCT = optical coherence tomography.
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Figure 3.5: Prediction examples from the test set. The top of each panel reports the disc and OCT im-

ages used for predictions alongside the ground-truth HVF. The bottom of each panel shows, in order, the

predictions from the two sub-models, the choice score of the policy network for each location, and the

final prediction of the policy network. A, Both sub-models predict a similar location of the defect, but the

OCT to HVF is more accurate in predicting the magnitude of glaucoma damage; the policy network cor-

rectly selects this prediction for the superior hemifield. B, the prediction from either individual sub-model

is wrong, showing either little damage or diffused advanced loss; however, the policy network correctly

selects predictions for each location to obtain a result very close to the ground truth, better characterizing

the spared paracentral VF. HVF = Humphrey visual field; I = inferior; N = nasal; OCT = optical coherence

tomography; S = superior; T = temporal.
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Figure 3.6: Other predictions from the test set. A) Case of myopic disc with extensive peripapillary atrophy

and full thickness retinal damage in the inferior sector. Interestingly, the superior loss due to the full

thickness defect is captured by the OCT to HVF model and correctly selected by the policy network.

B) Synergic interaction, where the policy network is able to select inputs from the two sub-models to

achieve a result that would not be possible with either individual sub-model. C) OCT to HVF produces

an exaggerated nasal inferior defect; the policy network correctly prefers the result of the Disc to HVF

prediction D) Prediction failure: the disc prediction was closer to the ground-truth but the policy network

relies more on the OCT prediction. Of notice, both models produced similar results but the Disc to HVF

model predicts a shallower HVF defect compared to the ground truth.
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Figure 3.7: Prediction performance (top) and policy choice (bottom) for different noise levels applied to

disc and OCT images. As expected, adding noise to OCT images degraded the performance of the OCT

prediction (red) while leaving the disc prediction unaltered (blue). The opposite was true when adding

noise to the disc images. The policy network was able to maintain a stable performance throughout. This

was achieved by changing the preference for inputs from the disc or the OCT prediction according to which

provided more reliable results (i.e. contained less noise). In other words, the policy network was able to

adapt its choice based on changes in the quality of the input image. The gaussian blur was added to the disc

images (kernel size from 0 to 41 pixels from level 0 to 4) while brightness was changed on OCT images

(intensities decreased by a value from 0 to 120 from level 0 to 4, over a maximum of 255 and clipped at 0).

3.5 Discussion
Our work demonstrates an end-to-end DL approach for accurately predicting pointwise 24-2 HVF thresh-

old sensitivities from the combination of the IR SLO ONH image and the Cp-OCT B-scan image. In addi-

tion, we found that the structure-function relationship that was learned directly from the imaging data in a

fully agnostic, data-driven manner falls within prior manually derived efforts.
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3.5.1 Explainability

The whole process simultaneously provides three distinct outputs (prediction from OCT, prediction from

SLO of the disc, and policy-based fusion of the two results), with each producing directly interpretable

results (HVF sensitivity maps). Importantly, the policy model is able to selectively choose between pre-

dictions from the two sub-models, thereby improving, for example, the spatial localization of deep defects

(Figure 3.5B). The preference of the policy network appeared to be influenced by the quality of each image.

Therefore, the policy model seems adept at working with real-world data, which might include a prepon-

derance of artifactual image quality in OCT/SLO scans. The policy network still has the potential to fail if

both the SLO and the OCT image are affected by artifacts or poor quality. We explored these aspects more

in detail in Figure 3.7 by simulating different amounts of noise for either the OCT or the disc image.

3.5.2 Structure-Function Mapping

Our structure-function mapping was agnostically learned by the two sub-models from the data alone.

Remarkably, the OCT-based mapping yielded results in agreement with other mapping schemes based

on anatomical features of the RNFL bundles [114, 115, 116, 117, 118]. In Figure 3.9, we represent the

structure-function mapping for the Cp-OCT scans in the test set by plotting the angle at which the peak

of each heatmap (see Figure 3.8 C) was found around the ONH. Our technique indicated some spread in

the distribution of the peaks, suggesting adaptive mapping based on individual features of the Cp-RNFL

scans. In many of the locations, this matched the inter-individual variability observed by Jansonius et al.

[114]. Inevitably, some of the variability is due to measurement noise, as evident by the larger spread

in the distribution for the temporal VF locations, where perimetric defects are less commonly detected

[119, 120]. One notable difference is the mapping of the macular locations, which in our model are shifted

more towards the superior and inferior poles of the ONH (Figure 3.9) compared with Jansonius et al. [114].

This is another important line of evidence to support the novelty of our technique because Jansonius et al.

[114] did not account for the retinal ganglion cell displacement in the macular region [121, 122]. A similar

difference was recently reported by Turpin and McKendrick [118], whose model is also reported in Figure

3.9 as a comparison.

From the example in Figure 3.8B, the heatmap for the SLO predictions is mostly focused on the neu-

roretinal rim for the inferior hemifield; however, it appears more widespread for the location in the superior

hemifield. Similarly, the heatmap produced for the Cp-OCT scans mainly focused on the RNFL (example

in Figure 3.8C). This suggests that our technique learns the image features relevant for prediction without

the need for segmentation, which is noteworthy. The disc heatmap commonly indicates some relevance

of image features beyond the optic disc suggesting a role of the reflectivity patterns induced by the loss

of RNFL [123]. In the heatmaps, the most frequent location of the blind spot (X = 15; Y = -3 degrees)

was rendered inactive during the training, meaning that the network learned that the sensitivity at this point
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could not be predicted by any information present in the image. This is inconsequential for our results (both

blind spot locations were excluded from our analyses) but provided us with the chance of confirming that

the models were able to learn meaningful spatial features from the data.

3.5.3 Comparison with Previous Work

Others have used DL methods to predict global VF metrics [124, 125] but few have attempted pointwise

predictions of the VF. Park et al.[126] and Hashimoto et al. [127] used fully segmented OCT thickness

maps. Mariottoni et al. also predicted pointwise VF sensitivities agnostically from peripapillary OCT

RNFL thickness profiles [128]. However, such an approach not only requires an accurate segmentation

to be available in the first place, but also disregards other information contained in the OCT image that

might inform prediction, such as the reflectivity of the RNFL [123, 129]. Fewer attempts have instead been

made to utilize optic disc images to predict VF data [130]. Interestingly, our data indicate the existence of

additional information gained by combining the two imaging modalities. The error profile of our prediction

stratified by sensitivity was similar to previous publications [128], in that the error greatly increased below

15 dB. This could be linked to the high level of VF noise at low sensitivities [131], which imposes a

lower bound on the achievable predictive performance, and by the previously mentioned floor effect in

the structural data [132]. Such a feature is clearly demonstrated by the positive bias at lower sensitivities

(Figure 3.4). Notably, non-linear methods have proven more successful than linear models at overcoming

this issue [133, 127, 128, 134], but the problem persists in all these attempts.

3.5.4 Practical Implications and Future Directions

VF estimation from imaging allows the conversion of the information contained in OCT/SLO structural

data into a more clinically meaningful format. For example, it could allow for structural data to be seam-

lessly integrated into analyses of VF progression [135] or into the VF test itself [136, 137, 138]. This could

expedite perimetry or reduce between-visit measurement variability when following a patient over time.

The latter is appealing because this might improve the power to detect disease progression in a trial, and

this is the subject of our future work.
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Figure 3.8: A, Process for generating heatmaps for the disc SLO and OCT models. According to the

location of the perturbation in the predicted VF, the magnitude of changes reflects where the network

focuses on during the predictions. B, Heatmap for one patient-generated example based on our disc SLO.

C, Heatmap for one patient-generated example based on the OCT model. D, Heatmap for one patient-

generated example from the policy network obtained by occluding the disc SLO. E, Heatmap for one

patient-generated example from the policy network obtained by occluding the OCT image. OCT = optical

coherence tomography; SLO = scanning laser ophthalmoscopy; VF = visual field.
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Figure 3.9: Structure-function mapping for the OCT to HVF model generated from the heatmaps for the

test set for each testing point in the 24-2 VF pattern shown on polar coordinates. The map was built by

plotting the distribution of the circumpapillary angles at which the highest peak of the heatmap was located.

Other mapping schemes are reported for comparison. HVF = Humphrey visual field; I = inferior; N = nasal;

OCT = optical coherence tomography; S = superior; T = temporal.

3.6 Summary
We demonstrate the ability of DL models to predict VF pointwise sensitivities agnostically from Cp-OCT

scans and IR SLO images of the disc, further improving predictions with a policy-based fusion of the two

results. The DL models generate structure-function maps compatible with established anatomical features

and are able to capture the functional consequence of relevant structural changes in glaucoma. Ubiquitously

obtained IR/OCT data may contain information beyond conventional segmentation that could be used to

better determine visual function and detect progression in patients with glaucoma.

36



CHAPTER 4

RETINAL LAYER SEGMENTATION ON

LARGE SCALE UNLABELED DATA WITH

PSEUDO LABELING
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4.1 Introduction

4.1.1 Foveal Curvature and Its Associations

The fovea is a highly specialized retinal region at the center of the macula responsible for driving high vi-

sual acuity and color vision [15]. Despite occupying ∼ 2.69 mm2/1100 mm2 of the retinal area, the fovea

maps to half of the primary visual cortex [139, 140]. Absent or poorly formed foveal depressions with

presence of inner retinal layers have been associated with poor vision in cases with well characterized dis-

eases (i.e., retinopathy of prematurity, aniridia, ocular albinism, absent or poorly formed foveal depressions

with presence of inner retinal layers optic nerve decussation defects and anterior segment dysgenesis syn-

drome, Stickler syndrome, Alport syndrome, familial exudative vitreoretinopathy, incontinentia pigmenti,

nanophthalmos, posterior microphthalmos, and achromatopsia) [141, 142, 143, 144, 145, 146, 147]. Nev-

ertheless, absent foveas or foveas with presence of inner retinal layers have also been described in healthy

individuals with good vision [148]. In this context, the detailed noninvasive cross-sectional imaging of

the retina with micrometer resolution obtained with optical coherence tomography (OCT) has significantly

contributed to the detailed quantitative description of foveal morphology in healthy and diseased individuals

and provided insight into postnatal retina development [149, 150, 151]. Our understanding of mechanisms

and functional implications of cytoarchitectural and morphological foveal alterations are driven by stud-

ies in patients with absent or poorly formed foveal depressions with presence of inner retinal layers in

selective settings [152]. What is less understood is the interindividual variation of foveal curvature (FC)

in the general population, and what factors may be associated with these differences. Studies analyzing

the OCT-derived foveal slope have been limited to using small to moderate sample sizes (typically with

less than 400 subjects) [143, 153, 154, 155, 156]. With more than half a million recruited participants and

with a subset of about 85,000 patients with enhanced ophthalmological examination, the UK Biobank is

one of the world’s largest single resources for comprehensive study of health and disease (UK Biobank

Eye and Vision Consortium, available at: https://www.ukbiobankeyeconsortium.org.uk/).

