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疑似教師画像を用いた追加学習による PVG新規視点画像の品質調査
EP22015 市川真夏大 指導教授：山下隆義

1.はじめに
自動運転システムの閉ループ型評価を目的として，実世

界シーンを再現し，任意視点の映像を生成する研究が行われ
ている．中でも 3D Gaussian Splatting（3DGS）は，シー
ンを多数の 3次元ガウス分布により表現し，写実性の高い
映像を生成できる．3DGSの代表的な手法として Periodic
Vibration Gaussian（PVG）[1]が提案されている．PVG
は学習時に観測されていない新規視点の生成時，アーティ
ファクトが生じやすいという課題がある．そこで本研究で
は，新規視点の生成時に，高品質な疑似生成画像を学習に
フィードバックすることで，生成した新規視点の品質向上
を目指す．
2.関連研究

3DGSを時間方向に拡張した PVGとレンダリング画像
を高品質化させる DIFIXについて述べる．
2.1.Periodic Vibration Gaussian (PVG)

3DGS は 3 次元空間に，色や不透明度の 3 次元ガウス
分布を分布を配置し，特定の視点からの画像を生成する．
PVG[1]は，各 3次元ガウス分布に時間表現を導入するこ
とで，動的シーンの映像生成を可能にしている．これによ
り，動的シーンにおいて時間的に滑らかな再構成が実現さ
れる．一方，新規視点においては視覚的品質が低下しやす
く，アーティファクトが発生しやすい課題がある．
2.2.DIFIX

DIFIX[2] は，3DGS などの 3D 再構成手法によって生
成された画像に含まれるアーティファクトを低減すること
を目的とした手法である．従来の多段階拡散モデルではな
く，単一ステップの拡散モデルを用いることで，高速かつ
実用的なアーティファクト除去を実現している．
3.提案手法
本研究では，PVGによる新規視点の生成画像の品質を

向上させるために，DIFIXを用いて修復した生成画像を疑
似教師画像として PVGの学習にフィードバックする手法
を提案する．図 1に提案手法の流れを示す．まず，実画像
のみで 30,000イテレーション学習した PVGを用いて新規
視点の画像を生成する．次に，物体の一部が破綻している
かを目視で確認し，破綻していない生成画像のみを疑似教
師画像とする．そして，元の視点の画像とともに PVGを
学習する．これにより構造的破綻を学習することを防ぐ．
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図 1: 提案手法の学習の流れ
4.評価実験
追加する疑似教師画像の生成条件を変えて，PVGを学

習した時の画像を比較し，提案手法の有効性を検証する．
4.1.実験概要
図 2 に評価実験の学習の流れを示す．DIFIX による疑

似教師画像の生成条件は以下の 3つである．
1) 実画像のみ
2) 右へ 20cm移動
3) 右へ 5～20cm移動

条件 1では，実画像のみを用いて 30,000 イテレーション
学習した．条件 2では，実画像で 15,000 イテレーション
学習後，DIFIXで生成した新規視点画像を選別・追加し，
15,000イテレーションで学習した．条件 3では，実画像で
15,000 イテレーション学習後，DIFIX で生成した新規視

点画像を選別・追加し，15,000 イテレーション学習した．
各条件で学習した PVGを用いて右に 20cmずらした新規
視点画像の視覚的品質を比較する．評価には 4シーンを用
いる．
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図 2: 各条件におけるレンダリング画像の生成
4.2.実験結果
表 1に 4シーンの定量的評価を示す．表 1より，条件 3

は条件 1と比較して PSNRが約 0.7pt向上し，SSIMも約
0.06pt向上していることが分かる．また，条件 3は条件 2
と比較して PSNR が約 2.8pt 向上し，SSIM が約 0.09pt
向上していることが分かる．

表 1: 4シーンにおける平均値および分散
条件 1

（実画像のみ）
条件 2

（20cm のみ）
条件 3

（5～20cm）
NIQE↓（Mean） 3.284 3.525 3.585
NIQE↓（Var） 0.108 0.120 0.116
PSNR↑（Mean） 18.594 16.454 19.265
PSNR↑（Var） 3.207 2.809 11.129
SSIM↑（Mean） 0.497 0.471 0.556
SSIM↑（Var） 0.00377 0.00539 0.00831
LPIPS↓（Mean） 0.308 0.459 0.365
LPIPS↓（Var） 0.00034 0.00013 0.00814

