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複数モデルの勾配を統合したデータセット蒸留による下流タスクの高精度化
ER22005 市川翔 指導教授：藤吉弘亘

1.はじめに
Contrastive Language-Image Pre-Training (CLIP) や

Distillation with no labels (DINOv1) に代表される事前
学習済みモデルは，下流タスクでの評価において高い性能
を示しており，多様な画像認識タスクの基盤として広く利用
されている．事前学習済みモデルを下流タスクへ転移学習
をする際，計算コストを抑制するために限られた学習デー
タによる効率的な学習が重要である．その１つのアプロー
チとして学習データを少数の合成データに凝縮するデータ
セット蒸留が注目されている．従来のデータセット蒸留手
法は単一モデルに基づく手法であり，学習目的の違いに起
因する特徴の多様性を同時に反映できない可能性がある．
そこで本研究では，Linear Gradient Matching [1] を拡張
し，特性の異なる複数の事前学習済みモデルを用いたデー
タセット蒸留手法を提案する．本手法により，未知のモデ
ルに対しても分類に有効な特徴を保持する合成画像の作成
を目指す．
2.Linear Gradient Matching

データセット蒸留の代表的な手法として，Linear Gra-
dient Matching (LGM) [1] が提案されている．LGM は，
事前学習済みモデルを固定した状態で，実画像と合成画像
に対する線形分離器の勾配が一致するように合成画像を最
適化する．これにより，分類に有効な特徴を合成画像に凝
縮できる．しかし，LGM は単一モデルの勾配に基づいて
最適化を行うため，得られる合成画像は蒸留に使用したモ
デルの特徴表現に依存する．その結果，異なるアーキテク
チャを持つモデルに対しては，転移性能が十分に発揮され
ないという課題がある．
3.提案手法
本研究では図 1に示すように，LGM を拡張し，複数の

事前学習済みモデルを同時に用いるデータセット蒸留手法
を提案する．学習目的の異なるモデルの勾配を同時に用い
ることで，特定のモデルに依存しない合成画像の作成を目
的とする．本研究では，自己教師あり学習に基づく DINO
系モデルと，画像と言語対照学習に基づく CLIP 系モデル
を組み合わせる．提案手法における勾配損失を式 (1) に示
す．本手法では，式 (1)を最小化するように，合成画像の作
成のパラメータを最適化する．具体的には，事前学習済み
モデルおよび線形分離器のパラメータは学習せずに，誤差
逆伝播法により合成画像に対する線形分離器の損失勾配を
計算し，実画像から得られる勾配との類似度が高くなるよ
うに，合成画像を更新する．ここで，gDINO および gCLIP

は，それぞれ DINO 系モデルおよび CLIP 系モデルで得
られる線形分離器の勾配を表す．

Lgrad = (1− cos(gDINO)) + (1− cos(gCLIP)) (1)
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図 1: 提案手法の概要
4.評価実験
本研究では，作成した合成画像が蒸留に使用していない

モデルに対しても分類に有効な特徴表現を保持しているか
を検証するため，事前学習済みモデルのバックボーンを凍
結し，最終層の線形分離器のみを学習する Linear Probing
を用いて分類精度評価を行う．評価モデルには，蒸留に使
用していない CNN アーキテクチャである ResNet50 を用
いた．評価には 20 クラスの画像を用い，各クラス 5 枚の
画像から線形分離器を学習した．実験は 5 回実施し，その
平均値と標準偏差を評価値とした．また，比較として全学
習データを用いた場合の精度を上限値として併記する．画

像の作成には，DINOv1，DINOv2，CLIP，Sigmoid Loss
for Language Image Pre-training（SigLIP）の単体モデ
ルおよびそれらの組み合わせを用いた．
4.1.定量的評価
分類精度の評価結果を表 1 に示す．単一モデルの場合

と比較して，複数モデルを統合した場合では，多くの組み
合わせにおいて分類精度の向上が確認できる．具体的に，
DINOv2 と SigLIP の組み合わせを DINOv2 単体と比較
した場合を除き，精度の向上が確認できる．さらに，複数
モデルを統合した場合，DINOv2 と SigLIP を組み合わせ
た場合を除いて，実画像を用いた場合を上回る精度となっ
た．また，単一モデルでは分類精度が低かった SigLIP に
おいても，他のモデルと統合することで分類精度の向上が
みられた．この結果から，複数モデルの勾配を統合するこ
とで，分類に有効な特徴をより効果的に合成画像へ反映す
ることができることがわかった．

表 1: Top1 Accuracy [％]

画像の種類
画像作成に使用したモデル 評価モデル
DINO 系 CLIP 系

ResNet50
v1 v2 CLIP SigLIP

上限値 – – – – 98.46 ± 0.05

実画像 – – – – 95.86 ± 0.05

合成画像
(単一モデル)

3 – – – 96.24 ± 0.19

– 3 – – 95.68 ± 0.15

– – 3 – 92.28 ± 0.12

– – – 3 72.38 ± 0.34

合成画像
(複数モデル)

3 – 3 – 96.68 ± 0.07

3 – – 3 97.06 ± 0.15

– 3 3 – 96.68 ± 0.24

– 3 – 3 95.68 ± 0.07

4.2.定性的評価
図 2にフラミンゴの合成画像例を示す．単一モデルによ

る合成画像では，モデルごとに着目する視覚的要素が異な
る．図 2 (a) の DINOv2 では，フラミンゴのシルエット
や形状が強調されている．一方，図 2 (b) の CLIP では，
背景の水面などのテクスチャ表現が強調されている．これ
に対し，図 2 (c) の DINOv2 と CLIP の組み合わせでは，
形状とテクスチャ情報が含まれているようにも見受けられ
るが，単一モデルと比較して視覚的な差異は明確ではない．
この結果は，分類に有効な特徴が，必ずしも視覚的に識別
可能な形で現れないことを示唆している．

(a) DINOv2 (b) CLIP (c) v2+CLIP

図 2: 作成した合成画像
5.おわりに
本研究では, LGM を拡張し, 複数の事前学習済みモデ

ルの勾配を同時に最適化する LGMを提案した. 定量的評
価により, 提案手法で作成した合成画像が, 単一モデル蒸
留と比較して高い分類精度を示すことを確認した. この結
果は, 提案手法が複数の事前学習済みモデルの特徴を統合
し, 分類に有効な特徴表現を抽出可能であることを示唆し
ている. 今後の展望として，モデル統合時の各バックボー
ンの重み最適化や中間層の特徴活用による合成画像の質向
上，および対象クラス数やデータセットの拡大が挙げられ
る．さらに，Linear Probing 以外の手法への適用における
課題と可能性についても，検証を行う予定である．
参考文献
[1] G. Cazenavette, et al., “Dataset Distillation for Pre-

Trained Self-Supervised Vision Models”, NeurIPS,
2025.