By using comprehensive structured population data and machine learning (ML), we aim to address a gap

in our knowledge by exploring the associations of sociodemographic, ocular, and early life factors with

OCT-derived FC of healthy individuals.

4.1.2 Macular Curvature and Dome-Shaped Configuration

It is commonly believed that the retina follows the roundness of the globe and shows a slight outward

directed curve. Nevertheless, divergent macular configurations such as staphyloma or a dome-shaped mac-

ular configuration have been described [157, 158, 159, 160]. These divergent configurations are reported

to be mainly associated with such features as thickened sclera and choroid in the context of or secondary to

high myopia (apart from space-occupying processes such as choroidal tumors), 5 defined by refractive error
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exceeding－ 6 diopters (D) or axial length of ≥ 26 mm [157, 158, 159, 160, 161]. In the cohort with high

myopia, it was reported with a frequency of 4% to 15%. Given the increasing myopia prevalence [162],

understanding macula malformation in the context of myopia is vital, as it is a strong driver of maculopathy

development is the presence of a posterior staphyloma with anomalous macula curvature [162, 163, 164].

However, myopia research is ominated by exploring associations of refractive error or occasionally axial

length, but not macula curve, due to difficulty measuring it. Therefore, the pathophysiology underlying

macular malformations, especially dome-shaped maculopathy, is not completely understood nor has the

prevalence of such malformations been systematically investigated. In the last decade, high-definition op-

tical coherence tomography (OCT) has become widely available that allows for three-dimensional imaging

of the macula [165]. In this context, objective quantification of the macular curvature has recently been

introduced [166]. It might offer the potential for an effective comprehensive evaluation. Although macular

curvature has been reported to be associated with choroidal thickness and axial length, as well as retinitis

pigmentosa and associated genes [166, 167, 168, 169], large epidemiologic studies are still pending.

4.2 Curvature Analysis on UKBB
The dataset include eye data from more than 133,000 participants underwent an enhanced ophthalmic

assessment. A subset of these (87,624 participants) had undilated macular spectral-domain OCT (SD-OCT,

Topcon 3D OCT-1000; Topcon Optical Company, Tokyo, Japan) imaging. These OCT data were stored

as FDS files for each eye, a proprietary image storage file format that contains the raw fundus image and

OCT B-scan images, on the UKBB supercomputers in Oxford, UK, without prior analysis. Each eye data

contains 128 B-scans with 512 A-scans. With the dataset, our aim was to extract the area between the

inner limiting membrane and retinal pigment epithelium (RPE), and the area between the internal limiting

membrane (ILM) and RPE from OCT B-scans, and thus detect the boundary of the ILM and RPE without

any human annotations. The curve fitting was then executed by fitting a two-dimensional polynomial curve

on the extracted ILM boundary for foveal, and RPE boundary for macular curvature analysis. The process

overview for foveal curvature fitting is shown in Figure 4.1.

For this purpose, we took an iterative pseudo-labeling technique, a semi-supervised algorithm which

efficiently performs multiple iterations of pseudo-labeling on unlabeled data as the model evolves. In par-

ticular, we extracted “hard samples” to promote generalization of the model rather than overfit to incorrect

samples.

4.2.1 Retinal Layer Segmentation with Pseudo Labels

We developed a machine learning model to extract the area between the internal limiting membrane

(ILM) and retinal pigment epithelium (RPE) from OCT B-scans and detect ILM and RPE boundaries
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without need for human annotations. The process overview is shown in Figure 4.1. We first employed

the A⋆ algorithm to obtain initial segmentation masks of the retinal layers [170], and we used them as

pseudo labels, which are the initial training target for the machine learning model (Figure 4.1 Step1). The

A⋆ algorithm is an extension of Edsger Dijkstra’s algorithm, which is widely used in pathfinding and graph

traversal [170], and thus can be adopted to distinguish different parts of boundaries in graph-based image

segmentation problems. However, this traditional image segmentation algorithm is not robust enough to

handle images with poor contrast or abnormal brightness filled with random noise; in fact, the output

segmentation masks included many errors. In order to filter out these errors, we calculated the minimum

retinal thickness and standard deviation (SD) for each B-scan from predicted segmentation masks. In this

study, only the samples with a minimal retinal thickness between 30 and 80 pixels (which converts to 180 to

480μm at an axial resolution of 6μm/pixel) and SD ≤ 10 pixels (60μm) were accepted. Through the

process described above, we collected a total of 6,409 input–output pairs to train a segmentation network

in Figure 4.1 Step2. We used the Pyramid Parsing Network (PSPNet) with the ResNet18 backbone as our

segmentation architecture [171, 172]. The model was trained with a binary cross-entropy loss function

using the Adam optimizer. We chose a batch size of 8. The learning rate was initially set to 1 × 10－ 3,

and decay over each update was set to initial learning ratio divided by epochs. All inputs and outputs were

cropped to 512 × 512 by setting y-coordinates whose sum of pixel values had a maximum intensity to

the center and then resized to 256 × 256. All images were normalized to a range between 0 and 1. We

assessed the performance of the neural network using cross-validation with the validation set and evaluated

the generalizability with an independent dataset. Samples were divided into training sets at 80%, validation

sets at 20%. The training and validation sets contained images from mutually exclusive groups of subjects.

During the training, shadows and Gaussian/speckle noises were randomly applied to the training data, as

well as basic data augmentations such as shift, flip, and rotation. When we filtered out segmentation errors

from the A⋆ algorithm, many hard examples were also excluded from the dataset; therefore, the trained

model was not robust enough at this point. In order to bolster this weakness, we retrained our model

with additional hard examples. For this, we first processed 1,250 FDS data and excluded segmentation

error. Next, we computed a sum of entropy for each obtained segmentation mask where each pixel had

a probability value of being foreground. We then regarded examples with high entropy value as “hard

examples”, which were sorted in descending order, and the top 200 images were added to the original

dataset for the training. The trained model achieved a mean intersection over union value of 0.97 on the

validation set. In the end, a total of 170,079 eye images were processed and 128 × 170, 079 segmentation

masks were generated for each B-scan by the segmentation network. Because the B-scans often include

several vertically flipped images, we built a binary classification network with the LeNet architecture that

can identify flipped B-scans and unflip them automatically. RPE/C boundaries were then extracted simply

by tracking the bottom boundary for each segmentation mask.

40



Figure 4.1: Diagram of machine learning metodology implemented to generate our automated OCT-derived

FC quantification.

41



4.2.2 Center Point Retinal Thickness Analysis.

The retinal thickness was computed as the distance between the ILM and RPE boundary, and center

point retinal thickness (CPRT) was determined to be the center of the area with the thinnest retina for each

OCT volume scan. By mapping the thickness of ILM and RPE boundaries for each location on the 128

B-scans, we obtained a 128×256 height map where each pixel represents the height of ILM-RPE. Next, we

applied gaussian blur to the thickness map (Figure4.2 a). We then binarized the filtered height map using

Otsu’s algorithm [173] (Figure4.2 b). The resulting donut-shaped blob was then detected by a minimum

circularity threshold (Figure4.2 c). The location of the center point was then given as a tuple of slice number

and B-scan x-coordinate.

a) b) c)

Figure 4.2: Process overview of Center Point Retinal Thickness Analysis.

4.2.3 Foveal Curvature Analysis

The curve fitting was executed on the pixel coordinates. Given the center point for each OCT volume

scan, a two-dimensional polynomial curve was fitted on the extracted ILM boundary with a range of pixels

left and right from the center point. The degree of the polynomial used was two dimensional, and the

coefficient of highest degree (leading term) was used to describe the curvature (Figure 4.3).

■ Validation of Curvature Analysis

In order to validate the automated foveal curvature analysis, two retina specialists with wide experience

in OCT grading (A.T., A.O-B.) were asked to classify 10 different image sets, composed of 3 B-scans from

each FC tertile (see Figure 4.4), from flattest to steepest scan in each set. The reference standard was a

tertile classification based on ML-derived FC quantification. Human graders correctly classified each FC

tertile in all 10 image sets.
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Figure 4.3: Examples of detected curve of fovea.

Figure 4.4: Top: foveal curvature quantification from central b-scans for each curvature tertile (from right

to left, flattest to steepest quantified curvature measurements). Bottom: histogram of foveal curvature

distribution by FC tertile.

■ Statistical analysis

R version 4.0.2 was used to analyze the data [174]. The “lme4” (version 1.1-28) package was used

for linear multilevel regression models fitted by restricted maximum likelihood. P values were calculated
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via Satterthwaite’s degrees of freedom method with the “lmerTest” (version 3.1-3) package. In view of

systematic differences in FC between men and women, and associated covariates related to growth, all

analyses were stratified by sex. Multilevel linear regression models adjusting for age, ethnicity, height, and

UK Biobank assessment center as fixed effects, with a random effect for person to allow for the right- and

left-eye data from the same participant to contribute to the analysis (Model 1), were used to examine asso-

ciations with FC. Model 2 extended model1 with further adjustment for VA, SE, corneal astigmatism, IOP,

MC, and CPRT. Model 3 extended model 2 allowing for deprivation, higher education, fluid intelligence

score, annual income, and birth order. Fovea curvature measures were modeled as z scores. Coefficients

represent the standard deviation (SD) change in FC per specified increase in covariates or the standardized

difference between groups (Tables 4.1 and 4.2, show estimates for raw FC × 100 as dependent variable).