図 3に 1シーン目の定性的評価を示す．図 3より，条件
2と比較して条件 3は，アーティファクトが含まれていな
いことが分かる．このことから，複数の軌跡の疑似教師画
像を用いることで，新規視点画像における画素値の再現性
および構造的一貫性が改善されることが考えられる．しか
し，条件 3は条件 1と比較して，白い車にアーティファク
トを含んでいる．これより，提案手法による改善は不十分
であることが分かった．
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図 3: 定性的評価
5.おわりに
本研究では，DIFIX で修復した新規軌跡画像を疑似教

師画像として PVGの学習にフィードバックする手法を提
案した．評価実験より，条件 2と比較して条件 3の方が定
性的・定量的評価で良いスコアが確認できた．今後は，よ
り高品質な新規視点の疑似教師画像を生成することで，新
規視点のレンダリング精度の向上に取り組む．
参考文献
[1] Y. Huang et al.,“ Periodic Vibration Gaussian for

Dynamic Scene Reconstruction”,IJCV,2026.

[2] J. Z. Wu et al., “DIFIX3D+: Improving 3D
Reconstructions with Single-Step Diffusion Mod-
els”,CVPR,2025.



マルチタスク学習による落雷検出に向けた疑似ラベル生成フレームワークの構築
EP22033　大河内 那樹 指導教授：山下 隆義

1.はじめに
非剛体で形状が多様な物体クラスの検出に対して，セマ

ンティックセグメンテーションは有効な手段の一つである．
しかしながら，正解ラベルを画素単位で付与するためアノ
テーションコストが高い．そこで本研究では，物体検出を併
用して，未ラベルデータに対してアノテーションを自動的
に行うフレームワークを構築する．そして，疑似的にアノ
テーションしたデータを用いて学習することで，不完全な
データ状況下における落雷検出モデルの高精度化を目指す．
2.部分的教師ありマルチタスク学習
マルチタスクにおいて，全タスクの正解ラベルが揃わな

いデータでは，損失計算ができず学習が困難となる．この課
題に対し，欠損ラベルを補完する部分的教師あり学習が提
案されており，代表的な手法にBoMBo[1]がある．BoMBo
の構造を図 1 に示す．BoMBo は，Backbone と Neck の
Encoderと各タスクの Headで構成される．学習時，バウ
ンディングボックスのみのデータには Box-for-Maskを行
う．ここでは，GrabCutによる疑似マスクを教師信号とす
るほか，Box型マスクとアテンションマップのMSEを最
小化して Segmentation headを学習する．一方，マスクの
みのデータにはMask-for-Boxを適用する．ここでは，マ
スクから外接矩形を算出して疑似ラベルとし，Detection
headを学習する．
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図 1: BoMBoの構造
3.提案手法
本研究では，未ラベル画像とマスクのみの画像に対して

両タスクの疑似ラベルを自動生成するフレームワークを構
築する．そして，本フレームワークにより生成された疑似ラ
ベルを用いて BoMBoによる落雷検出の高精度化を図る．
3.1.疑似ラベル生成フレームワーク
提案する疑似ラベル生成フレームワークを図 2に示す．ま

ず，未ラベル画像に対し，落雷画像でファインチューニング
を行ったYOLOv8を用いて検出バウンディングボックスを
生成する．次に，Segment Anything in High Quality(HQ-
SAM)[2]を用いて疑似マスクを生成する．この際，事前学
習済み重みを固定し，LoRAにより追加された少数のパラ
メータのみを学習させることで，計算コストを抑えつつモ
デルを落雷画像に適応させる．
3.2.部分的教師あり学習の適用
部分的教師あり学習の手法である BoMBoをもとに，検

出バウンディングボックスから Box型マスクを生成する．
マスクのみのデータに対してはMask-for-Boxにより疑似
バウンディングボックスを補完し，これらを用いたマルチ
タスク学習を実施する．
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図 2: 疑似ラベル生成フレームワーク

4.評価実験
画像処理や既存の基盤モデルを用いた疑似マスク作成と

比較し，構築したアノテーションフレームワークによって
生成されたラベルの有効性を検証する．
4.1.実験概要
本実験では，学習用データとして教師マスクありデータ

56枚，検出バウンディングボックスおよび疑似マスクあり
データ 9,660枚を用いる．評価用データは両タスク共通の
40枚をデータセットとして用いる．モデルは RetinaNet，
バッチサイズは 32，学習回数は 80epoch，評価指標は物体
検出は AP，セグメンテーションは IoUとする．
4.2.実験結果
定量的評価を表 1に示す．表 1より，LoRAを適用した

HQ-SAM が最も高精度であり，通常の HQ-SAM と比較
して，雷道の IoUが 8.75pt向上した．

表 1: 定量的評価 [%]

LoRA Method AP
IoU

lightning background

- 二値化 60.08 34.07 98.31
- GrabCut 58.43 42.86 97.96
- SAM 62.18 61.98 99.02
- HQ-SAM 60.15 63.31 99.10
✓ HQ-SAM 65.99 72.06 99.41