拡散モデルにおける模倣学習の動作保持と環境適応を両立した強化学習
ER22027 児玉将汰 指導教授：藤吉弘亘

1.はじめに
模倣学習は人の動作を教師として模倣するように学習す

るため，未知の状況下では適切な動作ができない課題があ
る．この課題に対して強化学習による方策の更新が有効だ
が，強化学習することで模倣学習により獲得した動作を忘
却するという問題がある．本研究では，模倣動作を保持し
つつ強化学習する手法を提案する．提案手法により，動作
の忘却を低減しつつ環境適応を図ることを目的とする．
2.従来手法
模倣学習したモデルの重みを初期値として，強化学習によ

り，方策を更新する DPPO [1]が提案されている．DPPO
は，Diffusion Policy [2]の多様な動作候補を生成できる能
力と強化学習を組み合わせることで，把持に失敗してもそ
の位置を再認識し,正しい場所に戻す動作の自律的な学習
が可能である．しかし，方策を逐次更新するため，方策が
学習の進行で徐々に変化する．結果として，模倣学習で獲
得した動作を忘却することがある．
3.提案手法
本研究では，DPPO [1] に最適化手法 GRPO(Group

Relative Policy Optimization) [3] を導入することで模倣
学習で獲得した方策を参照モデルとして忘却をしないよう
に方策の更新を行う手法を提案する．GRPO は複数の動
作候補を生成し，グループ内での相対的な報酬で学習する
手法であり，多様な動作候補の中から適切な動作を探索可
能である．学習の際には，ResNet18で抽出したカメラ画
像の特徴量と関節の状態を入力し，関節の目標角度を出力
する．GRPOによる方策更新の手順を図 1に示す．

図 1 : GRPOによる方策更新の手順
黒色の矢印は学習中のデータの流れや演算で，赤色の矢印
はパラメータの継承（初期値）を表す．まず，方策モデルが
入力 q に対して複数の動作候補 O のグループを生成する．
次に，報酬モデルで各応答を評価して報酬 rを算出した後，
グループ内での相対的な優劣を示すアドバンテージ A を
決定する．学習には，式 (1)に示す目的関数 JGRPO(θ)を
用いる．

JGRPO(θ) = E

[
1

G

G∑
i=1

LCLIP (θ)

]
− βDKL(πθ||πref )

(1)

LCLIP (θ) はアドバンテージに基づく代理目的関数の期待
値を表し，πref は模倣学習の重みを継承しパラメータを固
定した参照モデルである．学習中の方策モデル πθ と参照モ
デル πref の KLダイバージェンスを算出しており，これ
により πθ が模倣学習時の動作から過度に乖離することを
抑制する．これにより，強化学習による未知環境への適応
を促進しつつ，模倣学習で獲得した基本動作の維持を図る．
4.評価実験
本実験では模倣学習と 2種類の強化学習（PPO/GRPO）

によるロボットの動作制御を行い，環境の差異が与える影
響や，軌道生成の評価を行う．
4.1.実験概要

Genesisシミュレータ内でヒューマノイドロボットのUni-
tree G1 を用いた実験を行う．両腕 28 関節を制御対象と
し，物体把持タスクの模倣学習と強化学習を行う．使用す
るデータセットは実機の Unitree G1で収集されたブロッ
ク積み上げタスクのデータであり，頭部 2視点と両手カメ
ラの計 4視点の RGB画像から構成される．強化学習の報
酬は，把持対象への接近・接触および，把持の成功だけを

条件にした簡易的なものとし，模倣学習による事前学習動
作を活用しやすくする．
4.2.実験条件
学習では共通して，方策モデルに Diffusion Policy，最

適化手法に AdamW，学習回数を 1000 として学習する．
模倣学習では，学習手法を Behavior Cloning，バッチサイ
ズを 8，学習率を 1e-4として学習する．強化学習では，学
習手法を PPO，バッチサイズを 256，学習率を 1e-4とし
て学習する．提案手法は，学習手法を GRPO，バッチサ
イズを 32，学習率を 1e-6として学習をする．模倣学習で
はオープンソースの G1 Dex3 BlockStacking Dataset を
データセットとして使用する．強化学習では容量削減や学
習速度向上のため，カメラの画質を最低限にして実行する．
4.3.実験結果
従来手法を青線，提案手法を赤線として学習中の報酬の

推移を図 2に示す．
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図 2 : 学習中の報酬の推移
従来手法は報酬の変動が激しく，提案手法は安定している．
従来手法および提案手法におけるロボット頭部のカメラ視
点の描画結果を図 3，図 4に示す．模倣学習のみでは，把持
対象を認識して，腕を伸ばす動作や，把持対象付近で指を
曲げて，腕を上げる動作はできたが，把持には至らなかっ
た．モデルを対象とする従来手法は，把持動作を確認（青
丸）できたが，学習を進めるほど事前学習で獲得した動作
から逸脱する傾向が見られた．動作が不自然で，別のブロッ
クへの接触（黄丸）や，右腕の画面外への移動（赤丸）等
の動作が見られた．一方，提案手法は，従来手法よりも事
前学習に沿った動作が維持され，把持対象に充分接近して
から指を曲げる動作（紫丸）が確認できた．従来手法より
も安定した動作でありながら，模倣学習よりも確実に把持
対象を認識して近づく傾向（緑丸）が見られた．

図 3 : 従来手法の把持動作

図 4 : 提案手法の把持動作
5.おわりに
本研究では，模倣学習後の強化学習によるロボットの動

作精度の向上の手法の提案した．提案手法によって，模倣
学習で獲得した動作を保持しつつ，強化学習が可能だと確
認できた．今後は，提案手法による物体把持後の積み上げ
タスクを行う予定である．
参考文献
[1] AZ. Ren, et al., “Diffusion Policy Policy Optimiza-

tion”, ICLR, 2025.

[2] C. chi, et al., “Diffusion Policy: Visuomotor Policy
Learning via Action Diffusion”, RSS, 2023.

[3] Z. Shao, et al., “DeepSeekMath: Pushing the Lim-
its of Mathematical Reasoning in Open Language
Models”, arXiv, 2024.



