MR EORTAORT IL—T
hEiKE IFEH ORyrEISFH

MACHINE PERCEPTION AND ROBOTICS GROUP

2025%F E BREMIRE ZEERNER TIALNSVL
Dataset Distillation, Linear Gradient Matching (LGM)
BHETIOAREZHELET 2 RBICLETRARIDEREIL
il
Imitation Learning, Reinforcement Learning
AR ETIVICHE T EMFE DEMERFLIREENEMILL-EIEFEE
RE K

Pruning, Distillation

BHRIBOMERITE B LEBEERNY =708 XY D6 A

&’HE S

Packing Rate, BEV
Huh—BM OO0/ \vF T L—FEBEHY AT A
oHEE

Pruning, Object Dection, BEV

BEELIEEMF|ILT = BEVFormer DEHDZIEREEHNMY
WA Kig

Multimodal Large Language Model, Look-Twice Feature Matching, Visual Token Selector
Y AYFER Visual Encoder [CEAHEERMND EEFRAL AR
#FH &3

Isolation Forest, Behavioral Anomaly Detection, Learning Behavior Patterns

FEITHOXARZE EL-AEGLEETEIRA

RH /K

URL: http://mprg.jp



BERETIOARZHRELILT -2y FEBICL B3 TRERIDOEREEL

ER22005 )1153

1.IEC®IC

Contrastive Language-Image Pre-Training (CLIP) %°
Distillation with no labels (DINOv1) {3 X412 Hhj
HBFEAETVE, FRZ R 27 TOFHHIE W TEWWIERE
ERLTED, ZRREGERRZ 27 oFy UTLL FIF
XNTVWD., FRPEEEAETIVE NRR R 7 NEBYY
550, FtREaX RT3 2R on il 7 —
R K BNBW R EENEETHE. ZD1o07 Fu—
Fr LTHEE T — 22 VBOERT — RICEHET 57— &
ty FEREMEHIATWS. (ERDF—XEy NEETF
BEH—ETVICEDSFETH D, FEHENOEWICE
R 2 B D Z M % R I LT 2 WA REME S B 5.
Z ZTAMSETIE, Linear Gradient Matching [1] Z#55R
L, FEORL 2EROERIFEEAET NV VT —
Xty FERETHEEHEET . AFHECLD, RHoETF
TN LT RIS FHER (% T 2 S RIEHR D ERR
ZHET.
2.Linear Gradient Matching

F—Xty PEEOREMARFEL LT, Linear Gra-
dient Matching (LGM) [1] 2MERSHhTW3. LGM I3,
HAFEHEATTVEEE LIKET, EEGE SRE SR
WS B S EERR O AR —E T B & 5 ICHRERE R
Wb 2. Zhuc kb, SEICENRHE SRSk
MTE3. LAL, LGM BH—EFLOARIZESWT
BRE{LEITS 720, BN ARERIIREIMHEH LT
FLDORBERIKREFET 5. ZORE, BR37—F577
F ¥ ZEOET M LT, SRS TSIcRIEXH
BV WHHEND 5.
3.REFE

AETIERK 11RT £ 512, LGM 2IEE L, D
HEPEEBEAET L ZREICHWS F— &t v FKEFE
PIRET 3. FHHWDOER 32T 7L OAEL%E BRI
52T, FEDETMIUEFLRWEKEROIER T H
Me 35, AT, HOHEID D ¥ IcES< DINO
RETNE, B FENHEE ICES CLIP R €7V
PHAGDE 2. BETRICBT 2 HEHEELEEZR (1) 1R
3. ARAFETE, X (1) 2RMET 2 X512, BREROME
WDARS X —REEELT 2. BARINCIE, FHEEEA
EFNBICEEDEHBRD S X — R ZEFHETIT, HE
WHRIBIRIC X D S REHRICT S 2 S Bk o 18R At %
HEL, EHEER»HBONAN L OFEMENREL 25 &
512, AREREEFRTS. 22T, ¢PNO BIy gL
1Z, #heih DINO 2 E7LE8 LU CLIP 2 E 7L TH
LN B HER O AR R T