Data missing on categorical variables were included as an additional category for each variable to mini-

mize data loss. In sensitivity analyses model 3 was extended by allowing for birth weight, maternal age at

birth, maternal smoking around birth, and breastfeeding status as a baby to examine FC associations with

early life factors. Additionally, multilevel models were fitted again after exclusion of individuals with SE

<－ 6 D and > 6 D and vision < 80 Early Treatment Diabetic Retinopathy Study letters (worse than 6/7.5

Snellen, or worse than 0.1 logMAR equivalent).
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Table 4.1: Regression table for females with fovea curvature×100 as dependent variable.

Females model 1* Females model 2† Females model 3‡
Characteristic

Age (per decade) 0.13 (0.11, 0.16); 6.8e-28 0.16 (0.14, 0.19); 1.8e-34 0.16 (0.14, 0.19); 9.4e-30

Ethnicity

White 1 1 1

Black -1.1 (-1.2, -1.0); 5.1e-75 -1.5 (-1.6, -1.3); 1.8e-120 -1.4 (-1.5, -1.3); 2.3e-93

Asian -0.93 (-1.1, -0.80); 2.2e-44 -1.2 (-1.3, -1.0); 1.4e-63 -1.1 (-1.3, -1.0); 9.9e-48

Other -0.71 (-0.87, -0.55); 3.8e-18 -0.90 (-1.1, -0.73); 4.4e-25 -0.80 (-1.0, -0.62); 8.2e-18

Mixed -0.30 (-0.49, -0.11); 0.002 -0.51 (-0.71, -0.31); 3.7e-07 -0.47 (-0.68, -0.26); 7.5e-06

Chinese -0.31 (-0.59, -0.03); 0.032 -0.63 (-0.92, -0.34); 2.5e-05 -0.59 (-0.90, -0.28); 1.7e-04

Prefer not to say -0.84 (-1.2, -0.51); 6.9e-07 -1.0 (-1.4, -0.67); 1.7e-08 -1.0 (-1.4, -0.66); 9.5e-08

Missing -0.81 (-1.3, -0.37); 3.5e-04 -0.88 (-1.4, -0.40); 3.1e-04 §
Height (per 5cm) 0.08 (0.06, 0.09); 5.5e-24 0.07 (0.06, 0.09); 2.4e-19 0.07 (0.05, 0.08); 6.9e-16

Visual acuity (per 5 letters) 0.03 (0.02, 0.03); 1.6e-16 0.03 (0.02, 0.03); 1.4e-15

Spherical equivalent (per diopter) -0.08 (-0.09, -0.08); 6.4e-105 -0.08 (-0.09, -0.07); 1.3e-96

Corneal astigmatism (per diopter) -0.14 (-0.16, -0.12); 3.2e-33 -0.14 (-0.16, -0.12); 4.0e-32

Macula curvature (per 0.01) 0.58 (0.46, 0.69); 1.4e-21 0.55 (0.43, 0.67); 1.7e-19

Center point retinal thickness (per 10μ m) -0.26 (-0.27, -0.25); 0.0e+00 -0.26 (-0.27, -0.25); 0.0e+00

Fluid intelligence 0.02 (0.01, 0.03); 9.8e-04

Annual income (Great British Pound)

Less than 18,000 1

18,000 to 30,999 0.01 (-0.05, 0.08); 0.701

31,000 to 51,999 0.02 (-0.05, 0.09); 0.589

52,000 to 100,000 0.02 (-0.05, 0.09); 0.605

Greater than 100,000 0.07 (-0.03, 0.17); 0.181

Prefer not to say 0.07 (0.00, 0.15); 0.055

Missing -0.04 (-0.53, 0.45); 0.872

Birth order

1 1

2 0.02 (-0.02, 0.07); 0.311

3 -0.05 (-0.13, 0.03); 0.259

4 -0.03 (-0.11, 0.06); 0.569

Missing 0.38 (-0.45, 1.2); 0.371

Bold p-values represent statistically significant results.

* Model 1: multilevel model adjusts for age, ethnicity, and height as fixed effects, and a random effect for person to allow for within person eye measurements (59,642 eyes of 35,097 patients).

†Model 2 adjusts as model 1 plus visual acuity, spherical equivalent, corneal astigmatism, macular curvature, and center point foveal thickness as fixed effects (54,489 eyes of 32,564 patients).

‡Model 3 adjusts as model 2 plus deprivation, higher education, fluid intelligence score, annual income, and birth order as fixed effects (53,135 eyes of 31,727 patients).

§ No missing data on ethnicity on this model.
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Table 4.2: Regression table for males with fovea curvature x 100 as dependent variable.

Males model 1* Males model 2† Males model 3‡
Characteristic

Age (per decade) -0.06 (-0.08, -0.03); 8.4e-05 -0.02 (-0.05, 0.01); 0.168 -0.01 (-0.04, 0.02); 0.466

Ethnicity

White 1 1 1

Black -1.2 (-1.3, -1.0); 6.0e-49 -1.7 (-1.8, -1.5); 2.1e-88 -1.6 (-1.8, -1.4); 5.2e-68

Asian -0.71 (-0.86, -0.56); 7.4e-21 -1.1 (-1.2, -0.92); 1.7e-41 -1.1 (-1.2, -0.90); 2.3e-34

Other -0.57 (-0.78, -0.36); 1.5e-07 -1.0 (-1.2, -0.74); 1.5e-17 -0.94 (-1.2, -0.71); 7.2e-15

Mixed -0.41 (-0.69, -0.12); 0.005 -0.77 (-1.1, -0.47); 3.8e-07 -0.73 (-1.0, -0.43); 3.0e-06

Chinese -0.68 (-1.1, -0.29); 6.5e-04 -1.1 (-1.5, -0.65); 4.5e-07 -1.1 (-1.5, -0.65); 8.9e-07

Prefer not to say -0.26 (-0.61, 0.09); 0.150 -0.25 (-0.62, 0.11); 0.168 -0.18 (-0.57, 0.21); 0.372

Missing 0.00 (-0.51, 0.52); 0.986 -0.09 (-0.61, 0.44); 0.749 -1.1 (-3.8, 1.6); 0.437

Height (per 5cm) 0.08 (0.06, 0.10); 4.3e-19 0.07 (0.05, 0.09); 3.4e-15 0.06 (0.05, 0.08); 4.2e-12

Visual acuity (per 5 letters) 0.02 (0.01, 0.03); 3.5e-07 0.02 (0.01, 0.03); 8.4e-07

Spherical equivalent (per diopter) -0.07 (-0.08, -0.07); 5.3e-53 -0.07 (-0.08, -0.06); 5.6e-50

Corneal astigmatism (per diopter) -0.12 (-0.15, -0.10); 3.6e-20 -0.13 (-0.15, -0.10); 5.3e-20

Macula curvature (per 0.01) 0.27 (0.14, 0.41); 1.0e-04 0.28 (0.14, 0.42); 1.2e-04

Center point retinal thickness (per 10μ m) -0.29 (-0.30, -0.28); 0.0e+00 -0.29 (-0.30, -0.28); 0.0e+00

Fluid intelligence 0.00 (-0.02, 0.01); 0.559

Annual income (Great British Pound)

Less than 18,000 1

18,000 to 30,999 0.11 (0.03, 0.19); 0.010

31,000 to 51,999 0.10 (0.02, 0.18); 0.021

52,000 to 100,000 0.13 (0.04, 0.22); 0.004

Greater than 100,000 0.16 (0.05, 0.28); 0.005

Prefer not to say 0.01 (-0.10, 0.12); 0.857

Missing 0.22 (-0.37, 0.81); 0.459

Birth order

1 1

2 0.01 (-0.04, 0.06); 0.728

3 0.06 (-0.04, 0.16); 0.216

4 -0.05 (-0.15, 0.06); 0.375

Missing -0.39 (-1.3, 0.50); 0.389

Bold p-values represent statistically significant results.

* Model 1: multilevel model adjusts for age, ethnicity, and height as fixed effects, and a random effect for person to allow for within person eye measurements (59,642 eyes of 35,097 patients).

†Model 2 adjusts as model 1 plus visual acuity, spherical equivalent, corneal astigmatism, macular curvature, and center point foveal thickness as fixed effects (54,489 eyes of 32,564 patients).

‡Model 3 adjusts as model 2 plus deprivation, higher education, fluid intelligence score, annual income, and birth order as fixed effects (53,135 eyes of 31,727 patients).

4.2.4 Macular Curvature Analysis

We used 32 central Bscans for macular curvature fitting. For each B-scan, we fitted a quadratic function

to the extracted RPE boundary, then took the coefficient of the leading term as curvature value. After

collecting the 32 curvature values, we took median as the final macular curvature of the volume. Again, the

curve fitting was executed on the pixel coordinates.
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Figure 4.5: Examples of detected curve of macular.

■ Validation of Curvature Analysis

In order to validate the macular curvature analysis, the eyes were divided into quartiles based on macu-

lar curvature values. Randomly (using the True Random Number Generator, https://www.random.

org/), one eye of each quartile was chosen and the central OCT scan was included in an Adobe Photo-

Shop PSD file (Figure 4.6). Ten PSD files consisting of one OCT scan per quartile were generated. The

files were saved twice: once with layers in random order for validation and once with the correct order of

layers as control. Two independent experienced retinal specialists (P.L.M. and A.T.), masked to the results

of the other, were then asked to order the four OCT scans in each PSD file (random order) according to the

appearance of macular curvature. Finally, the results were compared to the control files, which revealed

perfect agreement. Furthermore, the 100 cases with the most extensive curvature values were manually

checked.