特徴表現の維持に着目した構造化枝刈りとトークン枝刈りの併用
ER22034 篠田昂希 指導教授：藤吉弘亘

1.はじめに
Vision Transformer（ViT）による物体認識モデルは高

精度化に伴いパラメータ数が大規模化している．そのため，
エッジデバイス適用やリアルタイム推論には，計算量とメ
モリ使用量が課題である．この課題に対して，入力トーク
ン数を削減し，モデル全体の計算量を抑えるトークン枝刈
りが注目されている．トークン枝刈りは入力を削減するこ
とで計算量を減らせるため，推論速度向上に有効である．
一方で，トークンを過度に削減すると特徴表現が不足し，
精度が著しく低下する．また，モデルのパラメータ数は変
化しないため，モデル軽量化が不可能である．そこで本研
究では，トークン枝刈りと構造化枝刈りを併用し，特徴表
現と精度の維持を図りながら推論速度向上とモデル軽量化
の両立を目指すハイブリッド手法を提案する．
2.トークン枝刈り
トークン枝刈りの代表的手法として DynamicViT[1]が

ある．DynamicViTは ViTのエンコーダ間にトークン選
択モジュールを挿入し，各トークンの重要度に基づいて残
すトークンを決定する．学習時は Gumbel-Softmax によ
り選択をスコア化して学習可能にし，推論時は重要度の低
いトークンを破棄して計算量を削減する．DynamicViTで
は，各層の保持率が目標値に近づくよう制約を与える損失
Lratio を導入し，式 (1)で定義する．ここで S はトークン
選択モジュールを挿入した層の集合，l はその層の添字で
ある．また，rl は目標保持率，r̂l は実際の保持率である．

Lratio =
1

|S|
∑
l∈S

|r̂l − rl| (1)

また，教師モデルの出力分布 qと生徒モデルの出力分布 p
の差を抑える蒸留損失 LKL を導入し，式 (2)で定義する．
ここで k はクラスの添字であり，qk および pk はクラス k
に対応する確率である．

LKL =
∑
k

qk log
qk
pk

(2)
3.提案手法
提案手法は図 1 に示すように，2 段階で枝刈りを行う．

Step1 では cls token の特徴表現整合を導入したトークン
枝刈りを行い，Step2では勾配に基づいてMLPチャンネ
ルを枝刈りする．
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patch embed
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図 1 : 2段階の枝刈り
3.1.cls tokenのコサイン類似度に基づく損失導入

Step1では，DynamicViTに枝刈り前後の cls tokenの
コサイン類似度に基づく損失 Lcls を追加する．

Lcls =
1

|S|
∑
l∈S

(
1− cos(cl, c

ref
l )

)
(3)

式 (3)に cls tokenの特徴表現に基づく損失項を表す．ここ
で clは Studentの cls token，crefl はTeacherの cls token
である．総損失 Lを式 (4)に示す．

L = Lce + λratioLratio + λKLLKL + λclsLcls (4)

ここでLceはクロスエントロピー損失であり，λratio, λKL, λcls

はハイパーパラメータである．

3.2.MLP構造化枝刈り（勾配ベースの重要度推定）
Step2では，式 (5)のようにトークン枝刈り学習の損失

に対する重みの勾配を用いてMLPチャンネルの重要度を
推定する．重要度の小さい順に枝刈りする．重要度は一次
テイラー近似に基づき，重みと勾配をチャンネルごとに集
約して算出する．ブロックN のMLPにおいて，チャンネ
ル cの重要度 sn,c を式 (5)により定義する．

sn,c =
∑
j

∣∣∣∣∣ ∂L

∂W
(n)
c,j

·W (n)
c,j

∣∣∣∣∣ (5)

ここでW
(n)
c,j はMLPの重みであり，sn,c が小さいチャン

ネルほど出力への寄与が小さいとみなして枝刈りする．
4.評価実験
計算量を揃えた条件で，枝刈り手法ごとの正解率，Through-

put，および cls tokenの変化を比較する．
4.1.実験概要

ImageNet-1kで事前学習済みの DeiT-Base/16を用い，
下流タスクとして CIFAR100 および StanfordDogs で枝
刈り・評価する．比較手法は，ベースライン（枝刈り前モ
デル），Magnitude（MLPのMagnitude構造化枝刈り），
DynamicViT，単純併用（DynamicViT＋Magnitude）で
ある．推論時の計算量が約 8.0 GFLOPsとなるように枝刈
り率を調整する．トークン枝刈りはエンコーダ層 {3, 6, 9}
に適用する．MLP 構造化枝刈りは MLP チャンネルを削
減する．評価指標は正解率，Throughput，および枝刈り
前モデルを参照した cls tokenの特徴表現の変化とする．
4.2.実験結果
表 1に，各手法を約 8.0 GFLOPsに揃えた条件での性

能を示す．ベースラインと比較すると，提案手法は計算量
を抑えつつ推論速度を向上させ，精度低下も小さい．単純
併用は高速化できる一方で精度低下が大きく，Magnitude
基準ではトークン枝刈り後の中間層の出力の分布変化を反
映できないため,特徴表現が劣化すると考えられる．

表 1 : CIFAR100および StanfordDogsにおける性能比較
Method

CIFAR100 StanfordDogs
Acc↑ Thr.↑ Acc↑ Thr.↑

ベースライン 89.70 318.00 95.08 291.21

Magnitude 70.21 683.79 53.81 558.31
DynamicViT 80.58 843.02 80.67 783.76
単純併用 80.06 807.54 80.41 758.58
提案手法 87.19 808.86 93.67 761.27

表 2に cls tokenの特徴表現の変化を示す．提案手法は
単純併用と比べて特徴表現の変化が小さい傾向が確認でき，
枝刈り前に近い特徴表現を維持できたといえる．

表 2 : 枝刈り前後の cls tokenの特徴表現の変化
Method

CIFAR100 StanfordDogs
cos sim↑ L1Norm↓ cos sim↑ L1Norm↓

Magnitude 0.699 1693.5 0.583 1773.53
DynamicViT 0.760 1554.0 0.753 1545.76
単純併用 0.403 2859.8 0.742 1631.72
提案手法 0.980 697.33 0.869 777.16

5.おわりに
本研究では，トークン枝刈りとMLP構造化枝刈りを 2

段階で適用し，特徴表現を維持しながら高速化する手法を
提案した．CIFAR100および StanfordDogsにおいて，提
案手法は単純併用より特徴表現の変化が小さく，精度低下
を抑えられることを確認した．
参考文献
[1] Y. Rao, et al., “DynamicViT: Efficient Vision

Transformers with Dynamic Token Sparsification”,
NeurIPS, 2021.