Lyraa = (1= cos(g"™)) + (1 = cos(g“")) (1)

M 1: ERTEOWE

4. 5HERER

AIFFETIE, R L 72 G RERZZFICHH L Tonizn
ETMSH LT HICEN R REERE R LTV S 2
ERGEES 2729, EATFEBEAET VDN 7 R—=V 2R
L, REEDIEREERD A% ¥ 3 % Linear Probing
ZRWTOEREMEZ1T S, 3T 7 IciE, R
HALTWEWCNN 7—F%727F ¥ TH B ResNet50 = H
Wiz, FHICIE 20 7 5 ADEIGREHWV, £27 7R 5 KD
{50 SRE RS 228 U, FEBRE 5 mIEML, 20
EHE e R R AME Y Lz, F72, My LT
BF—xERAWEGEOREY FREY LCHL T 2. @

1EEHIR | BELE

BOVERIZIZ, DINOv1, DINOv2, CLIP, Sigmoid Loss
for Language Image Pre-training (SigLIP) DH{KET
ABIUZENSDHAEDEEH W,
4.1. 2RI

SHEREOFMEEEREESER 1 1RT. B—EF L0054
LT, HBEFTNVERE LIZBAETIE, 2L ofla
AOERBWTHEBEOM L3R TE 2. BN,
DINOv2 t SigLIP OflAaEHE %2 DINOv2 HifK & Mg
L7256 %RE, MEOR LA TE2. X5, H#HI
EFAEHE LSS, DINOvV2 & SigLIP ZilA&hE
7B EERVT, REGERWREE% LRIZEEL 2o
Jz. &7z, B—EFVTRBERENKD - /2 SigLIP 12
BWTH, OETALLHET 2 Z e THEBEDM L2
Ao, ZOR»IS, BRETVOGREHAT 52
©T, EIEMRRHEE XD SRS E R E GRS WS
BIYMTELZBbhol.

# 1: Topl Accuracy [%)]

BEHEIEBOCER LzE 7L FHEEF L
i {5 D FESH DINO * CLIP %

v v2 | CLIP Sigiip| feshetso
-BRAE - - - — 98.46 + 0.05
ESE 95.86 + 0.05
v/ — — — 96.24 £+ 0.19
A P 5 - v - — 95.68 &+ 0.15
HE—EFNL)| - - v - 92.28 4+ 0.12
- - - v 72.38 + 0.34
v/ v/ 96.68 £+ 0.07
A P 5 v - — v 97.06 &+ 0.15
(=T - v v - 96.68 + 0.24
- v/ - v 95.68 + 0.07

4.2. E MBS
K 212753y IOEKE GRS, B—E7 M
BERERTIE, EF LI ICERT 2HRENEENER
5. X2 (a) ® DINOV2 Ti, 75 3I>aDI NIy b
SERPEFAINTWS., —7F, K2 (b) ® CLIP T3,
BROKAKRE DT 7 AF ¥ REPEHI N TN, Zh
XL, K2 (c) @ DINOv2 ¥ CLIP OffladbE T,
IR 7 7 2AF v BRI EENTVR LS Kb AZITbHh
3705, H—EF L L I U CHERN 222 BIIEIET IR .
ZORERIZ, AFCENRRED, B3 U DB
ARERTETHNABR W Z E 2REL TV 3,

(a) DINOv2 (b) CLIP

B 2: fERR U 7= & R

(c) v24+CLIP

5. 8HbDIC

AIFZETIE, LGM ZH5R L, BROHFI¥EEAET
NDALZ R REL S 2 LGM 2428 L. ERRFT
it & b, BEFIETIER L -G KEH§DY, H—E 7%
HeHBRL TEWERELZ RS Z L 2R L. ZOff
R, REFEDSEBOEFFEER AT T VORHZRE
U, DHICEN R R 2 TR TH 5 Z L 2R L
TW3. SHBOBHEL LT, EFARERKOZEANYy 7K —
> DE AECE L N E QRIS I & 2 AKEGR O E
b, BEOHRS 27 —% -ty FOIERBZET o
5. 51T, Linear Probing M OFEADEHICBIT S
WEEATREMEICOWT D, BALZITO TETH 5.
SENHER
[1] G. Cazenavette, et al., “Dataset Distillation for Pre-