■ Statistical analysis

Statistical analysis was performed using R 4.0.3 (R Foundation for Statistical Computing, Vienna, Aus-

tria) and Python 3.7 (Python Software Foundation, Wilmington, DE, USA). The distribution of the macular

curvature and its correlation with ethnicity (white, comprised of English/Irish or other white background;

Asian, comprised of British Asian, Indian, Pakistani, Bangladeshi, or other Asian background; black, com-

prised of black British, Caribbean, African, or other black background; Chinese; mixed, comprised of white

and black Caribbean or African, white and Asian, or other mixed background; and other, comprised of un-

defined ethnicity), demographic, ocular, and functional parameters were investigated. These parameters

included refractive error, as spherical equivalent (D), measured by autorefractor and calculated as sphere

+ [cylinder/2]); VA (in logarithm of the minimum angle of resolution [logMAR]); corneal-corrected IOP

(mmHg),measured using the Ocular Response Analyzer (Reichert Corp., Buffalo, USA); age; sex; corneal
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curvature, measured as maximal curvature (KMAX); childhood environment (birth weight, maternal smok-

ing); and fluid intelligence (FI) score based on a baseline touchscreen questionnaire with 13 questions.

Factors were chosen according to literature evaluations, as associations with eye development or effects

on the pathogenesis of dome-shaped macular curvature have been hypothesized [157, 160, 175, 176, 177,

178, 179, 180]. Multilevel linear regression models adjusting for age, gender, and ethnicity (demographic

parameters) as fixed effects, with a random effect for person to allow for the right- and left-eye data from

the same person to contribute to the analysis (model 1), were used to examine associations with macular

curvature. Model 2 extended model 1 with further adjustment for ocular measures (refractive error, IOP,

corneal curvature) and functional data (VA, FI). Model 3 extended model 2 with further adjustment for

childhood environment (birth weight, maternal smoking). Macular curvature measures were modeled as

z-scores in the regression models, and coefficients represent the fraction of SD change per unit increase or

per group change (for categorical values) in covariates. Age represents the changes per decade increase, VA

per 0.1 logMAR change, and IOP per 5-mmHg rise; other continuous variables are expressed in their units.

References for categorical variables are female versus male, white versus all other ethnicities, and maternal

smoking versus no maternal smoking. For inter-eye comparisons, paired t-tests were used. P values with

α < 0.05 were considered statistically significant.
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Figure 4.6: The spectrum of macular curvature. The histogram (left) shows the distribution of macular

curvature values; the colors highlight the four different quartiles. The optical coherence tomography B-

scans (right) represent exemplary images for all four quartiles as used for validation. For the demonstrated

exemplary set, the individual curvature value of the respective eyes is displayed. The bottom image shows

an inward-directed macular curve associated with a negative curvature value, indicating a dome-shaped

configuration.

4.3 Results

4.3.1 Results from Foveal Curvature Analysis

A total of 109,160 eyes (54,055 right eyes, and 55,105 left eyes) of 63,939 participants (45.1% male) were

included in the analysis. Mean age (SD) was 56 years (±8.0), and 92% of the participants were White. The

FC followed a normal distribution (Figure 4.4) and had a mean of 0.072 (±0.02). Table 4.3 shows the

overall patient characteristics of our study cohort. A summary of eye-level characteristics is found in Table

4.4. Figure 4.7 shows the association of FC with each covariate (deciles of continuous variables), adjusted

for age, height, and UK Biobank assessment center. Foveal curvature showed an inverse association with
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each decile increase in SE, CPRT, VA, and corneal astigmatism. A positive linear association of FC was

found for each decile increase in MC. Associations in different directions between males and females were

observed with age. Associations were less clear for height, IOP, higher education, fluid intelligence, annual

income, and deprivation.

■ Sex Differences

Males had on average steeper FC and greater CPRT. Crude difference in FC between men and women

was 0.47 SDs, and after adjustment for age, ethnicity, height, and UK biobank assessment center (i.e., as in

model 1), this difference was 0.36 SDs (95% CI 0.34–0.38; p 4.8 × 10－ 247). After additional adjustment

for covariates included in model 3 (SE, VA, IOP, MC, CPRT, corneal astigmatism, higher education, annual

income, fluid intelligence, deprivation, and birth order) the sex-difference was 0.46SD (95% CI 0.44–0.48;

p 4.3 × 10－ 360). Formal tests for interaction with sex (females vs. males from multilevel models ad-

justing for age, sex, height, and UK biobank center as fixed effects, and a random effect per person) were

significant for age, MC and CPRT only (all instances P < 0.0001). As a result of the observed systematic

sex differences, associations are presented for females (Table 4.5) and males (Table 4.6) separately.

■ Age, Ethnicity, and Height (Models 1 to 3)

Differences in FC by ethnicity showed the greatest effect overall, and these held after adjustment, and

after exclusion of extreme refractive status and low VA. Black, Asian, mixed, Chinese, and other ethnic

groups showed flatter FC when compared with whites. Black participants showed the biggest difference (In

models 3, males 0.80SD decrease [p 2.1 × 10－ 88]; females 0.70SD decrease when compared to whites [p

1.8 × 10－ 120]). In females, every decade increase in age was associated with a 0.07 SD rise in FC (Model

1; p 6.8 × 10－ 28), and additional adjustments, or exclusion of those on basis of high SE, did not materially

alter the strength of this association (Table 4.1). In males, a 0.03 SD decline in FC per decade rise in age

was observed in Model, 1 but this was attenuated to the null with further adjustment (Models 2 and 3, Table

4.6). Every 5 cm increase in height was associated with steeper foveas in males and females, with equal

effect sizes across all models in both sexes. Formal test for interaction between ethnicity with age, height,

and SE showed that patterns were consistent across ethnicity (data available on request) except for the age

in females. Analyses showed that for female non-white ethnicities there was no association with age but

the rise in FC with age was present in white females only (0.10 SD increase in FC per decade rise in age;

95% CI 0.09–0.11).
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■ Functional and Ocular Factors (Models 2 and 3)

Every five Early Treatment Diabetic Retinopathy Study letter increase in VA (better vision) was associ-

ated with a 0.01 SD rise in FC in both males and females in all models (p in all instances ≤ 3.5 × 10－ 7).

Every D increase in corneal astigmatism and in SE was associated with a flatter FC in both males and

females. An inverse association was observed with foveal thickness in both sexes, per 10 μ m increase

in foveal thickness FC decreased by approximately 0.1 SD. Steeper MC were found to be associated with

steeper FC measurements and the effect sizes were double in females when compared with males in all

models. After exclusion of extreme refractive status and VA worse than 6/7.5, the association with MC was

attenuated to the null in males (Supplementary Table 4.2) but did not materially change in females. IOP did

not show an association with FC.

■ Additional Sociodemographic Factors (Model 3)

Fovea curvature showed an increasing trend in curvature steepness with increasing annual income in

males (p for linear trend 0.005). When compared to annual income < 18,000 GBP, earning > 100, 000

GBP per year was associated with a 0.08 SD rise in FC in males (Model 3, p for linear trend 0.005). The

FC associations with income were not observed in females. Fluid intelligence showed a significant 0.01

SD rise in FC per score unit increase (95% CI 0.002–0.099; p 9.8 × 10－ 4) in females (model 3). Fluid

intelligence did not show associations with FC in males. Townsend deprivation indices, level of education

and birth order did not show associations with FC. In sensitivity analysis (exclusion of cases with high

refractive errors and poor VA), the coefficients presented in Tables 4.5 and 4.6 remained remarkably stable.

An additional model did not show clear associations with other early life factors (including self-recalled

birth weight, maternal age at birth, maternal smoking around birth, and breastfeeding status as a baby), and

significant coefficients shown in the results section remained remarkably stable (data not shown, available

on request).
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Table 4.3: Patient Level Characteristics Stratified by Sex

Table 4.4: Eye Level Characteristics Stratified by Sex
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Figure 4.7: Adjusted mean foveal curvature by deciles of covariates stratified by sex (annual income and

Townsend index of deprivation shown in quintiles). Adjusted means (solid black dots), 95% confidence

intervals (vertical solid lines), and regression line (dotted line) are from a multilevel model allowing for

age, height, ethnicity, and UK Biobank center as fixed effects, and repeated foveal curvatur measurement

for each person. *Ethnicity codes: W, white; B, black; A, Asian; M, mixed; C, Chinese; O, other. † Visual

acuity shown in logMAR for visualization purposes. GBP, pound sterling; O/CSE, O levels, certificate of

secondary education or equivalent.
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Table 4.5: Standardized difference in fovea curvature per specified differences in covariates ([95% CI];

p-value) for females.