スポーツ動作に対応したMTVCrafterのファインチューニング戦略
ER22051 野田悠太 指導教授：藤吉弘亘

1.はじめに
スポーツにおいて，映像フィードバックは選手のパフォー

マンス向上に有効である．フィードバックの際は，選手の動
作を任意の条件で再現可能な映像生成が求められる．しか
しながら，スポーツ特有の急激な動作に対応した映像生成の
実現には，対象とする動作に特化した学習データが必要とな
る．拡散モデルを活用した生成モデルであるMTVCrafter
は，web上から収集した日常生活の映像を用いて学習され
ており，スポーツ特有の動作の生成能力は不十分である．
そこで本研究では，スポーツ領域での映像生成の品質向上
を目指して，MTVCrafterのファインチューニング戦略を
検討する．
2.MTVCrafter

MTVCrafter[1]は，参照画像と 3次元関節座標の系列デー
タから参照画像に映る人物の動作映像を生成する．MTV-
Crafterのモデル構造を図 1に示す．MTVCrafterは，VAE
を用いて画像を潜在空間へ写像し，潜在特徴を獲得する．
そして，潜在特徴と動作情報を Transformerに入力して動
画を生成する．その際，Cross-Attention を通じて動作情
報を条件として取り込む．この時，学習していない動作情
報は，適切な条件とならないため，破綻した映像が生成さ
れることがある．

図 1: MTVCrafterのモデル構造
3.提案手法
本研究の目的は，MTVCrafterのスポーツ領域での映像

生成の品質向上である．そのため，モデルをファインチュー
ニングするための学習戦略を検討する．具体的には，スポー
ツ特有の急激な動作としてフィギュアスケートのジャンプ
に着目し，後述の独自データセット FSJDを用いたファイ
ンチューニングを行う．
3.1.学習戦略

MTVCrafterの学習には，①トークナイザのみの学習，
②拡散モデルのみの学習，③全体の学習，の 3つの過程が
ある．各学習過程が生成映像に与える影響を比較検証する．
3.2.動画-3Dポーズ系列ペアのデータセット作成
本研究では，Figure Skating Jump Dataset (FSJD) を

作成した．まず，収集した 272本のフィギュアスケートの
競技映像からジャンプシーンを切り出した．次に，各シー
ンに対して 3次元人体形状・姿勢推定モデルNLF-Pose [2]
を用いて，シーンの各フレームに 3次元関節座標を付与し
た．得られた FSJDのデータ数は 1,072組で，各データは
解像度 512 × 512画素，フレーム数 49に統一されている．
4.評価実験
本実験では，以下の学習戦略の異なる 3つのモデルの生

成性能を比較する．
モデル 1 ：トークナイザのみの学習
モデル 2 ：拡散モデルのみの学習
モデル 3：トークナイザを学習・凍結後，拡散モデルを学習
本実験では，FSJDのうち学習用に 972組，評価用に 100

組を使用した．
4.1.各学習戦略におけるトークナイザの比較
トークナイザの実験結果を表 1に示す．トークナイザを

学習した場合，しない場合と比較してMPJPEの低下から
トークン化の再現性が確認できる．また，FIDの大幅な低
下から FSJD特有の動作分布を適切に学習したといえる．

表 1: 各学習戦略の比較
評価指標 モデル 1 モデル 2 モデル 3

MPJPE 287.28 302.47 287.28

FID 186.17 2798.47 186.17

4.2.各学習戦略における定性的比較
各学習戦略における推論例の比較を図 2に示す．図 2(a)

より，トークナイザのみを学習した場合，入力された動作
条件を無視し，学習済みの一般的な動作が生成された．こ
れは，拡散モデルの Cross-Attention層が未知ドメインの
トークンに対応しておらず，条件情報が意味を持たないノ
イズとして処理されたためと考えられる．
図 2(b)より，拡散モデルのみを学習した場合，不定形

の青いノイズが生成された．これは，未学習の急激な動作
に対して，トークナイザが適切に情報を保ってトークン化
できず，正解の映像と矛盾した条件情報が入力されたこと
で，拡散モデルの最適化が阻害されたためと考えられる．
図 2(c)より，全体を段階的に学習した場合，既存モデル

では生成に失敗しやすかった空中での急激な回転時に，外
観や動作が失敗なく生成されている．そのため，全体の学
習がドメイン特有の動作再現において有効といえる．

(a) トークナイザのみを学習した際の推論例

(b) 拡散モデルのみを学習した際の推論例

(c) 全体を学習した際の推論例
図 2: 各学習戦略における推論例の比較

4.3.全体学習の定量的評価
全体を段階的に学習した結果を表 2に示す．特に FVD

及び FID-VID の改善から，ドメイン特化の学習により，
ジャンプ特有の動作に対応した生成が可能となった．

表 2: 各評価指標における結果比較
比較対象 FVD FID-VID PSNR SSIM LPIPS FID

学習前 479.15 39.11 13.10 0.457 0.525 35.67

学習後 303.39 35.30 13.58 0.577 0.530 35.73

5.おわりに
本研究では，MTVCrafterの学習データにない別ドメイ

ンでの映像生成の品質向上を試みた．具体的には，FSJD
を構築し，トークナイザ及び拡散モデルをファインチュー
ニングした．結果，全体を段階的に学習した場合に，定性・
定量評価において，既存モデルでは難しかったジャンプ特
有の動作の再現性の向上といった映像生成の品質向上を確
認した．今後は，さらにテキスト情報を条件として加える
ことで，生成における能動的なジャンプ種別の指定を図る．
参考文献
[1] Yanbo Ding, et al., “MTVCrafter: 4D Motion To-

kenization for Open-World Human Image Anima-
tion”, arXiv:2505.10238, 2025.

[2] István Sárándi and Gerard Pons-Moll, “Neural Lo-
calizer Fields for Continuous 3D Human Pose and
Shape Estimation”, arXiv:2407.07532, 2024.