Trained Self-Supervised Vision Models”, NeurIPS,

2025.
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A I NOEWER2 BT UTHRING 2 X 51228 F
5728, RAOKRN T TIIEYLEMED T ZIRWVERED D
3. ZDOFEICH U THILFEE I X 2 T ROEHBHM?Z
H, BLFE T 5 2 TRIEEIC I D ER L EEE T
T2 WS HENDH D, RIFFETIX, RIMEERZRIFL
DOMILEE T 2 FERIRET 5. RBEFHEICKD, BifE
DEHZER L >OBRE#EIEZK 2 Z 2B 5.
2.0ERFE

BHCEE L7 e 7V OEAZHIEE LT, BILEEIC X
b, HREEHT S DPPO [1] BEREXHN T35, DPPO
13, Diffusion Policy [2] DZAR72EFgM 2 E M T X 288
HeBEBRZzHAEDE S T, ERICRBLTDZ
DAEZ L, ELWEFNICESEED BERNREE
DARETHS. Ll, HREBEREHT 2720, FTED
FHROETTIRAICZET 5. #Re LT, SiEE B
BLEUEESH T 2203 %.
3REFIE

ATk, DPPO [1] IC&#{LFE GRPO(Group
Relative Policy Optimization) [3] ZE A 3 3 Z & THEifi
FETEELAREB|ET L LTERAIZ LBV LS
WHROEH 2175 FEZIRET 5. GRPO B3EHOH
ez 4L, 71— 7N TOMHENHRECcEE 3 2
FHETHD, SRLEEEMO D S EY 2 BIE 2 RRA]
RETH 5. FEH OB, ResNetl8 THiIH L/zh X FH
BoRE L MEOREZ AN L, BfioBEAEZ LN
3%. GRPO XX 2 REFHOFIEEZN 1 1TR7.

PRNSGEEETT S .

1: GRPO IZ &2 HKREHFOTFIE
BEDRANZIFEE R DT — X OIAPHET, REDRH
1387 X=X OfK (FHHE) 2R3, £3, HERETAD
AT g it UTEBOEERERM O D7V — T2 4EKT 5.
iz, T TNV TRIDE %7 LTl » 25 L2,
TN—TFRNTOHNNRELERTT EARYT—Y A %
WET 2. FEwE, Q) IRTEMNBER Jorro () %
Huwa.

Jarpo(0

GZﬁcup ] BDxr(mg||mres)

(1)

Lorip(0) 17 BV F—D1HT R HE B o HiRF
EERL, mrep 3B EOEAEREL T X — X E[H
ELBRET LV TH S, FEFOHKETN 19 L BRE
TN ey D KL BAN=Y 2 V2R LTED, Zh
IZED mp PR R OENED BB T 222 %
WS 2. 2Tk b, BE2EEIC X 2 RABRREA DG
G L DD, RIS CHS L EAREEOHR 2N 5.
4. FHMHRER

AREBR TR & 2 FEOBLEE (PPO/GRPO)
X BduRy FOEEHIEEZTY, BEOEZERNEZ 28
H, WMBEEROFMEITS.
4.1. REREE

Genesis ¥ I 21 —&ZNTbka—</4 FaRy +® Uni-
tree G1 ZWREBRZITS. Wkt 28 B % HlfEx %R &
L, iR & 2 7 oBiees v b2 2175, AT
35 —X+%y MIEBKD Unitree G1 TIEZI AT 0y
IHALETFERAZDF—XTHY, FHIR 2 RWALWFH X
S DEF 4 HEH O RGB Hifgh bR S 3. B E ok
iZ, EESRAOBGE - #ils XU, IBRFORNE T E

1EEHIR | BELE

P L BRI D U, BHEEE I X 2 HaE
EeiEHLR T 5.