Characteristic    

Age (per decade) 0.07 (0.06, 0.08); 6.8e-28 0.08 (0.07, 0.09); 1.8e-34 0.08 (0.07, 0.10); 9.4e-30 
Ethnicity       

White 1.00 1.00 1.00 
Black -0.54 (-0.59, -0.48); 5.1e-75 -0.73 (-0.79, -0.67); 1.8e-120 -0.70 (-0.77, -0.63); 2.3e-93 
Asian -0.46 (-0.53, -0.40); 2.2e-44 -0.59 (-0.66, -0.52); 1.4e-63 -0.56 (-0.63, -0.48); 9.9e-48 
Other -0.35 (-0.43, -0.27); 3.8e-18 -0.45 (-0.53, -0.36); 4.4e-25 -0.40 (-0.49, -0.31); 8.2e-18 
Mixed -0.15 (-0.24, -0.05); 0.002 -0.26 (-0.35, -0.16); 3.7e-07 -0.24 (-0.34, -0.13); 7.5e-06 
Chinese -0.15 (-0.30, -0.01); 0.032 -0.32 (-0.46, -0.17); 2.5e-05 -0.30 (-0.45, -0.14); 1.7e-04 
Prefer not to say -0.42 (-0.59, -0.26); 6.9e-07 -0.51 (-0.69, -0.33); 1.7e-08 -0.52 (-0.72, -0.33); 9.5e-08 
Missing -0.41 (-0.63, -0.18); 3.5e-04 -0.44 (-0.68, -0.20); 3.1e-04 § 

Height (per 5cm) 0.04 (0.03, 0.05); 5.5e-24 0.04 (0.03, 0.04); 2.4e-19 0.03 (0.03, 0.04); 6.9e-16 
Visual acuity (per 5 letters)   0.01 (0.01, 0.02); 1.6e-16 0.01 (0.01, 0.02); 1.4e-15 
Spherical equivalent (per diopter)   -0.04 (-0.05, -0.04); 6.4e-105 -0.04 (-0.04, -0.04); 1.3e-96 
Corneal astigmatism (per diopter)   -0.07 (-0.08, -0.06); 3.2e-33 -0.07 (-0.08, -0.06); 4.0e-32 
Macula curvature (per 0.01)   0.29 (0.23, 0.35); 1.4e-21 0.28 (0.22, 0.34); 1.7e-19 
Center point retinal thickness (per 
10μm) 

  -0.13 (-0.13, -0.13); 0.0e+00 -0.13 (-0.14, -0.13); 0.0e+00 

Fluid intelligence     0.01 (0.00, 0.01); 9.8e-04 
Annual income (Great British Pound)       

Less than 18,000     1.00 
18,000 to 30,999     0.01 (-0.03, 0.04); 0.701 
31,000 to 51,999     0.01 (-0.02, 0.04); 0.589 
52,000 to 100,000     0.01 (-0.03, 0.05); 0.605 
Greater than 100,000     0.03 (-0.02, 0.08); 0.181 
Prefer not to say     0.04 (0.00, 0.07); 0.055 
Missing     -0.02 (-0.27, 0.23); 0.872 
Per increase in income category   0.02 (-0.01, 0.06); 0.230 

Birth order    
1   1.00 
2   0.01 (-0.01, 0.03); 0.311 
3   -0.02 (-0.06, 0.02); 0.259 
4   -0.01 (-0.06, 0.03); 0.569 
Missing   0.19 (-0.23, 0.60); 0.371 

Bold p-values represent statistically significant results. 
* Model 1: multilevel model adjusts for age, ethnicity, and height as fixed effects, and a random effect for person to allow for within person eye 
measurements (59,642 eyes of 35,097 patients).  
† Model 2 adjusts as model 1 plus visual acuity, spherical equivalent, corneal astigmatism, macular curvature, and center point foveal thickness 
as fixed effects (54,489 eyes of 32,564 patients).  
‡ Model 3 adjusts as model 2 plus deprivation, higher education, fluid intelligence score, annual income, and birth order as fixed effects (53,135 
eyes of 31,727 patients). 
§ No missing data on ethnicity on this model. 
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Table 4.6: Standardized difference in fovea curvature per specified differences in covariates ([95% CI];

p-value) for males.

 
Males model 1* Males model 2† Males model 3‡ Characteristic 

Age (per decade) -0.03 (-0.04, -0.01); 8.4e-05 -0.01 (-0.03, 0.00); 0.168 -0.01 (-0.02, 0.01); 0.466 
Ethnicity       

White 1.00 1.00 1.00 
Black -0.59 (-0.67, -0.51); 6.0e-49 -0.84 (-0.92, -0.76); 2.1e-88 -0.80 (-0.89, -0.71); 5.2e-68 
Asian -0.36 (-0.43, -0.28); 7.4e-21 -0.54 (-0.62, -0.46); 1.7e-41 -0.54 (-0.62, -0.45); 2.3e-34 
Other -0.28 (-0.39, -0.18); 1.5e-07 -0.48 (-0.60, -0.37); 1.5e-17 -0.47 (-0.59, -0.35); 7.2e-15 
Mixed -0.20 (-0.35, -0.06); 0.005 -0.38 (-0.53, -0.24); 3.8e-07 -0.37 (-0.52, -0.21); 3.0e-06 
Chinese -0.34 (-0.54, -0.15); 6.5e-04 -0.53 (-0.73, -0.32); 4.5e-07 -0.54 (-0.76, -0.33); 8.9e-07 
Prefer not to say -0.13 (-0.31, 0.05); 0.150 -0.13 (-0.31, 0.05); 0.168 -0.09 (-0.29, 0.11); 0.372 
Missing 0.00 (-0.25, 0.26); 0.986 -0.04 (-0.31, 0.22); 0.749 -0.54 (-1.9, 0.82); 0.437 

Height (per 5cm) 0.04 (0.03, 0.05); 4.3e-19 0.04 (0.03, 0.04); 3.4e-15 0.03 (0.02, 0.04); 4.2e-12 
Visual acuity (per 5 letters)  0.01 (0.01, 0.01); 3.5e-07 0.01 (0.01, 0.01); 8.4e-07 
Spherical equivalent (per diopter)  -0.04 (-0.04, -0.03); 5.3e-53 -0.04 (-0.04, -0.03); 5.6e-50 
Corneal astigmatism (per diopter)  -0.06 (-0.08, -0.05); 3.6e-20 -0.06 (-0.08, -0.05); 5.3e-20 
Macula curvature (per 0.01)  0.14 (0.07, 0.21); 1.0e-04 0.14 (0.07, 0.21); 1.2e-04 
Center point retinal thickness (per 
10μm) 

 -0.14 (-0.15, -0.14); 0.0e+00 -0.15 (-0.15, -0.14); 0.0e+00 

Fluid intelligence   0.00 (-0.01, 0.00); 0.559 
Annual income (Great British Pound)       

Less than 18,000   1.00 
18,000 to 30,999     0.05 (0.01, 0.10); 0.010 
31,000 to 51,999     0.05 (0.01, 0.09); 0.021 
52,000 to 100,000     0.07 (0.02, 0.11); 0.004 
Greater than 100,000     0.08 (0.02, 0.14); 0.005 
Prefer not to say     0.00 (-0.05, 0.06); 0.857 
Missing     0.11 (-0.18, 0.41); 0.459 
Per increase in income category     0.06 (0.02, 0.10); 0.005 

Birth order      

1   1.00 
2     0.00 (-0.02, 0.03); 0.728 
3     0.03 (-0.02, 0.08); 0.216 
4     -0.02 (-0.08, 0.03); 0.375 
Missing     -0.20 (-0.65, 0.25); 0.389 

Bold p-values represent statistically significant results. 
* Model 1: multilevel model adjusts for age, ethnicity, and height as fixed effects, and a random effect for person to allow for within person 
eye measurements (49,229 eyes of 28,842 patients).  
† Model 2 adjusts as model 1 plus visual acuity, spherical equivalent, corneal astigmatism, macular curvature, and center point foveal 
thickness as fixed effects (45,296 eyes of 26,982 patients).  
‡ Model 3 adjusts as model 2 plus deprivation, higher education, fluid intelligence score, income, and birth order as fixed effects (44,118 
eyes of 26,252 patients).  

 

4.3.2 Results from Macular Curvature Analysis

A total of 126,291 eyes of 65,023 subjects (35,176 female) with a mean age ± SD of 57.3 ± 8.11 years

were included. The vast majority were assigned to white ethnicity (90.4% of included participants). In

terms of refractive error, 58,432 eyes of 34,813 subjects (46.3%) were emmetropic; 33,283 eyes of 20,007

subjects (26.4%) were hypermetropic, with 25,843 eyes (16,769 subjects), 6317 eyes (4494 subjects), and

1123 eyes (828 subjects) assigned to mild, moderate, and high hypermetropia, respectively. Also, 34,576

eyes (27.4%) of 20,205 subjects were myopic with 17,278 eyes (11,986 subjects), 12,355 eyes (8139 sub-

jects), and 4943 eyes (3322 subjects) assigned to mild, moderate, and high myopia, respectively (Figure

4.6).
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■ Association with Macular Curvature

The overall macular curvature described a Gaussian distribution with a mean (± SD) of 0.00213 ±
0.00145 (Figure 4.6). Multiple putative associated features of macular curvature were initially considered,

including demographic characteristics (age, ethnicity, sex), ocular measures (refractive error, IOP, corneal

curvature), functional data (VA, FI), and childhood environment (birth weight, maternal smoking). Figure

3 shows the association of macular curvature with each explored covariate. Here, as well as in a linear

regression analysis, refractive error indicated the most distinct correlation (r = － 0.391, P > 0.001), re-

vealing lower macular curve values (i.e., flatter curve) with increasing spherical equivalent. Associations

of other parameters with macular curvature were lower but evident (Figure 4.8). Maternal smoking during

pregnancy (mean = 0.00212) and female sex (mean = 0.00212) were associated with a slightly lower mac-

ular curvature (maternal non-smoking, mean = 0.00214; males, mean = 0.00214). Concerning ethnicity,

white subjects (mean = 0.00212 ± 0.00145) and Asian subjects (mean = 0.00215 ± 0.00132) showed the

lowest macular curvature, whereas Chinese subjects (mean = 0.00272 ± 0.00192) and black subjects (mean

= 0.00235 ± 0.00127) revealed the highest overall values (Figure 4.8). Of note, white participants (mean

= － 0.30 ± 2.71 D) and Chinese participants (mean = － 2.26 ± 3.19 D) also represented the subgroups

in terms of lowest and highest refractive errors, respectively. However, the black subgroup also revealed

low refractive error (mean = － 0.39 ± 2.25 D), in the range of white subjects. To minimize association

biases and because features might exhibit a significance in a multilinear model despite not showing any

real correlation in a bivariate analysis, we fitted three multilinear models (Table 4.7). Model 1 focused on

demographic parameters only, and there was a significant effect of ethnicity such that black and Chinese

participants revealed a positive correlation to macular curvature scores. Age and sex revealed a significant

effect, as well, which changed distinctively in the models 2 and 3, which included functional and ocular

measures and infancy factors, respectively. In addition to ethnicity, refractive error consistently revealed

the most significant effect on macular curvature scores. The impact of VA, corneal curvature, IOP, FI, and

birthweight was low, but still significant. Maternal smoking, however, did not reveal any significance in the

model.
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Table 4.7: Standard deviation differences in macular curvature by change in independent variables Model

1 stands for a multilevel model that adjusts for demographical parameters (age, sex, and ethnicity) as fixed

effects and a random effect for person to allow for within person eye measurements. Model 2 adjusts as

model 1 plus functional (visual acuity and fluid intelligence) as well as ocular measures (spherical equiva-

lent, corneal curvature and intraocular pressure). Model 3 adjusts as model 2 plus infancy factors (maternal

smoking and birthweight). The marginal R2 (i.e., variance explained by the models) and the conditional

R2 were 0.004 and 0.747 for model 1, 0.161 and 0.794 for model 2, and 0.167 and 0.797 for model 3, re-

spectively. CI = confidence interval, LogMAR = Logarithm of the Minimum Angle of Resolution; mmHg

= millimeters of mercury
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Figure 4.8: Macular curvature and associated parameters. The panel reveals adjusted mean macular cur-

vature by deciles of variables of interest. Adjusted means (solid black dots), 95% confidence intervals

(vertical solid lines), and the regression line (dotted line) are from a multilevel model allowing for repeated

macular curvature measurement for each person.