HQ-SAMおよび LoRAを適用した HQ-SAMにより生
成したマスク画像を学習に使用した際のセグメンテーショ
ンの定性的評価を図 3に示す．図 3から，LoRAを適用す
ることで雷道の詳細を捉えることができた．図 4に物体検
出結果を示す．図 4より雷道の検出が可能であることを確
認した．

入力画像 HQ-SAM HQ-SAM (LoRA)

図 3: セグメンテーションの定性的評価

正解ラベル 予測結果 正解ラベル 予測結果

図 4: 物体検出の定性的評価
5.おわりに
本研究では，未ラベルデータを有効活用するため，自動

アノテーションフレームワークを構築し，疑似ラベルを用
いた部分的教師あり学習による落雷検出の高精度化を実現
した．実験結果より，LoRAを適用した HQ-SAMによる
疑似マスクの導入が，落雷検出およびセグメンテーション
精度の向上に有効であることを確認した．今後は，より高
精度な疑似ラベル生成に向けた手法の検討を行う．
参考文献
[1] H.Lê et al., “Box for Mask and Mask for Box: weak

losses for multi-task partially supervised learning”,
BMVC, 2024.

[2] L.Ke et al., “Segment Anything in High Quality”,
NeurIPS, 2023.



自動運転向け道路インフラ改善画像データセットの自動生成パイプラインの提案
EP22036 大西郁美 指導教授：山下隆義

1.はじめに
道路インフラは，人間の運転を前提としており，自動運

転システムには適していない環境もある．例えば，経年劣
化により視認性が低下した車線や，街路樹等により遮蔽さ
れた標識などが挙げられる．こうした環境に対するインフ
ラ改善案を提示する手法として OD-RASE [1] が提案され
ている．OD-RASEは，過去の交通事故要因をもとに交通
事故を引き起こす要因となる道路構造を検出し，インフラ
改善案とその改善画像を生成する．これにより，専門知識
を持たない場合でも改善すべき道路構造とその改善案を直
感的に把握可能となる．OD-RASEの生成画像は直感的に
改善内容を理解できるが，物理的整合性を欠く場合がある．
これは，生成モデルがインフラ改善に関するドメイン知識
を学習していないからである．また，そのための学習デー
タセットが存在しないことに起因する．そこで本研究では，
インフラ改善が可能な画像生成モデルの学習のためにイン
フラ改善前後のペア画像データセットを自動的に構築する
パイプラインを提案する．
2.OD-RASE

OD-RASEは，自動運転システムの安全性向上を目的と
して，過去の交通事故要因をもとに道路インフラ改善案を
生成する手法である．しかし，図 1のように改善内容の画
像化において，物理的整合性の確保に課題が残されている．
これは，使用する生成モデルが，インフラ改善に関するド
メイン知識を学習していないこと，ならびにその学習に必
要なデータセットが整備されていないことに起因する．そ
のため，インフラ改善前後のペア画像データセットを新た
に構築する必要がある．

(a) 改善前 (b) 改善後
図 1: OD-RASEによるインフラ改善後画像

3.データセット自動生成パイプライン
本研究では，インフラ改善前後のペア画像データセット

を自動構築するためのパイプラインを提案する．パイプラ
インの構成を図 2に示す. 入力となる改善テキストは OD-
RASEを用いて自動生成する．パイプラインは，サブタス
ク分割，プロンプト付与，画像生成の 3つのステップから
構成される．以下では，3つのステップについて詳細に述
べる．

図 2: データセット構築パイプライン
Step1 サブタスク分割 OD-RASE が生成した改善テキス
トを，ルールベースでサブタスクへ変換する．この変換は，
改善テキストが自由記述形式であり，そのままでは改善内
容の分布把握や体系的なデータセット構築が困難であるた
めである．そこで，Mapillary Vistas の Validation に含
まれる OD-RASEの出力結果（計 1253枚）を分析し，本

研究で対象とする改善パターンを網羅できるよう，ルール
を設計した．改善テキストに含まれる動詞や改善対象を手
がかりに，その改善内容を表すサブタスクを付与する．
Step2 プロンプト付与 各サブタスクに対して，改善内容
と維持すべき背景要素を明記したテンプレートプロンプト
を付与する．事前に設計した固定のテンプレートを一律に
適用することで，プロンプトの表現の揺らぎによる生成品
質のばらつきを排除し，一貫した画像生成指示を与える．
Step3 画像生成 生成モデルには，予備実験で高い性能を
示した Gemini Nano Banana Pro を使用する．複数サブ
タスクに対しては，前段の生成画像を次段の入力として逐
次的に処理を行い，全改善案を反映したインフラ改善後の
画像を得る．
4.データセットの品質評価
提案手法により構築したデータセットが，インフラ改善

