
Mambaを用いたマウスの単一細胞解析のための基盤モデル構築
EP22064 小林 岳隼 指導教授：山下 隆義

1.はじめに
次世代シーケンサを用いた Single-cell RNA sequencing

(scRNA-seq)解析の進展により，単一細胞内の遺伝子発現
量の取得が可能となった．これに伴い，深層学習を用いた
遺伝子解析技術も発展し，マウスの単一細胞データで事前
学習を行った基盤モデルとして Mouse-Geneformer[1] が
提案されている．本モデルは，遺伝子間の複雑な関係性を
学習しており，細胞型の分類や in silico 摂動実験において
高い性能を示す．しかし，そのアーキテクチャの基礎であ
る Transformer は，計算量が入力長の 2 乗に比例して増
大する．これにより，膨大なメモリ使用量がボトルネック
となり，現実的な計算リソースでは扱える遺伝子数に実質
的な制約が生じる．そこで本研究では，入力長に対して線
形な計算量で動作し，長い入力長でも効率的な学習が可能
な Mamba[2] モデルを採用した，Mouse-GeneMambaを
提案する．
2.Mouse-Geneformer

Mouse-Geneformerはマウスの単一細胞データの遺伝子
解析を目的とした基盤モデルである．学習には大規模なマ
ウスの単一細胞データセットである Mouse-Genecorpus-
20Mを用いる．Mouse-Genecorpus-20Mでは，各細胞内
の遺伝子発現量の上位 2,048個の遺伝子を抽出し，遺伝子
トークン列に変換することで細胞文とする．作成した細胞
文に対して，Masked Language Modeling (MLM) で学習
を行うことで，正常なマウスの遺伝子間の関係を学習でき
る．さらに，このモデルを特定の臓器の単一細胞データで
細胞型分類タスクにファインチューニングすることで，従
来手法より正確な細胞型分類ができることを示した．
3.提案手法：Mouse-GeneMamba

本研究では，Mouse-Geneformer の Transformer En-
coderをMambaブロックに置換したMouse-GeneMamba
を提案する．本手法の全体概要を図 1に示す．入力データの
構築において，順位情報を持つ遺伝子トークンと正規化し
た遺伝子発現量をそれぞれベクトル化して統合することで，
各遺伝子の順位と大きさを両方含む細胞文を作成する．次
に，この細胞文を Mamba ブロックへ入力して，長大な遺
伝子配列の大域的な文脈学習を行う．学習タスクには Next
Token Prediction (NTP) を採用し，過去の遺伝子配列か
ら次の遺伝子を予測することで，遺伝子ネットワークの因
果関係を獲得する．また，本モデルの学習には， Mouse-
Genecorpus-20M を拡張し，正規化された遺伝子発現量の
数値を保持した大規模データセットを用いる．
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図 1 : Mouse-GeneMambaの学習方法
4.評価実験
提案手法の有用性を検証するために，複数の評価実験を

行う．いずれの実験においても，事前学習モデルを細胞型分
類タスクのデータセットでファインチューニングし，分類精
度により評価する．事前学習タスクとしてNTPを用いたモ
デルとMLMを用いたモデルを用いて，タスクの違いがモ
デル性能に与える影響を比較する．また，遺伝子発現量をモ
デル入力に統合することの有効性を検証する．具体的には，

発現量の有無による精度比較に加え，Mouse-Geneformer
との比較を行う．
4.1 評価実験結果
事前学習タスクとして NTPとMLMで学習したモデル

の細胞型分類タスクの結果を表 1に示す．表 1より，事前
学習タスクとして NTPを採用したモデルは多くの臓器で
最も高い精度を達成した．
表 1 : 入力長 2,048における事前学習タスクによる性能比較
事前学習タスク 脳 四肢の筋肉 腎臓 胸腺 舌 乳腺 心臓 脾臓 大腸 平均

NTP 97.6 99.6 95.3 96.8 94.2 98.8 98.1 98.7 94.2 97.0

MLM 97.9 99.5 94.6 97.2 94.7 98.9 97.5 98.5 93.1 96.9

提案手法の発現量の有無と Mouse-Geneformer の細胞
型分類タスクの結果を表 2に示す．各臓器の分類において，
最も高い精度を赤色，低い精度を青色で示す．表 2 より，
遺伝子発現量の有無の観点では，発現量を考慮しない設定
においてより高い分類精度を示した．この結果から，遺伝
子発現量を学習に用いる場合，本研究で採用した方法とは
異なる利用方法を検討する必要がある．一方で，Mouse-
Geneformer との比較においては，提案手法の方が平均精
度において最も高い精度を達成し，有用性を確認した．
　各入力長における精度変化に着目すると，Mouse-Genefor-
merは入力長を 2,048から 8,192に拡張した際，平均精度
が 0.53ポイント低下したのに対し，提案手法は 0.20ポイ
ントの低下に留まった．以上の結果から，本手法に用いて
いるMambaモデルは長い入力長に対しても情報の損失を
抑えつつ特徴を抽出できることを示した．
表 2 : 提案手法とMouse-Geneformerの細胞型分類精度
モデル Mouse-GeneMamba Mouse-Geneformer

発現量 なし あり なし
入力長 2,048 4,096 8,192 2,048 4,096 8,192 2,048 4,096 8,192

脳 97.6 98.0 97.8 96.7 96.4 95.7 96.7 96.2 95.3

四肢の筋肉 99.6 99.7 99.6 99.5 99.4 99.3 99.6 99.5 99.7

腎臓 95.3 94.4 95.1 93.8 93.2 92.5 94.8 94.7 94.1

胸腺 96.8 97.3 96.9 94.9 96.1 96.2 96.8 96.8 97.3

舌 94.2 94.4 93.7 92.8 92.2 91.1 94.6 94.4 93.9

乳腺 98.8 98.8 98.7 98.5 98.1 98.4 98.9 99.1 98.9

心臓 98.1 97.3 97.2 96.5 97.0 96.9 96.8 96.4 96.9

脾臓 98.7 98.5 98.6 98.3 97.9 97.8 98.6 98.6 98.5

大腸 94.2 94.3 93.9 93.3 93.4 93.4 92.3 92.3 89.8

平均 97.0 97.0 96.8 96.0 96.0 95.7 96.6 96.4 96.0

事前学習におけるメモリ使用量を表 3に示す．表 3より，
提案手法は Mouse-Geneformer に比べてメモリ効率が向
上しており，Mambaモデルを用いる有効性を確認した．

表 3 : 事前学習におけるメモリ使用量
モデル Mouse-GeneMamba Mouse-Geneformer

入力長 2,048 4,096 8,192 2,048 4,096 8,192

メモリ使用量 (↓) 10.4GB 24.4GB 36.6GB 16.8GB 32.5GB out of memory

5.おわりに
本研究では，Mouse-Geneformerの高いメモリ使用量や

入力長の制限という問題を解決するためのモデルである
Mouse-GeneMamba を提案した．また，発現量の値を考
慮した新たなデータセットを構築し，そのデータで学習お
よび細胞型の分類実験を行うことで，発現量を考慮する学
習の有効性を検証した．
今後は，別の発現量の入力方法での学習やMambaの内

部構造の変更，データセットの大規模化を実施することで，
モデルの分類精度向上を目指す．加えて，多様な下流タス
クによる検証を行うことで，基盤モデルとしての汎用性と
有用性を実証していく．
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