■ Dome-Shaped Configuration

Defined as inverted macular curvature (negative values) (Figure 4.8), the prevalence of a macular dome-

shaped configuration was overall 4.78% (6040 eyes of 4725 subjects) and was more common in hyperme-

tropic than in emmetropic or myopic eyes (Table 4.8). Of note, the prevalence increased with more extreme

refractive errors into both directions. In contrast, an extensive dome-shaped macular configuration (fourth

quartile of eyes with negative macular curvature values; macular curvature, <－ 0.00105589; 1.26%; 1599

eyes of 1346 subjects) was more common in myopic than in emmetropic or hypermetropic eyes. The high-

est prevalence of this particular extensive macular shape was found in the subgroup of high myopia (Table

4.8), in particular in the subset of those eyes with very high refractive error (<－ 9 diopters spherical equiv-

alent), which revealed a prevalence of 6.49% (79 of 1217 eyes). The odds ratios for the extensive macular

dome-shaped configuration were 3.23 and 5.34 for high and very high myopia, respectively. In the set of

the 100 eyes with the most negative macular curvature (i.e., most extensive macular dome-shaped configu-

ration), subretinal fluid was present in 29% of cases, whereas it was absent in all other assessed OCT scans

(used for validation), including those with negative macular curvature. The 100 eyes with the most negative

macular curvature revealed significantly impaired VA compared to other eyes (mean ± SD, 0.140 ± 0.212

vs. 0.020 ± 0.202; P < 0.0001), whereas those with and without subretinal fluid did not show a significant

difference in VA (P = 0.344). In terms of ethnicity, a macular dome-shaped and an xtensive dome-shaped

configuration were most common in subjects of Chinese origin (5.38% and 2.15%, respectively) followed

by white origin (4.99% and 1.33%, respectively) and other origin (3.86% and 0.96%, respectively). Sub-

jects with Asian (2.74% and 0.60%, respectively), mixed (2.44% and 0.72%, respectively), or black (1.90%
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and 0.41%, respectively) origin showed the particular concave macular configuration less frequently. These

findings were partly independent from the impact of refraction on macular curvature, as Chinese subjects

had a significantly higher proportion of dome-shaped macular presentation in each refraction subgroup ex-

cluding moderate and high hypermetropia (which was absent in our Chinese cohort) compared to other

ethnicities; for example, in the high myopia subgroup, Chinese represented 8.54% and white 8.39%. This

difference became even more obvious in the group of those with extensive dome-shaped macular config-

urations; for example, in the high myopia subgroup, Chinese represented 6.10% and white 3.94%. For

this phenotype, the odds ratios for Chinese subjects with high or very high myopia were 4.83 and 7.91,

respectively.

Table 4.8: Dome-Shaped Macular Configuration and Refractive Error

Refractive Subgroup 

Dome-Shape 

Configuration 

(n = 6040) 

Extensive Dome-Shape 

Configuration 

(n = 1599) 

Emmetropia (n = 58432) 3.17 % (n = 1855) 0.74% (n = 435) 

Hypermetropia (n = 33283) 

 Mild (n = 25843) 

 Moderate (n = 6317) 

 High (n = 1123) 

7.37 % (n = 2453) 

5.43 % (n = 1404) 

12.70 % (n = 802) 

21.99 % (n = 247) 

1.43 % (n = 475) 

1.19 % (n = 308) 

2.09 % (n = 132) 

3.12 % (n = 35) 

Myopia  (n = 34576) 

 Mild  (n = 17279) 

 Moderate (n = 12355) 

 High (n = 4943) 

 

5.01 % (n = 1732) 

4.06 % (n = 702) 

5.14 % (n = 635) 

7.99 % (n = 395) 

1.99 % (n = 689) 

1.52 % (n = 262) 

1.95 % (n = 241) 

3.76 % (n = 186) 

 

 

■ Inter-Eye Comparison

In 61,319 subjects (33,158 female) with a mean age of 57.2 ± 8.11 years (range, 39.2–70.5) both eyes

were included in this study. Inter-eye comparison revealed small but significant differences in macular

curvature (OD, 0.00214 ± 0.00144; OS, 0.00213 ± 0.00143; P = 0.012), refractive error (OD, － 0.339

± 2.640 D; OS, － 0.280 ± 2.670 D; P < 0.001), VA (OD, 0.021 ± 0.199 logMAR; OS, 0.018 ± 0.204

logMAR; P = 0.003), and IOP (OD, 16.0 ± 4.18; OS, 15.9 ± 4.22; P < 0.001). Nevertheless, all parameters

showed a high intereye correlation (Supplementary Figure 4.9). In this cohort, the prevalence of macular

dome-shaped and extensive domeshaped configurations was similar to the aforementioned overall study

population with values of 4.67% (5723 eyes of 4327 participants) and 1.20% (1467 eyes of 1187 partici-
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pants), including a binocular manifestation in 32.26% and 23.59% of subjects, respectively. In the majority

of participants with monocular manifestation, the affected eye was more hypermetropic or less myopic

(65.50% and 54.10% for dome-shaped and extensive dome-shaped macular configurations, respectively).

Figure 4.9: Inter-eye correlation. The scatter plots visualize the high inter-eye correlation for macular

curvature, refractive error (as spherical equivalent; in diopters, dpt), visual acuity (in Logarithm of the Min-

imum Angle of Resolution, LogMAR), and intraocular pressure between right and left eyes of participants

with both eyes included. There was a high inter-eye correlation for all parameters (macular curvature, r =

0.746, P < 0.001; refractive error, r = - 0.451, P < 0.001; visual acuity, r = 0.368, P < 0.001; intraocular

pressure, r = 0.595, P < 0.001). The diagonal symbolizes perfect inter-eye agreement. OD = Right eye; OS

= Left eye.

4.4 Summary
This project investigated FC and MC based on OCT images using the unique imaging dataset for the

UKBB study, the world’s largest cohort study of adults. A deep learning model was used to segment the

retinal pigment epithelium without human supervision.

Our findings in FC curvature analysis highlight novel associations between OCT-derived FC and sociode-

mographic, VA, and ocular factors, with the greatest effect sizes in ethnicity. The findings could represent

the result of independent maturation or development of inner and outer retinal layers during development

and suggest FC as a candidate marker to comprehensively assess the fovea in health and disease.

MC revealed associations with demographic, functional, ocular, and infancy factors, as well as increasing
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prevalence of a dome-shaped macular configuration in high refractive error including high myopia and hy-

permetropia. These findings imply different pathophysiologic processes that lead to macular development

and might open new fields to future myopia and macula research.
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CHAPTER 5

SEMANTIC SEGMENTATION FOR

DETECTION OF NONEXUDATIVE

MACULAR NEOVASCULARIZATION
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5.1 Introduction
Type 1 macular neovascularization (MNV) is the most common form of MNV seen in eyes with age-

related macular degeneration (AMD)[181, 182]. This neovascularization arises from the choroid and grows

under the retinal pigment epithelium (RPE) and resides between Bruch’s membrane (BM) and the RPE

[25]. In AMD, these nonexudative neovascular lesions have an increased risk of progressing to exudation

and vision loss[26, 27, 28]. Since early detection and treatment of exudative AMD has been shown to

result in better visual acuity outcomes, it is important to identify and closely follow nonexudative MNV

(neMNV) even before exudation develops so that treatment can be initiated once symptomatic exudation

arises. Optical coherence tomography angiography (OCTA) is the non-invasive imaging strategy of choice

for the detection of neMNV [183, 184].

While OCTA is able to detect neMNV, not all clinical practices are equipped with an OCT instrument

capable of angiographic imaging. However, most practices are equipped with standard OCT instruments

that provide structural B-scan images. The presence of type 1 neMNV has been associated with the presence

of a double layer sign (DLS), also known as a shallow irregular RPE elevation (SIRE), on structural OCT

B-scan images [29, 185]. A cost-effective strategy to detect these nonexudative neovascular lesions without

requiring the use of the more expensive OCTA technology would be to train clinicians to detect neMNV

using structural OCT B-scans.

Shi et al. [29] investigated whether graders could accurately identify the presence of a DLS in eyes with

type 1 neMNV. After training on eyes with known subclinical neovascular lesions, the graders assessed a

total of 100 eyes with AMD in which 20 eyes had both drusen and type 1 neMNV, 13 eyes had geographic

atrophy (GA) along with type 1 neMNV, 44 eyes only had drusen, and 23 eyes only had GA. While a

statistically significant association was found between the presence of the DLS and type 1 neMNV, the sen-

sitivity, specificity, positive predictive value (PPV), negative predictive value (NPV) for the junior graders

were 73%, 84%, 69%, and 86%, respectively, while the sensitivity, specificity, PPV, and NPV for the senior

grader was 88%, 87%, 76%, and 94%, respectively. These results suggested that training and experience

should yield improved results, and the grading of these structural OCT images for the presence of a DLS

could be approached by developing machine learning algorithms to detect these lesions.