サッカー戦術分析のためのパッキングレート自動算出システム
ER22063 古田愛貴 指導教授：藤吉弘亘

1.はじめに
サッカーの試合では，シュート数やパス数などの定量指

標に基づく分析が行われている．パスの質を定量化する新
たな指標として，パッキングレートが注目されている．パッ
キングレートは，1本のパスやドリブルによって攻撃方向
に位置する相手選手を何人通過したかを定量的に評価でき
る．これまで，パッキングレートの算出は試合映像を目視
で確認する方法が主流で，算出に多大な時間と人的コスト
を要するという課題があった．そこで本研究では，試合映
像からパッキングレートを自動で算出する手法を提案する．
2.従来手法
従来のパッキングレート算出では，攻撃方向に基づく一

次元的な選手の位置関係によって評価が行われる．そのた
め，図 1に示すシーンでは，Aや Eのように，パスに直接
関与しない選手まで評価対象に含まれ，パッキングレート
は 5と算出される．

2

パッキングレート：5

A

B

C

D

E

図 1 : パッキングレートイメージ図
また，算出の際は試合映像を目視で確認し，相手選手数

を手作業でカウントするため，時間と労力を要する．
3.提案手法
本研究では，試合映像から取得したコート，選手，ボー

ルの情報を用い，パッキングレートを自動的に算出する手
法を提案する．
3.1.処理概要
提案手法では，試合映像からYOLOv8[1]を用いて，コー

ト，選手，ボールの位置を検出する．選手は検出後，色情報
をもとにチームを判別する．コートの基準点はペナルティ
エリア，センターラインなどのコーナー 32点を検出し，検
出したコートライン情報を用いてBird’s Eye View（BEV）
視点へ変換する．これにより，距離歪みを軽減した BEV
座標上で，ボール周囲の一定範囲内に存在する守備側選手
のみを対象としたパッキングレートの算出可能となる．処
理フローを図 2に示す．

パッキングレート：2

各種検出 チーム判別 BEV変換 パッキングレート算出

データセット作成・検出モデル学習
（コート・選手・ボール）

パッキングレート算出（映像入力）

モデル作成（事前処理）

図 2 : 提案手法の処理フロー
本研究では従来研究に倣い，パッキングレートを 1 プ

レーで通過した相手選手人数をポイントとして表した指標
と定義し，以下の式で表す．

P =
∑
i∈D

δ(i) (1)

ここで，D は BEV 座標上においてボール周囲の一定範囲
内に存在する守備側選手の集合を表す．δ(i) は，パスまた
はドリブル区間において BEV上でボールが守備側選手 i
を通過した場合に 1，それ以外を 0 とする指示関数である．
3.2.データセット作成
データセット作成および学習には，Roboflow[2]を用い

た．3 試合分，計 4,137 枚の画像に対して選手，ボール，
コートのコーナー点のアノテーションを行った．

3.3.チーム判別
作成した選手検出モデルの結果からチーム判別を行う．

各選手のバウンディングボックス領域を入力とし，事前学
習済みの画像特徴抽出モデルを用いて選手画像の特徴量を
抽出する．抽出された高次元特徴量に対し，UMAP を用
いて 3次元へ次元削減を行い，k-means法（k = 2）によ
るクラスタリングを適用することで，2チームに分類する．
3.4.BEV視点への変換
カメラ映像上の座標は，遠近効果により距離関係が歪む

ため，正確な位置関係を扱うことが困難である．そこで，
学習したコートライン検出モデルにより取得した映像座標
と BEV座標のキーポイント対応を用いてホモグラフィ変
換を行い，映像を BEV視点へ変換する．さらに，追跡安
定化のためカルマンフィルタを適用する．
4.評価実験
4.1.実験概要
本研究では，ボール位置に追従してカメラが左右にパン

するサッカー試合映像を対象とする．提案手法の有効性を
検証するため，実際のサッカー試合映像からパス，ドリブル
10シーンを抽出し評価を行った．各シーンに対して，BEV
視点を用いない画像座標上で算出する手法と，BEV 視点
を用いた提案手法の 2つの手法を比較し，目視結果と一致
した場合を算出成功と定義した．
4.2.実験結果
提案手法による BEVへの変換結果を図 3に示す．図 3

より，選手およびボールの位置関係が正しく BEV視点に
投影されていることが分かる．

図 3 : BEV視点への変換結果
次にパッキングレートの算出結果を表 1に示す．表 1よ

り，画像座標ベース手法では真値に対して最大で 9人の誤
差が生じたのに対し，BEV変換手法では誤差が小さく，一
致率が 60%に向上した．これは，BEV視点を用いること
で距離歪みの影響が軽減され，選手とボールの位置関係を
コート平面の距離として評価可能になったためである．

表 1 : パッキングレート数精度比較
シーン 真値 BEV変換手法 画像座標ベース手法

測定値 一致 測定値 一致
1 3 3 ✓ 5 -

2 2 2 ✓ 2 ✓
3 3 3 ✓ 7 -

4 2 2 ✓ 6 -

5 3 1 - 8 -

6 1 1 ✓ 4 -

7 2 2 ✓ 5 -

8 3 6 - 8 -

9 1 2 - 6 -

10 1 4 - 10 -

一致率 6/10 1/10

5.まとめ
本研究では，試合映像からパッキングレートを自動で算

出する手法を提案した．評価実験の結果，BEV 視点を用
いることで，算出成功率が向上した．一方で，カメラ移動
によりコート基準点の検出が不十分なフレームでは，BEV
変換が不安定となる課題が残った．今後は，BEV 変換の
安定化を図り，試合全体を通したパッキングレートの自動
算出を可能とする．
参考文献
[1] G. Jocher, A. Chaurasia, and J. Qiu, “ YOLO by Ul-

tralytics ”, arXiv preprint arXiv:2301.07209, 2023.
[2] J. Nelson, J. Solawetz, and J. Houghton, “Roboflow:

Simplified Computer Vision Model Training and De-
ployment”, Roboflow Inc., 2023.



精度劣化を抑制した BEVFormerの重み付き非構造枝刈り
ER22070 松本大輝 指導教授：藤吉弘亘

1.はじめに
自動運転車が安全に走行するには，自車周辺の物体の 3

次元位置情報が必要である．その代表的な手法として 3D
物体検出が用いられるが，高性能化に伴いモデルの大規模
化が課題となっている．この課題を解決する手法として，
モデルをコンパクト化する枝刈りがある．枝刈りは構造化
枝刈りと非構造枝刈りの 2つに大別される．非構造枝刈り
は重み行列を要素単位で削除することで，ネットワーク構
造を維持したまま大幅にパラメータを削減できるという利
点がある．この利点を踏まえ，本研究では非構造枝刈りの
物体検出モデルへの有効性を検証するとともに，枝刈りに
よる精度低下を抑制するために特定クラスおよび距離の重
み付けを導入した非構造枝刈りを提案する．
2.先行研究
非構造枝刈りの評価値として SNIPが用いられる．SNIP

は損失関数に影響を与える重みを削除する手法であり，そ
の評価値は，損失関数を L，i 番目の重みを wi として
SSNIP(wi) =

∣∣ ∂L
∂wi

wi

∣∣ のように示す．SNIP による枝刈
りでは特定クラスの検出精度が低下することがある．先行
研究 [1]では，特定クラスの精度低下を抑制するため，特定
クラスを含む入力 xspecific に対する損失から Sclass(wi) =∣∣∣ ∂L(xspecific)

