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1.はじめに
機械学習モデルの大規模化に伴い，計算資源や学習時間

が増大し，計算コストの増加が問題となっている．解決策
として，量子コンピュータを利用した量子機械学習が注目
されている．量子機械学習の代表的な手法である HQNN-
Quanv[1] は，量子畳み込み層を構成する量子回路のパラ
メータを学習で最適化し，タスクに適した特徴抽出が可能
である．しかし，単一の量子畳み込み層では，使用可能な
量子ビット数や量子回路の深さに制約があり，局所的・大
域的な特徴を同時に抽出することが困難である．そこで本
研究では，局所的・大域的な特徴を同時に抽出するために，
量子・古典双方の特徴を活用したMS-HQNNを提案する．
2.HQNN-Quanv

HQNN-Quanv は，量子回路にパラメータ化量子回路
(Parameterized Quantum Circuits; PQC) を導入した手
法である．HQNN-Quanvの構造を図 1に示す．本手法は，
量子ゲートのパラメータを学習により最適化することで，
タスクに適した特徴の抽出が可能である．まず，入力デー
タを量子状態にエンコードし，量子畳み込み層で特徴抽出
を行う．その後，量子ビットの状態を測定し，全結合層で
分類を行う．HQNN-Quanvは，使用可能な量子ビット数
や量子回路の深さに制約があるため，局所的・大域的な特
徴を同時に抽出することが困難である．
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図 1: HQNN-Quanv の構造
3.提案手法
本研究では，HQNN-Quanv における課題を解決する

Multi Scale-HQNN (MS-HQNN)を提案する．MS-HQNN
は，タスクに適応した特徴抽出を行うため，PQCを導入
した量子畳み込み層と古典畳み込み層を並列に組み合わせ
た手法である．MS-HQNN の構造を図 2 に示す．量子畳
み込み層の高次元な特徴と古典畳み込み層の線形な特徴を
結合することにより，表現力を向上させる．さらに，マル
チストライド構造を導入することで，異なるスケールで抽
出した特徴を結合する．これにより，局所的な特徴と大域
的な特徴を同時に抽出できる．学習においては，損失関数
から得られる勾配を古典畳み込み層と量子畳み込み層へ逆
伝播させ，両層のパラメータを最適化する．
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図 2: MS-HQNN の構造
4.評価実験
提案手法の有効性を検証するため，複数のデータセット

での既存手法との分類精度比較および推論時に各層・カー
ネルの出力を全て 0に置換するマスク実験により，各層・
カーネルの寄与度分析を行う．
4.1.実験概要
本実験では，提案手法，CNN，HQNN-Quanv，提案手

法の畳み込み層を量子層または古典層に置換し，マルチス
トライド構造を維持した場合 (Quantum Only, Classical
Only) の分類精度を比較する．ここで，分類精度の比較
のみでは，量子層および古典層が相補的な役割を果たし

ているかを十分に確認できない．そこで，各構成要素の貢
献度を明らかにするため，推論時に各層および各カーネル
の出力を 0 に置換するマスク実験を行う．エポック数は
50，バッチサイズは 100，最適化手法は Adam，損失関数
は Cross Entropy Loss を用いる．データセットについて
は，分類精度の比較実験ではMNIST，Fashion-MNISTお
よび CIFAR-10，マスク実験では CIFAR-10を用いる．
4.2.実験結果
実験結果を表 1に示す．MNISTでは，Classical Only

および提案手法が 99.02%の最高精度を達成した．CNNの
精度は 98.85%であり，CNNより 0.17ポイント向上して
いる．Fashion-MNISTでは，Classical Onlyが 91.22%の
最高精度を達成し，提案手法は 90.53%であった．MNIST
より複雑な分類タスクである CIFAR-10 で，提案手法は
67.77%の分類精度を達成し，他手法を上回る精度となった．
以上より，提案手法の有効性を確認した．

表 1: 各手法における分類精度
Model

Test acc [%]
MNIST Fashion MNIST CIFAR-10

CNN 98.85 88.72 65.10
HQNN-Quanv 86.49 81.07 32.53
Quantum Only 98.93 88.92 65.67
Classical Only 99.02 91.22 66.23
MS-HQNN 99.02 90.53 67.77

次に，層単位のマスク実験結果を図 3に示す．q1，c1は
ストライド 1，q2，c2はストライド 2における量子および
古典層を表す．量子層をマスクした場合，古典層よりも精
度低下が大きく，量子層の寄与が大きいことが確認された．
また，ストライド 1の層をそれぞれマスクした際に精度低
下が顕著であり，詳細な特徴抽出の重要性が示唆された．
最後に，カーネル単位のマスク実験結果を図 4 に示す．

括弧内の数字 0∼3はカーネル番号を表す．ストライド 1で
は，単一カーネルのマスクによる精度低下の幅が大きく，
代替困難な特徴を抽出していると考えられる．一方，スト
ライド 2では精度低下が小さく，特徴が複数カーネルに分
散して寄与していると考えられる．
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図 3: 畳み込み層単位のマスク実験結果
Test acc

古典層

量子層

図 4: カーネル単位のマスク実験結果
5.おわりに
本稿では，量子・古典特徴の階層的融合によるマルチス

ケール画像分類として，MS-HQNNを提案した．比較実験
の結果，提案手法は，複雑な特徴を持つ CIFAR-10におい
て全ての比較手法を上回る精度を達成した．今後は，量子
層と古典層の配置・組み合わせの変更による分類精度向上
や特徴抽出差異の分析を行う．
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