4.2. RERFM

FETIEHGE LT, ARE 7 Diffusion Policy, %
EEFRIC AdamW, FEEEZ 1000 & LTHFET 5.
RS T, %48 F% Behavior Cloning, /Sv ‘7‘“‘5‘4
A% 8, HFEEL le-d b LTFHTS. W{LFH T, ¥
EFik%z PPO, Ny FH4 X% 256, ?EI%M42L
TH¥ET 5. BEFRE, ¥EFEEZ GRPO, Ny F¥
4 X% 32, FEHRE 1le-6 L LTHEET 5. HfEET
¥4 =7V — 2D G1_Dex3_BlockStacking_Dataset %
T—XEty b UTHAT 2. BLFE TIIERHTESF

EHER LD, H X T DEE R RERIC L TRITT 5.
4.3. REBHER

PERFULR T, HEFRLFRE LCOFRTOHMO
HEFS 2 2 1R

T T J
80 90 100

°
S
N
S
w
|
IS
S
@
3
~
3

2 : S OWMOHERS
FERTRSHAOLZTAWL <, WEFHRILEL TS
ERTFIED E CIRETFRIC B 2 08y MO H A 58
HOMEEERR 3, ” 41077, BHCEE0ATIE, 1
MEEFHRUT, WEHZTEED, BENRAEciEr
T, Bz BT 2E1EZTE D, ERICEES KL -
T EFARRGY T AUERTHRE, WHEERHR (5
A TEFD, FWENED 313 Y HATEE TG LB
83T B IS B . B REAT, Hlo7ay
oAl (HH) %, HROBEENAOBE (Rl &
OIS SN, —F, WEFHRE, MERFELD bH
ARSI » BN EDHERS &L, REFSUC AT L T
P SIER T 2EIE (SH) AR TET. ERFELD
DL LRBIECD D st BUIEE & D b I i
SRR LTS < B (R AR

M 3 : JERTFIEDOEENE
5.80DIC

ARFZETIE, BMFEEROBILEEICL 20Ky FOF)
ERE O LOFEDRRE L. BEFHICK T, #ii|
FETEE LB RE LoD, IR(LE AR RETS L il
HBCTE. S58HIF, BEFER X 2VHRERZOBEA BT
RRZBITITETDS.

BE X
[1] AZ. Ren, et al., “Diffusion Policy Policy Optimiza-
tion”, ICLR, 2025.

[2] C. chi, et al., “Diffusion Policy: Visuomotor Policy
Learning via Action Diffusion”, RSS, 2023.

[3] Z. Shao, et al., “DeepSeekMath: Pushing the Lim-
its of Mathematical Reasoning in Open Language
Models”, arXiv, 2024.
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Vision Transformer (ViT) 12 &k 2 PKRZEFE T IS
FEEALITHE DR T X = 2B KB L Tn5. 207D
Iy ITFNA AR 7L XA LHEERICE, FIEEE X
EVFHENHETH L. ZOF™IHLT, ASTb—2
VERHIBRL, ETAEEROFEEEIZ S F— 27 VRN
DHATFHERTWS, b—27 B IZANZEIRT 3 2
Y CRIEEERRBOE 2729, HmdEm LA TH 5.
—JT, b= UEBEBICHIET 2 L RHBRALPTE L
BENELLETT 3. £, EFLD7 X —XIE
fbLZzWizd, EFARBENRARETH 5. Z T TAHF
KT, b—27 XD 2 &R D 2HEH L, FEER
R HEOHREPR D 2o o fimdEm Ly e 7 LR
DM EBET A 7V v FREERET 3.
2. k=T 2D

=2 BN D R EHIFHE L LT DynamicViT[1] A3
3. DynamicViT & VIiT x> a— X b —27 V%
RES2—NEFHAL, Fb—27 VOEEEICHEOINTHE
Th—27 Y RPETS. FERIZ Gumbel-Softmax 12 &
DERE 2 a 7L L TEEATREIC L, HERRRRIZEEE DK
W=7 YRELCHERZHKS 2. DynamicViT T
13, BEOMRERNEEEIGES L K5 HIE L 2 2485k
Liatio ZEBAL, X (1) TERTS. ZZTSWE =7
BREY 2 -V EFHALLEOES, [ IZZDEORFET
3. Fil,on Giﬁ*ﬁf%ﬁﬁ P I EBROMRFRTH 5.