∂wi
wi

∣∣∣のように示す．そして，SSNIPと Sclassを
統合し枝刈りを行う．最終評価値 S(wi)を式 (1)に示す．

S(wi) = Sclass(wi) + SSNIP(wi) (1)

3.提案手法
自動運転の観点では近距離領域での検出失敗が交通事故

に直結するため，特定クラスに加え，近距離での検出精度
低下を抑制する必要がある．そこで本研究では代表的な 3D
物体検出モデルである BEVFormer[2]を対象に，精度低下
を抑制する特定クラスおよび距離の重み付けを導入した非
構造枝刈りを提案する．提案手法の概要を図 1に示す．

図 1 : 提案手法の概要
提案手法では，距離係数 α(d)を付与した損失関数 Ldistを
用いる．距離係数 α(d)を式 (2)に示す．

α(d) = αfar + (αnear − αfar) exp(−d/τ) (2)

ここで，dは自車両から検出物体までの距離である．また，
αnear，αfar は近距離，遠距離に対する重みであり，τ は距
離に対する減衰の強さを表す．さらに距離に対する重み付
き損失関数 Ldist を式 (3)に示す．

Ldist =
1

N

N∑
j=1

α(dj)Lj (3)

ここで，Lj はサンプル j の検出損失，dj はサンプル j ま
での距離，N はサンプル数を表す．式 (3)により，近距離
ほど距離係数が大きくなり，損失への寄与が増加する．こ
の距離に対する重み付き損失に基づき枝刈りを行い，評価
値 S(wi)を式 (4)に示す．

S(wi) = Sdist
class(wi) + Sdist

SNIP(wi) (4)

ここで，Sdist
class =

∣∣∣ ∂Ldist(x
specific)

∂wi
wi

∣∣∣ は距離重み付き特定
クラス評価値，Sdist

SNIP =
∣∣ ∂Ldist

∂wi
wi

∣∣は距離重み付き SNIP

評価値である．式 (4)により，近距離物体の検出に寄与す
る重みが削除されず，近距離性能の劣化抑制が期待される．

4.評価実験
BEVFormerに対して提案手法の有効性を検証する．定

量評価では，枝刈り前後の精度を全距離/近距離 (0∼20m)
で比較する．定性評価では，検出結果の変化を確認する．
4.1.実験条件
本実験ではBackboneにResNet101-DCNを用いる．学

習設定はエポック数 24，バッチサイズ 64，枝刈り率 50%，
70%，最適化は AdamW（lr=2e-4，weight decay=0.01）
とし，データセットは NuScenes datasetを用いる．
4.2.定量評価
全距離における枝刈りなしとありの精度を表 1，近距離

における枝刈りなしとありの精度を表 2 に示す．表中の
Methodsは枝刈り時に距離係数を適用する距離帯（全距離
／近距離）を表す．表 1より，枝刈り率 70%では SNIPは
重要な重みまで削除されるが，SNIP/ours(全距離) は特定
クラスの重みを保持するため，SNIPおよび SNIP/ours(近
距離)を上回った．また，表 2より，枝刈り率 50%の近距離
評価では，SNIP/ours(近距離) が近距離検出に重要な重み
を保持するため，SNIPや SNIP/ours(全距離)を上回った．

表 1 : 全距離における定量評価
枝刈り率Methods NDS↑mAP↑mATE↓mASE↓mAOE↓mAVE↓mAAE↓

0% 枝刈りなし 0.524 0.417 0.655 0.273 0.367 0.354 0.194

50% SNIP 0.519 0.413 0.668 0.276 0.362 0.356 0.207

50% SNIP/ours(全距離) 0.516 0.415 0.698 0.274 0.384 0.375 0.187

50% SNIP/ours(近距離) 0.513 0.410 0.703 0.275 0.395 0.390 0.187

70% SNIP 0.491 0.386 0.720 0.284 0.493 0.448 0.198

70% SNIP/ours(全距離) 0.495 0.403 0.708 0.277 0.434 0.424 0.185

70% SNIP/ours(近距離) 0.487 0.381 0.736 0.277 0.450 0.470 0.198

表 2 : 近距離における定量評価
枝刈り率Methods NDS↑mAP↑mATE↓mASE↓mAOE↓mAVE↓mAAE↓

0% 枝刈りなし 0.608 0.562 0.564 0.267 0.338 0.343 0.218

50% SNIP 0.605 0.552 0.583 0.265 0.327 0.322 0.212

50% SNIP/ours(全距離) 0.595 0.537 0.589 0.270 0.396 0.330 0.223

50% SNIP/ours(近距離) 0.623 0.579 0.565 0.267 0.288 0.275 0.270

70% SNIP 0.594 0.541 0.564 0.267 0.369 0.356 0.201

70% SNIP/ours(全距離) 0.596 0.546 0.657 0.274 0.348 0.357 0.203

70% SNIP/ours(近距離) 0.598 0.548 0.605 0.267 0.347 0.359 0.201

4.3.定性評価
枝刈り率 50%と枝刈り率 70%の可視化画像結果を図 2

と図 3に示す．図 2と図 3より，SNIP/ours(近距離) の赤
枠で示した歩行者の検出結果より，精度低下が抑制されて
いることが確認できる．

図 2 : 50%可視化画像 図 3 : 70%可視化画像
5.まとめ
本研究では，精度劣化を抑制した BEVFormerの重み付

き非構造枝刈り手法を提案した．評価実験より，全距離評
価では SNIP/ours(全距離) が SNIP を上回り，近距離評
価では SNIP/ours(近距離)が NDS/mAPを改善した．今
後は自動運転における評価として提案手法が運転経路に与
える影響を検証する．
参考文献
[1] T. Ito et al., “Weight Pruning to Mitigate Class-

Specific Accuracy Degradation for LiDAR-Based 3D
Object Detection,” in Proc. IEEE Intelligent Vehi-
cles Symposium (IV), 2025.

[2] Z. Li, et al., “BEVFormer: Learning Bird’s-Eye-
View Representation from Multi-Camera Images via
Spatiotemporal Transformers,” In European Confer-
ence on Computer Vision (ECCV), 2022.