In this study, we aimed to develop a deep learning algorithm to detect a DLS based on cross-sectional

structural OCT B-scans.

5.2 Detection of Nonexudative Macular Neovasculariza-
tion with ViT-based Segmentation model

Vision Transformer (ViT) [186] is now considered the state of the art in many computer vision tasks.

We trained a ViT segmentation model using eyes with and without type 1 neMNV that was confirmed on
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swept-source OCTA (SS-OCTA) imaging. A large dataset of annotated structural B-scans was fed into the

algorithm to train the model. After training and preliminary testing, the machine learning model was finally

applied on the same dataset of 100 eyes that were evaluated by human graders in our previous study [29].

The sensitivity, specificity, NPV, and PPV of the machine learning algorithm were then compared with the

performance of the human graders.

5.2.1 ViT-based Segmentation model

The segmentation model was built using a fully ViT-based encoder-decoder architecture [187] mapping

a sequence of patch embeddings to pixel-level class labels. An overview of the model is shown in Figure

5.1. Since ViT is relatively novel and has limited application in ophthalmology, we briefly describe the

architecture of our model. First, an input image was split into a sequence of patches. Each patch was

flattened into a 1D vector and then fed into a linear projection layer that would produce a sequence of

patch embeddings. To retain positional information, learnable position embeddings are added to the patch

embeddings to get the resulting input sequence of tokens. A transformer layer consists of a multi-headed

self-attention (MSA) block followed by a point-wise multi-layer perceptrons (MLP) block of two layers

with layer norm (LN) applied before every block and residual connections added after every block. The

transformer encoder was applied to the sequence of tokens to generate a contextualized encoded sequence.

The decoder learns to map patch-level encodings coming from the encoder to patch-level class labels.

A pointwise linear layer was applied to the patch-level encodings to produce patch-level class logits. The

sequence was then reshaped into a 2D feature map and upsampled using bilinear interpolation to the original

image size. A softmax was then applied on the class dimension to obtain the final segmentation map.

The resolution of the original B-scan image was 500 pixels in width, and 1536 pixels in height. The

B-scan was then systematically cropped into 500 × 768 accordingly so that the retinal layer comes to the

center of the cropped image. During the training, we applied mean subtraction, random resizing of the

image to a ratio between 0.5 and 2.0 and random left-right flipping for data augmentation purposes. We

randomly cropped large images and pad small images to a fixed input size of 512 × 512. The output of

the network was the same size as the input but had 3 channels corresponding to the background, DLS, and

drusen. Our model was trained end-to-end with a per-pixel cross-entropy loss with SGD optimizer. At

inference time, argmax was applied after upsampling to obtain a single class label per pixel.

Our backbone ViT model had 12 layers, 768 token sizes, and 12 heads, and was pre-trained on ImageNet-

21k which was publicly available provided by the image classification library timm (available at http:

//github.com/rwightman/pytorch-image-models/).
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Figure 5.1: Framework of ViT segmentation model. 512× 512 images were used as input. 16× 16 image

patches were projected to a sequence of embeddings and then encoded with a transformer and reshaped

into a segmentation map.

5.2.2 Classification criteria

We built a binary classification algorithm that identifies eyes with MNV from an en-face prediction map

generated by processing all 500 slices of B-scans and calculating prediction masks using the segmentation

model as shown in Figure 5.2. The en-face images had 500(width) × 500(height) that corresponded to

the original width and depth of the B-scans, respectively. From the en-face images, we first rescaled them

to 128 × 128 to reduce noise, then extracted all connected blobs of DLS lesions. The size of the largest

component for each eye was measured, then DLS labels were assigned to the eye if the largest component

size was larger than 65 pixels. In order to set the threshold value, we processed the above criteria to an

internal validation set and observed how the number of classification errors changed. We then selected the

center point of component size with the lowest error as our threshold. See Figure 5.3 for details.
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Figure 5.2: Process overview. A. DLSs and drusen were extracted from B scans by a segmentation model.

The detected DLSs and drusen were depicted in blue and yellow, respectively. B. After processing pre-

dictions for all B-scans, we generated en-face maps. C. eyes with MNV were then identified based on the

en-face projection map.

Figure 5.3: Threshold vs. Classification errors. On each 128×128 en-face projection map on the validation

set, we observed how the number of classification errors changed with regard to the threshold. Between

threshold values were 40 to 60, the errors got minimum, and 65 was the middle point.

5.2.3 Results

A total 251 eyes from 210 patients with 182 eyes with DLS and 115 eyes with drusen were used for model

training. Out of 125,500 B-scans, 6,879 B-scans were manually annotated. The data were partitioned into

70% for training and 30% for validation sets at the patient level. Out of a total of 125,500 B-scans, 5,256

B-scans and 1,623 B-scans were used for manual labeling of training and validation, respectively, and

provided for segmentation model training. A vision Transformer segmentation model was then built to

extract DLS and drusen from B-scans.
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As a point of comparison, we also trained a U-Net [188] model using a traditional fully convolutional

approach on the same dataset as our ViT segmentation model. Just like ViT, systematically cropped 500×
768 B-scans were used. The images were then rescaled to 512 × 512 and normalized to a range between

0 and 1. The model was trained with a cross-entropy loss function using Adam optimizer. We chose a

batch size of 8. The learning rate was initially set to 1 × 10－ 4, and decay over each update was set to

the initial learning ratio divided by epochs. Basic data augmentations such as shift, flip, and rotation were

applied. Furthermore, Spatial Dropout which drops entire feature maps instead of individual elements was

additionally applied to regularize the activations and reduce overfitting.

Intersection over union (IoU) was DLS: 58.80%, drusen: 61.11% for the Transformer model, and DLS:

55.39%, drusen: 54.30% for the Unet model on the validation set. Some examples of predicted masks are

shown in Figure 5.4.

ViT showed significantly better performance than the U-Net model on the segmentation task. Although

U-Net and ViT are just one example of CNN and Transformer models, respectively, the performance gap

could have arisen from the fundamental difference in their model architectures. ViT is quite different from

CNN. CNNs start with a feature of large spatial sizes and a small channel size and gradually increase the

channel size while decreasing the spatial size. In ViT, input images are divided into 16× 16 patches and fed

to the transformer network; except for the first embedding layer, there is no convolution operation in ViT,

and the position interactions occur through the self-attention layers. While CNNs have restricted spatial

interactions, ViT uses multi-head self-attention that allows all the positions in an image to interact. These

characteristics of ViT might have helped with improving segmentation performance, especially on eyes

with GA.

■ Test set description

A completely separate set of patients were used as a test set and these patients were not used for training

and internal validation. The test-set consisted of 100 AMD eyes with drusen and GA, with or without

nonexudative type 1 MNV, and this is the same test-set that was used by human graders in our previous

study [29]. This test-set is shown in Table 5.1. The consensus grading results of these 100 eyes were

used as the ground truth to be compared with the output from the current model. Sensitivity, specificity,

positive predictive value (PPV), and negative predictive value (NPV) of the AI algorithm for identifying

DLS associated with neMNV were calculated. The extracted prediction masks from all B-scans in a volume

were projected to an en face image and an eye level projection map was obtained for each eye. A binary

classification algorithm was established to identify eyes with neMNV from the projection map.
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Table 5.1: Presence of Subclinical Macular Neovascularization in Test Eyes with Nonexudative Age-

Related Macular Degeneration.

Ground Truth Predicted masks Ground Truth Predicted masks

Figure 5.4: Prediction examples from the validation set. Grounded Truth(left) and predicted masks(right)

overlaid on input B scan. 1 to 4th rows: The detected DLSs and drusen were depicted in blue and yel-

low, respectively. Our segmentation model mostly was able to extract DLSs and drusen at different loca-

tions/volumes properly. 5-th row: Failure case examples. Our segmentation model tends to mislabel drusen

to DLSs on eyes with geographic atrophy.
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■ Comparison with human graders

Two junior graders read the scans separately then reached a consensus grading. They detected DLSs

in 24 of 33 eyes with subclinical MNV and did not detect DLSs in 56 of 67 eyes without MNV. Their

sensitivity, specificity, PPV, and NPV were 73%, 84%, 69%, and 86%, respectively. The senior grader

detected DLSs in 29 of 33 eyes with subclinical MNV and did not detect DLSs in 58 of 67 eyes without

MNV, achieving a sensitivity, specificity, PPV, and NPV of 88%, 87%, 76%, and 94%, respectively. For all

graders, there were statistically significant associations between type 1 MNV and presence of the double-

layer sign (P < 0.001). Compared to human grader, AI grader consistently performs better than junior

graders and as good as senior graders. Above all, AI grader shows robust performance on eyes with late

AMD while human graders had more difficulty in identifying a DLSs in eyes with GA.

All the results are summarized in Table 5.2. Our model, referred to as AI grader, detected DLSs in 27 of

33 eyes with subclinical MNV and did not detect a double-layer sign in 60 of 67 eyes without MNV, and

achieved 82%, 90%, 79%, and 91% sensitivity, specificity, positive predictive value (PPV), and negative

predictive value (NPV), respectively on a separate test set of 100 eyes that were evaluated by human graders

in a previous study. The area under the curve (AUC) value was calculated as 0.91 (95% CI: 0.85 to 0.98).

The results of the algorithm showed excellent agreement with the senior human grader (kappa = 0.83,

p < 0.001) and moderate agreement with the junior grader consensus (kappa = 0.54, p < 0.001).

