
時間的整合性を考慮したテキストからの 2次元モーション生成
EP22058 川本寛和 指導教授：山下隆義

1.はじめに
テキストからの 2次元モーション生成の先行研究として，

2CM-GPT[1] が提案されている．2CM-GPT は，3 次元
モーション生成モデルと異なり，収集が容易な 2次元モー
ションのデータセットを学習に利用できる．そのため，生
成に失敗した 2次元モーションを収集して，データセット
を動的に拡張することにより，効果的なファインチューニ
ングが実現できる．一方で，2CM-GPTはいくつかの課題
もある．1つ目は，各フレームのモーションを独立で生成
するため，時間的な整合性が低い．2つ目は，テキストと
モーションを対応付けることなく混在して学習するため，
テキストとモーションの整合性が損なわれる．これらの課
題を解決するために，本研究ではテキストとモーションを
アテンション機構で関連付けるとともに，時間的な整合性
を考慮する手法を提案する．
2.2次元モーション生成

2CM-GPTは，2次元のモーションを生成する代表的な
手法である．2CM-GPTのモデル構造を図 1に示す．2CM-
GPTは，Motion Tokenizerで人間のモーションを離散的
なトークンに変換する．そして，テキストも同様にText To-
kenizerでトークンに変換する．これらを連結させたMixed
Tokensを Language Encoderに入力して潜在ベクトルを
獲得する．潜在ベクトルをもとに Language Decoderが出
力したOutput TokensをMotion Tokenizerに入力して 2
次元のモーションを生成する．
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図 4.1: 2CM-GPTのモデル構造

から出力された潜在変数 zeとコードブックB := {bk}Kk=1の各ベクトルとの間で最も近い
ベクトルbkを求める．ここで，コードブックは d次元のK個の潜在変数ベクトルで構築
される．ベクトル量子化を式 (4.1) に示す．

zq = bk, where k = argmink ∥ze − bk∥2 (4.1)

次に，デコーダを用いて量子化した潜在変数から入力モーションを再構成する．
2CM-GPTでは，モーショントークナイザのエンコーダとデコーダで使用される畳み込
みを 1次元畳み込みから 2次元畳み込みへ変更する．3次元モーションデータは関節の位
置，速度及び角度などを同一の次元で表現しており，MotionGPTでは 1次元畳み込みを
適用している．しかし，2次元モーションデータは関節と x，y座標の 2つを異なる次元
で表現しているため，これを同一の次元に集約し 1次元畳み込みを適用すると関節間の空
間的な関係性を適切にモデル化できない．そこで 2CM-GPTでは，2次元モーションデー
タを同一の次元に集約するのではなく，異なる 2つの次元で表現し 2次元畳み込みを適用
することで，関節間の空間的な関係性を直接考慮できるようにする．モーショントークナ
イザのエンコーダとデコーダの構造を図 4.2に示す．

MotionGPTのモーショントークナイザは，再構成損失，埋め込み損失及びコミットメ
ント損失の 3つの異なる損失関数を学習に使用している．これらの損失のうち，埋め込
み損失は埋め込みから関節の速度情報を抽出して計算される．しかし，2CM-GPTでは関
節の座標のみで表現される 2次元モーションを使用しているため，速度情報を持たない．
そこで 2CM-GPTでは，再構成損失とコミットメント損失の 2つの異なる損失関数を学
習に使用する．コードブックの利用率を向上させるため，Exponential Moving Average

(EMA) とコードブックリセット技術 [66]を使用する．また，再構成損失には L1 Smooth

Lossを使用する．
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図 1 : 2CM-GPTのモデル構造
3.提案手法
本研究では，2CM-GPTの学習アプローチが抱える「時

間的な整合性」と「テキストとモーションの整合性」の不
一致を解決する手法を提案する．提案手法のモデル構造を
図 2に示す．なお，提案手法がテキストと 2次元モーショ
ンの関係性を学習する過程を Training Phase，テキストか
ら 2次元モーションを生成する過程を T2M Phaseとする．
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図 2 : 提案手法のモデル構造

3.1.学習
Training Phase では，VAE で学習された Motion En-

coderを用いて人間の連続的な動作を離散化しない形で潜
在空間に埋め込む．この埋め込み特徴をMotion Branchに
入力する．テキストは，Text Tokenizerで埋め込み特徴と
し，Text Branchに入力する．各ブランチにおいて，埋め
込み特徴を Projectorに入力し，Query, Key, Valueベク
トルを抽出する．そして，Motion BranchとText Branch
の各ベクトルを同じ Cross-Modal Attention に入力して，
Motion BranchのValueベクトルにテキスト特徴を反映さ
せる．Motion Branchの出力をMulti-Head Attentionに
入力して潜在ベクトルを獲得する．潜在ベクトルを Diffu-
sion Headに入力し，後述の T2M Phaseのための逆拡散
過程を学習する．損失関数には，生成モーションと実モー
ションの差を評価する特徴再構成損失，対応関係にあるモー

ションとテキストがクロスモーダルな特徴空間上で近接す
るよう制約する分類損失，逆拡散過程における潜在表現の
再構成誤差を評価する拡散損失を用いる．
3.2.モーション生成

T2M Phase では，Motion Branch と Text Branch の
Cross-Modal Attentionによって，Motion Branchに入力
したHolderにテキスト特徴を反映させる．Motion Branch
の出力をMulti-Head Attentionに入力して，潜在ベクト
ルを獲得する．潜在ベクトルを Diffusion Head に入力し
て，逆拡散過程によるノイズ除去を行う．その後，VAEで
学習されたMotion Decoderを用いて，潜在ベクトルから
2次元のモーションを生成する．
4.評価実験

2CM-GPT との比較実験により，提案手法の有効性を
示す．
4.1.定量的評価
表 1より，提案手法は FIDが低いことから，2CM-GPT

と比べて 2次元モーション生成精度の向上を確認した．一
方，2CM-GPTの Diversityは提案手法よりも高い．その
要因として，モーション生成精度が十分でないために，類
似の指示文に対しても多様なモーションを生成することが
考えられる．
表 1 : テキストからの 2次元モーション生成精度の比較

Method
FID ↓ Diversity ↑

real gen real gen
2CM-GPT −1.37×10−9 32.36 16.96 19.28
提案手法 −5.24×10−9 12.15 16.69 12.92

そこで，多様性の要因を検証するために，表 1のDiver-
sity と，後述の定性的評価で用いる図 3 の指示文のみを
与えて生成されたモーションの Diversityを比較する．表
2より，2CM-GPTは同一の指示文のみを与えた場合でも
Diversity が高い傾向を示したことから，上記の可能性を
裏付ける傾向が確認された．
表 2 : 指示文ごとの生成モーションの Diversityの比較

Method Multi Instruction Single Instruction
2CM-GPT 19.28 18.85
提案手法 12.92 6.07

4.2.定性的評価
2CM-GPTと提案手法に同じ指示文を与えて生成させた

2次元モーションを図 3に示す．図 3の手の動きに注目す
ると，提案手法の生成モーションは 2CM-GPT と比較し
て，指示文の動作内容を正確に反映していると判断できる．
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図 3 : テキストからの 2次元モーション生成結果の可視化
5.おわりに
本研究では，2CM-GPTと提案手法の評価実験を行い，

提案手法の有効性を示した．今後は，提案手法で生成した
モーションを用いてポーズ誘導による人物動画生成を実施
し，実用性を検証する．
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