マスク誘導型 Visual Encoderによる異常検知の言語説明と可視化
ER22075 森田悠斗 指導教授：藤吉　弘亘

1.はじめに
工業製品の品質保証において，異常検知は重要工程であ

る．異常検知は正常・異常の分類だけでなく異常領域の特定
や判断根拠の可視化など，説明性も重要である．Anomaly-
OneVision (Anomaly-OV) [1]は大規模言語モデル (LLM)
を用いることで，異常内容を自然言語で説明することを可
能とした．しかし，Anomaly-OV は異常内容の説明が異
常領域と一致しないことがある．本研究では，異常領域を
強調する学習を Visual Encoderに導入することで，異常
内容の言語説明と異常領域の一致性を向上させる．
2.Anomaly-OV

Anomaly-OVは，入力画像から異常内容を自然言語で説
明するマルチモーダルモデルである．本モデルは，Look-
Twice Feature Matching (LTFM) と Visual Token Se-
lector (VTS) を中核として構成される．LTFMは元画像
と 4 分割して得られる局所画像の特徴を二段階で照合し，
異常度スコアを算出する．VTS はそのスコアに基づき異
常領域を強調した重み付き視覚特徴を生成し，LLM へ入
力する．本モデルは，未知データの場合に異常を正確に捉
えられず，説明文が異常内容から逸れる場合がある．
3.提案手法
本研究では，教師マスクにより異常領域への注目を強化

した Anomaly-OVに基づく異常説明と，その判断根拠の
可視化手法を提案する．
3.1.教師マスクによるVisual Encoderの拡張

Anomaly-OV の説明能力を特定の領域に適応させるた
め，欠陥箇所を明示したマスク画像を用いて追加学習を行う．
提案手法のアーキテクチャを図 1に示す．Visual Encoder
には，元画像 I0 およびそれを 4 分割した局所画像 In を
入力する．Visual Encoder の出力である視覚特徴 v0j を
LTFMに入力し，異常度スコア mj を出力する．そして，
異常度スコア mj と教師マスク yj との誤差を最小化する
よう LTFM を学習する．教師マスクは異常を 1，正常を
0とする 2値ラベルである．誤差関数には，Binary Cross
Entropy (BCE) Lossを用いる．VTSでは，異常度スコア
mj と視覚特徴 v0j の要素積をクエリ，視覚特徴 v0j をキー，
バリューとしてQ-Formerで処理する．これを元画像 I0お
よび局所画像 In に対して行う．異常領域を強調した特徴
vsj を画像ごとに LLMに入力し，異常説明文を生成する．Anomaly-OV + マスク（アブスト）
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図 1: 提案手法のアーキテクチャ
3.2.言語説明に対する可視化
異常説明文の生成時にモデルがどの画像および領域を参

照しているか可視化する．各画像から得られる異常強調特
徴の単語生成への寄与を比較するため，LLMのAttention
weightを抽出し，注目画像を特定する．そして，異常度ス
コアに基づく異常強調特徴を生成する VTS の Q-Former
における Cross-Attentionから得られる注目度をパッチ単
位で可視化することで，画像内の注目領域を特定する．
4.評価実験
提案手法の有効性を示すために，異常ラベルの分類精度

と説明性能の 2つの観点で比較を行う．
4.1.実験条件
評価には 10種類の異常を含む電線データセットを用い，

学習データ 8976 枚，評価データ 563 枚を使用する．学
習条件は，学習率 1e−4，バッチサイズ 16，10 エポック

とする．また，異常説明生成に用いる LLMは Anomaly-
Instruct125kでファインチューニングされたものを使用す
る．異常分類性能の評価では，従来のマルチモーダル手法
である LLaVA，Anomaly-OVと提案手法を比較対象とす
る．評価指標として，生成された説明文と各異常カテゴリ
の正解文との一致度を用いる．生成文が正解文と 80%以上
一致した場合を正解とみなし，正解率 (Accuracy) を算出
した．異常説明性能の評価では，Anomaly-OV と提案手
法を比較し，生成された異常説明文が異常特徴を適切に表
現できているか定性的に評価する．
4.2.異常分類結果
異常分類精度の比較結果を表 1に示す．提案手法はLLaVA

より 11.4ポイント，Anomaly-OVより 0.5ポイント高い
精度を示した．従来手法では正常領域に注目することがあ
り，異常の識別が不十分となる場合があったが，提案手法は
異常領域を強調することで誤分類が低減したと考えられる．

表 1: 異常分類精度の比較
LLaVA Anomaly-OV 提案手法

Accuracy 81.5 92.4 92.9

4.3.異常説明性能の定性的評価
提案手法による説明文の質の向上について，異物 繊維

の事例を用いて比較する．異物 繊維の出力結果を図 2 に
示す．Anomaly-OVは，異物繊維の特徴を十分に反映でき
ていない説明文である．一方，提案手法は，「波状」など繊
維特有の異常形状を表す表現が生成され，異常特徴に基づ
く説明文が得られた．

説明性能分析
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送電線には明らかな異常が見られる：右側に曲がった
部分があり、表面が歪んで不規則に見える。この変形
により、線の滑らかな連続性が損なわれている。

電力線の異常は小さく、暗色で不規則な形状の突起で
ある。これらは波状またはジグザグ状のパターンとし
て現れ、電力線の滑らかな表面を乱している。

提案手法の出力結果

通常モデルの出力結果

図 2: 異物 繊維の出力結果
4.4.特定単語の注目領域の可視化
異常説明文内の「波状」という単語に着目し，単語生成

時にモデルが参照する画像および領域を可視化した．注目
画像および注目領域の可視化結果を図 3 に示す．図 3(a)
より，欠陥箇所を含む右下の画像に注目度が集中しており，
異常説明時に異常領域を多く含む画像を重視していること
が分かる．図 3(b) の注目領域の可視化結果から，異常領
域を含むパッチに注目が集中していることが分かる．これ
らの結果から，異常位置を明示的に学習させることで，モ
デルは異常領域に基づく単語生成を行うことを確認した．

アブスト 可視化
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電力線の異常は小さく、暗色で不規則な形状の突起で
ある。これらは波状またはジグザグ状のパターンとし
て現れ、電力線の滑らかな表面を乱している。

(a) 注目画像の特定

アブスト 可視化

30

(b) 注目領域の可視化
図 3: 注目画像および注目領域の可視化結果

5.おわりに
本研究では，Anomaly-OVを電線データに適用し，異常

領域の強調と説明文生成の改善を行った．異常度スコアに
対してマスク画像を用いた追加学習を実施し，モデルは異
常領域をより正確に捉え，説明文も適切な異常表現へと改
善された．今後は，異常領域の推定精度向上や，単語生成
時の注目領域をより詳細に可視化する手法の検討を進める．
参考文献
[1] Y. Xu, et al., “Anomaly-OV: Towards Zero-Shot