Lratio = |S‘ Z |Tl Tl‘ (1)

Y Gl oY pabaxiil q tiﬁ%wvm%ﬁ’%ﬁ p
DERMZ 27EBHEK L, BEAL, K (2) TERT 3.
CITEkFZIRADEFETHY, p BXU pp 132772k
WNIET 2R TH 5.

Le =Y qulog & (2)
3.REFE ; P

REFHREK 1LITRT L1, 2 BFETEXD 217 5.
Stepl TIX cls token OFHHARIHEEZEA L b= v
BXID 217wy, Step2 TIZAECIZHEDWT MLP 7% ¥ %
NERXD T 3.

_________

i v Lk
AN
f BlockN
[T Bl B RER
Self Att WET 3 b—o Y
ﬁﬂﬁﬁﬁﬂﬂi cl”f Les
cls token |FozrEREZ 47| "}5‘1%%5;7
w1 ] ratio 0 L
% [ 1 [ ] H
’ Block o SR L
ocl
FFN FFN x Step2
Self A BEC - EHD
A Self At NEWF v R EEIR
o 5 |
B Y BTET L A #%ETIL
(Teacher) (Student)

1: 2 BFEOBD .
3.1.cls token O Y1 VELEICE D IEEREA
Stepl Tli&, DynamicViT IZEXI D RiLD cls token O
ayA ‘/*Eﬂiﬁﬂig’j {HE%K Las 28INT 5.

Las = S Z cos(cl,cfef)) (3)

les

R (3) 1T cls token DFRERFUCE DS CHERHEEZRT. 22
T ¢ 1& Student @ cls token, ci*f 1% Teacher @ cls token
TH5. HEKL %2R (4) 1TRT.

L= Lce + )\ratioLratio + )\KLLKL + Aclchls (4)
CTZT L 37BRIY FrE—EKTHD, Aatio, AKL; Acls
BINANR=RFGRAXA—=RTH?.

3.2.MLP #&LsX D (AfRER—IADOEEEHTE)

Step2 TlX, 3 (5) D X512 b =27 VX EHDIEK
WA 2 EADHNEFHWT MLP 5 ¥ >~ 3L OEEE%
HET 2., EEEO/NIWVIEIIEND T2, EEEIE—X
T4 =EPICHDIE, BEALAREF v 2L IE
MLUTEHT2. 78927 NOMLPIZBWT, Fv¥ 2%
Ve DEEE s, . R (5) IS DEHKT .

=2

T W id MLP @%Af@ D, Sne VNEVF ¥ ¥
%»it&ﬁ«®75#¢émtémbf&Mbﬁé
4. MR

FHEREMIZ 725 T, BN D FHEZ & OIEf#R, Through-
put, BEU cls token DEA{L % LT 5.

4.1. RBREE

ImageNet-1k THFIEE EAD DeiT-Base/16 Z W,
T & A2 ¥ LT CIFAR100 3 & O StanfordDogs TH
XY - i 5. ELEBRFEIE, XR—=ZF 4> (BX]D#iE
7)), Magnitude (MLP @ Magnitude #&E{LAXID ) |
DynamicViT, HffffH (DynamicViT + Magnitude) T
»H5. HERRF ORI EEDHY 8.0 GFLOPs &7 2 X 5 12HN)
DR2FEET S, P2 UEXDETya—-XE {3,6,9}
WES %, MLP BHELE D & MLP F v > AL Z H
BT 5. FHlfEREEIERZ, Throughput, 3 & REIXID
HIET A ESI L= cls token ORERHEOL(N L T 5.

4.2 . RERIER

#1112, &FEHH 8.0 GFLOPs IcHiZ =&kttt
HEZRT. R—=R 74 Vet T 2, BEFRIGHER
Iz OOHEREE & M L X4 FWEEF%)/J\é W, Bl
PEREEHEETE 32— CTREKR TSR E, Magnitude
HUETIZ b — 7/HMD&@¢ﬁE®&ﬁ®%ﬁ Mbx )
MTERW=o, BEER DL T e Z2605.

