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1.はじめに
Vision Transformer（ViT）による物体認識モデルは高

精度化に伴いパラメータ数が大規模化している．そのため，
エッジデバイス適用やリアルタイム推論には，計算量とメ
モリ使用量が課題である．この課題に対して，入力トーク
ン数を削減し，モデル全体の計算量を抑えるトークン枝刈
りが注目されている．トークン枝刈りは入力を削減するこ
とで計算量を減らせるため，推論速度向上に有効である．
一方で，トークンを過度に削減すると特徴表現が不足し，
精度が著しく低下する．また，モデルのパラメータ数は変
化しないため，モデル軽量化が不可能である．そこで本研
究では，トークン枝刈りと構造化枝刈りを併用し，特徴表
現と精度の維持を図りながら推論速度向上とモデル軽量化
の両立を目指すハイブリッド手法を提案する．
2.トークン枝刈り
トークン枝刈りの代表的手法として DynamicViT[1]が

ある．DynamicViTは ViTのエンコーダ間にトークン選
択モジュールを挿入し，各トークンの重要度に基づいて残
すトークンを決定する．学習時は Gumbel-Softmax によ
り選択をスコア化して学習可能にし，推論時は重要度の低
いトークンを破棄して計算量を削減する．DynamicViTで
は，各層の保持率が目標値に近づくよう制約を与える損失
Lratio を導入し，式 (1)で定義する．ここで S はトークン
選択モジュールを挿入した層の集合，l はその層の添字で
ある．また，rl は目標保持率，r̂l は実際の保持率である．

Lratio =
1

|S|
∑
l∈S

|r̂l − rl| (1)

また，教師モデルの出力分布 qと生徒モデルの出力分布 p
の差を抑える蒸留損失 LKL を導入し，式 (2)で定義する．
ここで k はクラスの添字であり，qk および pk はクラス k
に対応する確率である．

LKL =
∑
k

qk log
qk
pk

(2)
3.提案手法
提案手法は図 1 に示すように，2 段階で枝刈りを行う．

Step1 では cls token の特徴表現整合を導入したトークン
枝刈りを行い，Step2では勾配に基づいてMLPチャンネ
ルを枝刈りする．
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図 1 : 2段階の枝刈り
3.1.cls tokenのコサイン類似度に基づく損失導入

Step1では，DynamicViTに枝刈り前後の cls tokenの
コサイン類似度に基づく損失 Lcls を追加する．

Lcls =
1

|S|
∑
l∈S

(
1− cos(cl, c

ref
l )

)
(3)

式 (3)に cls tokenの特徴表現に基づく損失項を表す．ここ
で clは Studentの cls token，crefl はTeacherの cls token
である．総損失 Lを式 (4)に示す．

L = Lce + λratioLratio + λKLLKL + λclsLcls (4)

ここでLceはクロスエントロピー損失であり，λratio, λKL, λcls

はハイパーパラメータである．

3.2.MLP構造化枝刈り（勾配ベースの重要度推定）
Step2では，式 (5)のようにトークン枝刈り学習の損失

に対する重みの勾配を用いてMLPチャンネルの重要度を
推定する．重要度の小さい順に枝刈りする．重要度は一次
テイラー近似に基づき，重みと勾配をチャンネルごとに集
約して算出する．ブロックN のMLPにおいて，チャンネ
ル cの重要度 sn,c を式 (5)により定義する．

sn,c =
∑
j

∣∣∣∣∣ ∂L

∂W
(n)
c,j

·W (n)
c,j

∣∣∣∣∣ (5)

ここでW
(n)
c,j はMLPの重みであり，sn,c が小さいチャン

ネルほど出力への寄与が小さいとみなして枝刈りする．
4.評価実験
計算量を揃えた条件で，枝刈り手法ごとの正解率，Through-

put，および cls tokenの変化を比較する．
4.1.実験概要

ImageNet-1kで事前学習済みの DeiT-Base/16を用い，
下流タスクとして CIFAR100 および StanfordDogs で枝
刈り・評価する．比較手法は，ベースライン（枝刈り前モ
デル），Magnitude（MLPのMagnitude構造化枝刈り），
DynamicViT，単純併用（DynamicViT＋Magnitude）で
ある．推論時の計算量が約 8.0 GFLOPsとなるように枝刈
り率を調整する．トークン枝刈りはエンコーダ層 {3, 6, 9}
に適用する．MLP 構造化枝刈りは MLP チャンネルを削
減する．評価指標は正解率，Throughput，および枝刈り
前モデルを参照した cls tokenの特徴表現の変化とする．
4.2.実験結果
表 1に，各手法を約 8.0 GFLOPsに揃えた条件での性

能を示す．ベースラインと比較すると，提案手法は計算量
を抑えつつ推論速度を向上させ，精度低下も小さい．単純
併用は高速化できる一方で精度低下が大きく，Magnitude
基準ではトークン枝刈り後の中間層の出力の分布変化を反
映できないため,特徴表現が劣化すると考えられる．

表 1 : CIFAR100および StanfordDogsにおける性能比較
Method

CIFAR100 StanfordDogs
Acc↑ Thr.↑ Acc↑ Thr.↑

ベースライン 89.70 318.00 95.08 291.21

Magnitude 70.21 683.79 53.81 558.31
DynamicViT 80.58 843.02 80.67 783.76
単純併用 80.06 807.54 80.41 758.58
提案手法 87.19 808.86 93.67 761.27

表 2に cls tokenの特徴表現の変化を示す．提案手法は
単純併用と比べて特徴表現の変化が小さい傾向が確認でき，
枝刈り前に近い特徴表現を維持できたといえる．

表 2 : 枝刈り前後の cls tokenの特徴表現の変化
Method

CIFAR100 StanfordDogs
cos sim↑ L1Norm↓ cos sim↑ L1Norm↓

Magnitude 0.699 1693.5 0.583 1773.53
DynamicViT 0.760 1554.0 0.753 1545.76
単純併用 0.403 2859.8 0.742 1631.72
提案手法 0.980 697.33 0.869 777.16

5.おわりに
本研究では，トークン枝刈りとMLP構造化枝刈りを 2

段階で適用し，特徴表現を維持しながら高速化する手法を
提案した．CIFAR100および StanfordDogsにおいて，提
案手法は単純併用より特徴表現の変化が小さく，精度低下
を抑えられることを確認した．
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