Anomaly Detection and Reasoning with Multimodal
Large Language Models”, In CVPR, 2025



学習行動の文脈を考慮した教師なし異常行動検知
ER22076 安田恭大 指導教授：藤吉弘亘

1.はじめに
教材のデジタル化に伴い，電子教材上での学生の学習行

動ログを大規模に収集することが可能となった．この学習
行動ログデータを分析することで，学生一人一人に合わせ
た学習サポートの実現が期待されている．先行研究では，
行動ごとの出現回数をヒストグラム特徴とした各学生の成
績予測手法が提案されている．成績予測は最終的な成績を
予測するものであり，学習行動の順序に起因する異常行動
や特異性を捉えることは困難である．そこで本研究では，
多くの学生が行う標準的な学習行動から逸脱した行動系列
を異常と定義し，学習行動の文脈情報を捉える埋め込み表
現による教師なし異常検知手法を提案する．
2.先行研究
小濱らは，電子教材における行動ごとの出現回数をヒス

トグラム特徴として表現して成績予測を行う手法を提案し
た [1]．この手法は成績予測に有効である一方，行動の出現
回数に依存した予測のため，学習行動における行動の違い
や文脈的特異性を捉えることが難しく，学習プロセスの分
析には課題がある．
3.提案手法
本研究では，学習行動における文脈的な異常を捉えるた

め，行動系列の文脈情報を埋め込みベクトル化し，Isolation
Forest[2]を用いて異常行動を検知する手法を提案する．本
手法は，Masked Language Model (MLM) によるモデル
学習，ベクトル生成，異常検知の 3段階で構成される．提
案手法の概要図を図 1に示す．
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図 1: 提案手法の概要図
3.1.行動系列の埋め込みベクトル生成

Step1では，系列内の離れた行動間の関係性を捉えるた
め Transformer Encoder を採用し，一部をマスクした行
動系列を入力としてMLMにより学習を行う．Step2では，
学習したモデルに行動系列を入力し，各行動に対応する文
脈情報を保持した埋め込みベクトルを得る．このベクトル
を平均化することで，行動平均ベクトルを生成する．
3.2.Isolation Forestによる異常行動の検知

Step3では，生成したベクトルを Isolation Forestに入
力し，正解ラベルを用いずに特徴空間上で孤立した異常な
行動パターンを持つ行動系列を検知する．Isolation Forest
は，決定木に基づく教師なし異常検知手法である．学習時
は，ランダムに選択された特徴量と，その最大値・最小値
の間からランダムに決定された分割点を用いてデータを再
帰的に二分割し，多数の決定木を構築する．各データが葉
ノードに孤立するまでの平均パス長に基づき，式 (1)で異
常度を算出する．

s(x, n) = 2
−E(h(x))

c(n) (1)
ここで，h(x) はデータ x が葉ノードに到達するまでのパ
ス長，E(h(x))はその平均値，c(n)はデータ数 nにおける
平均パス長である．正常データは孤立までに多くの分割を
要する一方，異常データは少ない分割で孤立するためパス
長が短くなる傾向がある．この性質を利用して異常行動を
検知する．
4.評価実験
本実験では，提案手法を用いて異常行動パターンを検知

する．また，検知したデータの行動履歴を用いてその行動
の分析を行う．

4.1.実験条件
本実験では，九州大学で収集された学習行動ログデータ

セットを用いる．訓練データに 2019年から 2021年（1,209
名）までのデータを，評価データに 2022 年（237 名）の
データを使用し，いずれも 1から 8週目までの講義時間内
のデータに限定して実験を行う．モデルは，BERT-Base
の構成（入力 512 トークン，次元数 768，12 層）を基に
した Transformer Encoder を使用する．学習には，学習
率を 1e-5，バッチサイズを 32，エポック数を 300に設定
した．損失関数には，各行動の希少性に基づく重みである
IDFを適用したWeighted Cross Entropy Lossを用いる．
また，異常判定の閾値は，異常度の上位 5%に設定する．
4.2.実験結果
異常検知の結果を表 1 に示す．表 1 より，全データ数

1,463件に対し，74件が異常と判定された．正常データの
平均行動回数は約 152.2回であるのに対し，異常データは
平均 30.6回と，系列長が短い傾向が見られた．また，成績
分布を確認すると，異常データ群では成績 Fや Dの割合
が高い傾向が見られる．一方，成績 Aの学生も異常データ
の約 3割（28.4%）を占めている．これは，標準的な学習
行動とは異なる特異な行動パターンを持つ週や，遅刻や早
退によって学習時間が極端に短くなり，行動回数が少なく
なった週が検知されたためと考えられる．

表 1: 異常度（平均パス長）に基づく検知結果
判定結果 データ数 割合 [%] 平均行動回数 成績分布 [%]

A B C D F

正常 1,389 94.9 152.2 38.7 27.1 19.8 9.8 4.6

異常 74 5.1 30.6 28.4 16.2 23.0 21.6 10.8

4.3.定性的評価
行動平均ベクトルの異常度の分布を図 2に，各クラスタ

を色で表示した結果を図 3に示す．図 2より，異常度が高
いデータが空間の左端に密集し，独立した領域を形成して
いることがわかる．この領域を図 3のクラスタリング結果
と照合すると，行動回数が少なく，“OPEN”（教材を開く）
や “CLOSE”（教材を閉じる）といった行動が主体である
クラスタに対応している．これは，システムへのアクセス
後に内容を読み進めることなく即座に離脱した行動を示し
ており，多くの学生に見られるページ遷移の文脈を持たな
いため，特徴空間上で孤立し異常と判定されたと考えられ
る．一方，正常データに対応するクラスタは，行動回数が
多く，“NEXT”（次のページに移動）を主体としたページ
遷移を多く伴う行動系列であることが確認された．
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図 2: 異常度の空間分布

⾏動回数が少ない /
CLOSEが主体

⾏動回数が少ない /
OPENが主体

図 3: クラスタ分布
5.おわりに
本研究では，文脈を考慮した行動特徴と Isolation Forest

を用いた異常行動の検知および分析を行った．実験の結果，
異常データは即座離脱による文脈欠如が多く，成績 F・D
の割合が高かったのに対し，正常データはページ遷移を多
く伴い，成績 Aの割合が高かった．このことから，ページ
遷移を伴う継続的な学習行動が成績向上に寄与すると考え
られる．今後は，ページ滞在時間などの時間情報を加え，
閲覧行動の質的な差異を考慮した異常検知を目指す．
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