)
8W(") We.s

(5)

# 1 : CIFARI100 B & O StanfordDogs (2 81F % PERELLEE

CIFAR100 StanfordDogs
Method Acct  Thrt | Acet  Thrt

R—=ZZ74 > | 89.70  318.00 95.08  291.21

Magnitude 70.21  683.79 53.81 558.31
DynamicViT | 80.58 843.02 | 80.67 783.76
KO 80.06  807.54 | 80.41  758.58
REFIE 87.19 808.86 | 93.67 761.27

7 21T cls token DFFERIHOZEL 2 /RT. TE%?H%&J\
HHEA © LR TREERB O Z L2/ N S WEAIDHERR T
B D fNS VR RA 2R T2 vwWR 5.
£ 2 BXIDR{ED cls token DEFERHEDZE{L

Method CIFAR100 StanfordDogs
cos simT LINorm] | cos sim? L1Norm]|
Magnitude 0.699 1693.5 0.583 1773.53
DynamicViT | 0.760 1554.0 0.753 1545.76
HGOFH 0.403 2859.8 0.742 1631.72
RBEFIE 0.980 697.33 0.869 777.16
5. 860DIC

ARFZETIX, b—2 UEXID & MLP #ELEXI D % 2
ERFECHEAL, REEHEZHER L oamdts 2 Fike
% L7, CIFAR100 B X U StanfordDogs 128\ T, 12
KFRITHMHH & D RHER OIS {, HEKT

Pz ond e B L7-.

BE X

[1] Y. Rao, et al., “DynamicViT: Efficient Vision
Transformers with Dynamic Token Sparsification”,
NeurIPS, 2021.
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1.IEL®IC

RR=DNZBNT, R T 4 — RNy ZITEFD T + —
RYAMRENTH . 74— Ny 7O, EFOH)
TEREBE O CTHBERARERYSAE RS KRD SN D, L
LS, ZRR—VEE OZBREIEIIG U 7z g4E R D
EHIE, MR T 2EEICRHL L7228 7 — 2B 1z
3. WECETVETER U2ERE TV TH S MTVCrafter
1%, web b2 HUIEE L7z HEAFROMUGE HWTHFE I
TBY, RR=VFEOENEDOEKBETNIATHTD 5.
Z TR TIE, RAR— VTR TOMYGAER O SE A
ZHFEL T, MTVCrafter D7 7 f ¥ F 2 —= > JHlg%
a5 5.
2.MTVCrafter

MTVCrafter[1] 1&, ZHEIG & 3 KITBIEIEEDORINT—
27 & BRI S NV OBIEMUS 2 £ T 5. MTV-
Crafter DETIUERK 1127”3, MTVCrafter 1, VAE
HOWTHRZ BEEMANBERL, BERMZEST 5.
Z LT, BIERE e BIEER%E Transformer 1A L TH)
HZELERT 2. FDFE, Cross-Attention % i U CEIVEF
WELbe LTH DA, Z Ok, 28 L TOWRWEIEE
WE, WURSEEFL RSNz, BEE L F2M AR X
NBZZEeNH 5.

b= S 4 FOBORR
3D Joint 4D Motion
aﬂ ‘[ RIEHED H Sequence }' Tokenizer
equence I =
g
o

1: MTVCrafter ®E 57 LS

AREFE

AWZED HiZ, MTVCrafter O & K — 7 FHIE T DM
ERORER ETH B, ZDD, ETNET 74 VFa—
=V T RO RIS EETT 5. BRI, AR—
VEREOAMBREEL LT 74 F a7 A5 — 1 DIy 7
WCEBL, BhoMEF—%ty + FSID ZHWE7 7 4
VFa—= VT RITS.
3.1. F R

MTVCrafter 23121, O b —27F A4 FDADEY,
OILHET L DADEE, O2KDHEE, 3 DDEEH
BB, JBEEREIERBYRICE X 258 % WERGES 5.

