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1.はじめに
工業製品の品質保証において，異常検知は重要工程であ

る．異常検知は正常・異常の分類だけでなく異常領域の特定
や判断根拠の可視化など，説明性も重要である．Anomaly-
OneVision (Anomaly-OV) [1]は大規模言語モデル (LLM)
を用いることで，異常内容を自然言語で説明することを可
能とした．しかし，Anomaly-OV は異常内容の説明が異
常領域と一致しないことがある．本研究では，異常領域を
強調する学習を Visual Encoderに導入することで，異常
内容の言語説明と異常領域の一致性を向上させる．
2.Anomaly-OV

Anomaly-OVは，入力画像から異常内容を自然言語で説
明するマルチモーダルモデルである．本モデルは，Look-
Twice Feature Matching (LTFM) と Visual Token Se-
lector (VTS) を中核として構成される．LTFMは元画像
と 4 分割して得られる局所画像の特徴を二段階で照合し，
異常度スコアを算出する．VTS はそのスコアに基づき異
常領域を強調した重み付き視覚特徴を生成し，LLM へ入
力する．本モデルは，未知データの場合に異常を正確に捉
えられず，説明文が異常内容から逸れる場合がある．
3.提案手法
本研究では，教師マスクにより異常領域への注目を強化

した Anomaly-OVに基づく異常説明と，その判断根拠の
可視化手法を提案する．
3.1.教師マスクによるVisual Encoderの拡張

Anomaly-OV の説明能力を特定の領域に適応させるた
め，欠陥箇所を明示したマスク画像を用いて追加学習を行う．
提案手法のアーキテクチャを図 1に示す．Visual Encoder
には，元画像 I0 およびそれを 4 分割した局所画像 In を
入力する．Visual Encoder の出力である視覚特徴 v0j を
LTFMに入力し，異常度スコア mj を出力する．そして，
異常度スコア mj と教師マスク yj との誤差を最小化する
よう LTFM を学習する．教師マスクは異常を 1，正常を
0とする 2値ラベルである．誤差関数には，Binary Cross
Entropy (BCE) Lossを用いる．VTSでは，異常度スコア
mj と視覚特徴 v0j の要素積をクエリ，視覚特徴 v0j をキー，
バリューとしてQ-Formerで処理する．これを元画像 I0お
よび局所画像 In に対して行う．異常領域を強調した特徴
vsj を画像ごとに LLMに入力し，異常説明文を生成する．Anomaly-OV + マスク（アブスト）
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図 1: 提案手法のアーキテクチャ
3.2.言語説明に対する可視化
異常説明文の生成時にモデルがどの画像および領域を参

照しているか可視化する．各画像から得られる異常強調特
徴の単語生成への寄与を比較するため，LLMのAttention
weightを抽出し，注目画像を特定する．そして，異常度ス
コアに基づく異常強調特徴を生成する VTS の Q-Former
における Cross-Attentionから得られる注目度をパッチ単
位で可視化することで，画像内の注目領域を特定する．
4.評価実験
提案手法の有効性を示すために，異常ラベルの分類精度

と説明性能の 2つの観点で比較を行う．
4.1.実験条件
評価には 10種類の異常を含む電線データセットを用い，

学習データ 8976 枚，評価データ 563 枚を使用する．学
習条件は，学習率 1e−4，バッチサイズ 16，10 エポック

とする．また，異常説明生成に用いる LLMは Anomaly-
Instruct125kでファインチューニングされたものを使用す
る．異常分類性能の評価では，従来のマルチモーダル手法
である LLaVA，Anomaly-OVと提案手法を比較対象とす
る．評価指標として，生成された説明文と各異常カテゴリ
の正解文との一致度を用いる．生成文が正解文と 80%以上
一致した場合を正解とみなし，正解率 (Accuracy) を算出
した．異常説明性能の評価では，Anomaly-OV と提案手
法を比較し，生成された異常説明文が異常特徴を適切に表
現できているか定性的に評価する．
4.2.異常分類結果
異常分類精度の比較結果を表 1に示す．提案手法はLLaVA

より 11.4ポイント，Anomaly-OVより 0.5ポイント高い
精度を示した．従来手法では正常領域に注目することがあ
り，異常の識別が不十分となる場合があったが，提案手法は
異常領域を強調することで誤分類が低減したと考えられる．

表 1: 異常分類精度の比較
LLaVA Anomaly-OV 提案手法

Accuracy 81.5 92.4 92.9

4.3.異常説明性能の定性的評価
提案手法による説明文の質の向上について，異物 繊維

の事例を用いて比較する．異物 繊維の出力結果を図 2 に
示す．Anomaly-OVは，異物繊維の特徴を十分に反映でき
ていない説明文である．一方，提案手法は，「波状」など繊
維特有の異常形状を表す表現が生成され，異常特徴に基づ
く説明文が得られた．
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送電線には明らかな異常が見られる：右側に曲がった
部分があり、表面が歪んで不規則に見える。この変形
により、線の滑らかな連続性が損なわれている。

電力線の異常は小さく、暗色で不規則な形状の突起で
ある。これらは波状またはジグザグ状のパターンとし
て現れ、電力線の滑らかな表面を乱している。

提案手法の出力結果

通常モデルの出力結果

図 2: 異物 繊維の出力結果
4.4.特定単語の注目領域の可視化
異常説明文内の「波状」という単語に着目し，単語生成

時にモデルが参照する画像および領域を可視化した．注目
画像および注目領域の可視化結果を図 3 に示す．図 3(a)
より，欠陥箇所を含む右下の画像に注目度が集中しており，
異常説明時に異常領域を多く含む画像を重視していること
が分かる．図 3(b) の注目領域の可視化結果から，異常領
域を含むパッチに注目が集中していることが分かる．これ
らの結果から，異常位置を明示的に学習させることで，モ
デルは異常領域に基づく単語生成を行うことを確認した．
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電力線の異常は小さく、暗色で不規則な形状の突起で
ある。これらは波状またはジグザグ状のパターンとし
て現れ、電力線の滑らかな表面を乱している。

(a) 注目画像の特定
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(b) 注目領域の可視化
図 3: 注目画像および注目領域の可視化結果

5.おわりに
本研究では，Anomaly-OVを電線データに適用し，異常

領域の強調と説明文生成の改善を行った．異常度スコアに
対してマスク画像を用いた追加学習を実施し，モデルは異
常領域をより正確に捉え，説明文も適切な異常表現へと改
善された．今後は，異常領域の推定精度向上や，単語生成
時の注目領域をより詳細に可視化する手法の検討を進める．
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