Table 5.2: Sensitivity, Specificity, and Predictive Values of Double-Layer sign for Identifying Subclinical

Macular Neovascularization in Nonexudative Age-Related Macular Degeneration
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5.3 Detection of Nonexudative Macular Neovasculariza-
tion with Semi-supervised Segmentation model

In section 5.2, we have developed a ViT segmentation model that detects the presence of neMNV from

the SS-OCT scans. Swept source has a longer wavelength and it penetrates better to deeper layers, however,

SS-OCT is more expensive and came out later. Many available clinical dataset consists of SD-OCT scans.

Our motivation is to expand our scope to SD-OCT scans. Our SD-OCT dataset is challenged by the diffi-

culty in acquiring a large set of annotated volumetric images for training. For the development of a machine

learning algorithm to identify subclinical MNV based on SD-OCT imaging, we conducted a preliminary

experiment with semi-supervised setting. To overcome the problems, we studied the semi-supervised se-

mantic segmentation problem via exploring both labeled data and extra unlabeled data. We employed a

consistent regularization approach, called cross pseudo supervision (CPS) [108].

5.3.1 Cross Pseudo Super Vision

Cross Pseudo Super Vision (CPS) imposes the consistency on two segmentation networks P1 = f(X; Θ1),

and P2 = f(X; Θ2) that share the same structure but are initialized differently.

X → f(Θ1) → P1 → Y1 (5.1)

↘ f(Θ2) → P2 → Y2 (5.2)

P1 (P2) is the segmentation confidence map, which is the network output after softmax normalization.

The labeled and unlabeled images are fed into the two networks. The outputs of the two networks on

the labeled data are supervised separately by the corresponding ground-truth segmentation map. On the

unlabeled images, each segmentation network for an input image estimates a pseudo segmentation map,

and output from one perturbed segmentation network is used to supervise the other segmentation network,

and vice versa.

The training objective contains two losses: supervision loss Ls and cross pseudo supervision loss Lcps.

Given a set Dl of N labeled images, The supervision loss Ls is formulated using the standard pixel-wise

cross-entropy loss on the labeled images over the two parallel segmentation networks:

Ls =
1

|Dl|
∑

X∈Dl

1

W ×H

W×H∑
i=0

(lce(p1i, y
⋆
1i) + lce(p2i, y

⋆
2i)).

where lce is the cross-entropy loss function and y⋆1i and y⋆2i are the ground truths. W and H represent the

width and height of the input image.

Given a set Du of M unlabeled images, The cross pseudo supervision loss is defined as follows.
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Lu
cps =

1

|Du|
∑

X∈Du

1

W ×H

W×H∑
i=0

(lce(p1i, y2i) + lce(p2i, y1i)).

The cross pseudo supervision loss Ll
cps on the labeled data is defined in the same way. The whole

cross pseudo supervision loss is the combination of the losses on both the labeled and unlabeled data:

Lcps = Ll
cps + Lu

cps. The whole training objective is written as:

L = Ls + λLcps.

5.3.2 Preliminary validation of CPS

Using the SS-OCT dataset, we studied the performance of the semi-supervised segmentation model for

3 different training sizes. We divided the whole annotated B-scans in the training set to two groups via

randomly sub-sampling 1
8 and 1

64 of the whole set as the labeled set and regarded the remaining images,

including B-scans without annotations, as the unlabeled set. The number of labeled and unlabeled data in

the training set are summarized in Table 5.3 and Table 5.4. Only one network branch was used to generate

results for evaluation.

Table 5.3: The number of the labeled and unlabeled data for each training size on SS-OCT dataset.

ratio of labeled set 1/64 1/8 1

# of labeled data 82 657 5256

# of unlabeled data 90918 90343 85744

Table 5.4: The number of the labeled and unlabeled data for each training size on SD-OCT dataset.

ratio of labeled set 1/64 1/8 1

# of labeled data 36 294 2352

# of unlabeled data 27364 17106 15048

All the methods are based on DeepLabv3+ [189] with ResNet-50 [172]. We initialize the weights of

two backbones in the two segmentation networks with the same weights pre-trained on ImageNet and the

weights of two segmentation heads of DeepLabv3+ randomly. We adopt mini-batch SGD with momentum

to train our model with Sync-BN [16]. The momentum is fixed as 0.9 and the weight decay is set to 0.0005.

We employ a poly learning rate policy where the initial learning rate is multiplied by (1－ itermaxiter)×
0.9. For the supervised baseline trained on the full training set, we use random horizontal flipping and

multi-scale as data augmentation if not specified.
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We illustrate the improvements of our method compared with the supervised baseline under all partition

protocols in Figure 5.5. Sub-sampling rate=1 stands for a setting where all the annotated images are used as

labeled data and the remaining images are used as unlabeled data. Figure 5.5 show CPS consistently outper-

forms the supervised baseline. Specifically, the improvements of our method over the baseline method are

3.55% and 2.03% for DLS class, and 3.43% and 6.66% for drusen class under 1
64 and 1

8 partition protocols

separately. When all the annotated images are used as labeled data and the remaining images are used as

unlabeled data, the improvement was 1.93%. Mean IOU of CPS model with a full annotation was 60.30%,

which slightly outperforms the ViT model in Section 5.2.3.

Figure 5.5: Improvements over the supervised baseline.

5.4 Summary
Our network was able to detect the presence of neMNV from structural B-scans alone by applying a

purely transformer-based model. In this study, we developed a deep learning algorithm to detect a DLS

based on cross-sectional structural OCT B-scans. We built a ViT segmentation model using eyes with and

without type 1 neMNV that was confirmed on swept-source OCTA (SS-OCTA) imaging. The presented

frameworks using Vision Transformers were able to detect the presence of neMNV from the SS-OCT

scans. The evaluation demonstrated that segmentation performance can be consistent and reliable, which

can substantially improve sensitivity and specificity in the final classification task. For expanding our

algorithm to SD-OCT imaging where we have smaller number of labeled data, we conducted experiments

using cross pseudo supervision to leverage both labeled and unlabeled data for learning. The experiments

show the effectiveness of the semi-supervised approach on this task.
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CHAPTER 6

CONCLUSIONS

In this dissertation I presented machine learning algorithms using three real world medical datasets. The

first dataset consists of clinical data, imaging data, and VF data curated from three regionally different

National Health Service glaucoma clinics in the United Kingdom including a total of 24,248 patients. The

second dataset is UK Biobank (UKBB), one of the world’s largest single resources for comprehensive

study of health and disease, which contains OCT data from more than 60,000 participants. The last dataset

is for an AMD study that includes one hundred eyes with nonexudative AMD from 94 patients enrolled in

a prospective OCT imaging study at the Bascom Palmer Eye Institute (BPEI). In order to gain profound

medical knowledge through deep learning from these datasets, I addressed three major issues; imbalanced

data, having limited or lacking target domain annotations, and noisy labels and images. The conclusions of

this paper are described below.

Chapter 3 demonstrated the ability of DL multimodal models with the glaucoma dataset which consists

of VF data and two different modality imaging resources; Cp-OCT scans and IR SLO images of the disc.

One of the goals of this study is to build a DL model that works robustly in a clinical setting. Therefore,

quality assessments of the images in the dataset were not performed. As a result, the dataset inevitably

includes a certain amount of noisy or poor quality images. To address this issue, we built a policy-based

fusion network to maximally exploit the available information from the two imaging resources, including

cases when either one was noisy or of poor quality. The dataset also has skewed VF sensitivity distributions,

which caused the model to fail to learn patterns of advanced VF loss. To overcome this limitation, I used

loss reweight approaches to alleviate the effects of imbalance. Our policy model was able to selectively

choose between predictions from the two sub-models, and outperformed single modality models. Occlusion

masking of our developed model shows that the DL models learned the correct structure-function mapping

in a data-driven, feature agnostic fashion.

Chapter 4 reported the OCT derived FC and MC curvature analysis based on the UKBB data. For the

calculation of FC and MC, the boundaries of RPE and ILM, and RPE and RPE choroid (RPE/C) needed to

be detected. I present a methodology implemented to generate OCT-derived FC and MC quantification that

does not require time-consuming annotations but relies on a fast and fully automated framework. A deep

learning model was built to segment the retinal pigment epithelium. The model was trained based on pseudo

labels that were generated in an unsupervised manner. FC and MC curvature were then systematically

calculated by extracting the center fovea from the segmentation masks. Our findings in FC curvature
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analysis may represent the result of independent maturation or development of inner and outer retinal layers

during development and suggest that FC is a candidate marker for comprehensively assessing the fovea in

health and disease. Our findings in MC curvature imply different pathophysiologic processes that lead to

macular development and might open new fields to future myopia and macula research.

Chapter 5 presented a deep learning system to detect DLS based on cross-sectional structural OCT B-

scans in the AMD dataset. The dataset consists of SS-OCT scans of a total of 251 eyes from 210 patients.

Previous study shows experienced human graders could identify DLS in eyes with type 1 neMNV. That

suggested that the grading of these structural OCT images for the presence of a DLS could be approached

by developing machine learning algorithms to detect these lesions. I thus developed a semantic segmen-

tation algorithm to detect DLS based on cross-sectional structural OCT B-scans with ViT. Compared with

human graders, the presented model consistently performed better than junior graders and as well as the

senior grader. The results of the algorithm also showed excellent agreement with the senior human grader

and moderate agreement with the junior grader consensus. I further explored possible machine-learning

algorithms to detect DLS from SD-OCT scans. Due to the expensive cost for the annotations, I conducted

experiments using semi-supervised method called CPS to leverage both labeled and unlabeled data for

learning. The experiments show the effectiveness of the semi-supervised approach on this task.

Several areas for future work are apparent. The problem of noisy labels and images, data imbalance,

and having limited or lacking target domain annotations is naturally widespread in real-world applications.

Handling the situation where these challenges occur simultaneously; the limited annotations for training

is not uniformly distributed or with noise, requires further research. Applying the presented methods to

a larger variety of datasets will help to identify the preferred deep learning method for future application.

More work is required with non-convolutional deep learning to determine if the methods presented will

generalize well to alternative architectures, e.g. multi-layer perceptrons and recurrent neural networks.
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