3.2.8@E-3D R—XRFIRTDT—2t v MER

AW T, Figure Skating Jump Dataset (FSJD) %
B LTz %3, IELZ22 KD 7 4 Fa7 A5 — 1+ D
BRGNSy =BV L. RIS, &Y —
TR LT 3 RIT AR - EBHEE € 7V NLF-Pose [2]
PHWT, =D& 7L — AT 3 KICBEHFEER 5 L
7z, 186072 FSID 07— &#0% 1,072 fiT, &7 —XZ
FRMREE 512 x 512 W, 71— A8 49 I2Hi—3hTw3
4. FHMEEER

AEFTIE, UFO¥EEEIEDERL 2 3 2DET VD4
FRMERE % LT 5.

g:i__ll_\?,rr

*FX output

EFILL L b= FAFDAEDFY
EFIL 2 L IEECETLDADEE
ETN3 L b= F A YR - HER, IR T AR

ARFEERTIE, FSID @5 H2EE A2 972 /1, FHMiA I 100
MERLZ.

4.1. BFTEIRICEITE b= F AT DL
M= FAFOEBRKRER 1 ITRT. P =2 F 4T %
%Sbtwa,bmmi &L i LT MPJPE O 25
7/m®ﬁﬁﬁ#%af%é ¥7-, FID OKIERK
F#aFwDﬁﬁ®ﬁW”ﬁ%ﬁmb%Ebttmxa

>R
183 BESLE
K 1. BB O K

Rty EFN1 EFI 2 ETIL 3
MPJPE 287.28 302.47 287.28
FID 186.17 2798.47 186.17

4.2. BFBEIKICHE T B E MR

FEE I B 2 HERGFI O E K 2 1R T, K 2(a)
&b, V= FAFOHEFEE LGS, AIS0-EE
SRR, HBEAO RN REIENER SNz
A, YEBE T 1D Cross-Attention EARM KX 4 > D
F=2Z ICRIGLTE ST, SHIERABE®ER 20w/
AR LTI N 720 EZ 55,

X 2(b) &b, HEBEFTNDAEEE LGS, TEW
DFW/ A XAPEREINTZ. UL, REEOZBREIE
WX LT, b—=2FAFrETNEREZR> T =2 UL
TEF, ERONYRY F/E L &HIBEAA I
T, IBETLVORBLAHEINZDEEZ LN 5.

X 2(c) &b, REERINCEE LGS, BFEET L
TIAERICKRB LR T 2 o 1222 T oA RERR I, fF
BIRBERRBIR BRI TWS. 2D, £ED%¥
EBHR XA VRAEOFERBICBWTARIE VWA 5.

g =

BRER T E BIMEROMEM  BMRER RAER

(a) ]*—7%4’ ﬂ'@&%‘:%@btlﬁx@ﬁuﬁam

ZRER FTEHE BIEREERROMTEM — BAER

(b) IEBLE T VD AZFE L iz oHEimE]

SRR TTHE BAER LR O H#E E 1 BRRER ERFER
(c) &K% % L =B oHenb)
X 2: KR 81T B HEGmH o L

4.3. 20F8 O E=HIEHE

IR BRI E LR ER 2 1ORT. FITFVD
KU FID-VID OtEN S, KX A4 VRO EFICED,
Vv ¥ TREOEWEICNIG L7 RO ATRE Y 72 o 72

£ 2. HPHMIFEREIC BT B A5 R

SR  FVD  FID-VID PSNR SSIM LPIPS FID
Ea k] 479.15  39.11 13.10 0.457 0.525 35.67
% 303.39 35.30  13.58 0.577 0.530 35.73
5.5HD|C

AIFFETIE, MTVCrafter D¥E 7 — X WHI R X 4
Y TOMBERDMER LA, BARRIZIE, FSID
EREEL, P2 F AP NPBERETLE T 7 4V F 2 —
=y 7L RER, RN BREERCEE LEE, EN
ERICB VT, BHEETATEELL oY v v TR
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