タスクにおいて妥当な品質を有するか検証する．
4.1.評価条件
データセットはMapillaryを使用する．OD-RASEが生

成するインフラ改善案をプロンプトとして画像生成を行う
ものをベースラインとする．評価は目視により，改善内容
の描画と物理的整合性の維持の 2点を成功したか否かで成
功率を算出する．
4.2.評価結果
評価の結果を表 1に示す．表 1より，ベースラインは全

250枚のうち 168枚が成功，全体の成功率は 67.2%である．
一方，提案手法は全 250枚のうち 208枚が成功，全体の成
功率は 83.2%である．これより，提案手法の有効性が定量
的に示された．

表 1: 成功率による比較結果
手法 ベースライン 提案手法
成功率 (%) 67.2 83.2

生成結果例を図 3に示す．図 3より，横断歩道標示の強
調や樹木の除去といった異なる改善内容に対し，物理的整
合性を維持した画像が生成されていることが分かる．これ
より，提案手法による指示の明確化とテンプレートプロン
プトが生成品質の向上に寄与したといえる．

(a) 入力画像 (b) ベースライン (c) 提案手法
プロンプト：既存の横断歩道の白線を強調

(d) 入力画像 (e) ベースライン (f) 提案手法
プロンプト：視認性を悪くする樹木の除去
図 3: 構築したデータセットのサンプル

5.おわりに
本研究では，インフラ改善前後のペア画像データセット

を自動構築するパイプラインを提案した．提案手法は，OD-
RASEが出力したインフラ改善文に基づくサブタスク分割
と，テンプレートプロンプトを用いた画像生成により，改
善内容を画像へ反映できた．今後は，作成したデータセッ
トを用いた生成モデルの学習を検討する．
参考文献
[1] K. Shimomura, et al., “OD-RASE: Ontology-Driven

Risk Assessment and Safety Enhancement for Au-
tonomous Driving”, ICCV, 2025.



枝刈り率を用いた適応的層選択とMPO分解によるモデル軽量化
EP22038 大原琉生 指導教授：山下隆義

1.はじめに
Transformer をベースとした深層学習モデルが注目さ

れている．画像認識分野においても，画像エンコーダに
Transformer を用いたモデルである Vision Transformer
(ViT) が高精度を示している．一方で，ViT は重みパラ
メータ数が多いため，計算資源の限られたエッジデバイス
への展開が困難である．この課題に対し，モデルの重みパ
ラメータを削減する手法として行列積演算子 (MPO)分解
による低ランク近似がある [2]．MPO分解はモデルのパラ
メータ削減と推論の高速化が可能であるが，全ての層に一
律で適用するとモデル性能が著しく低下する課題がある．
そこで本研究では，層ごとにパラメータの冗長性が異なる
点に着目し，各層の重要度に応じて動的に低ランク近似す
る手法を提案する．これにより，精度維持と高速化を両立
した軽量化手法の実現を目指す．
2.従来手法
本章では，提案手法の基盤となる非構造枝刈り手法であ

る Adaptive Feature Retaining (AFR)と，低ランク近似
手法であるMatrix Product Operator (MPO)分解につい
て述べる．
2.1.Adaptive Feature Retaining

Adaptive Feature Retaining (AFR)[1]は，事前学習モ
デルの知識維持と下流タスク適用を両立した非構造枝刈り
手法である．AFR では知識維持とタスク適応の両観点か
ら重みの重要度を評価する指標を導入している．具体的に
は，i番目の重みパラメータ wi に対する評価値 SAFR(wi)
を式 (1)のように定義する．

SAFR(wi) = Z

(∣∣∣∣∣∂
∑L

l=1 F
l
SVD

∂wi
wi

∣∣∣∣∣
)

+ Z
(∣∣∣∣ ∂L∂wi

wi

∣∣∣∣) (1)

ここで，Z(·)は標準化を表す．第 1項は知識維持の観点に
基づいた指標であり，l 層目の出力特徴量に対する特異値
の平均 F l

SVD を用いて，wi が特徴空間の情報量や分布に
どの程度寄与しているかを評価する．第 2項はタスク適応
の観点に基づく項であり，損失関数 L(·)に対する勾配を用
いて，下流タスクの精度に対する重みの影響を評価してい
る．これにより，事前学習で獲得した知識を保持しながら，
下流タスクに対する適応性も考慮した効果的な枝刈りが実
現される．
2.2.行列積演算子によるモデル圧縮
行列積演算子 (MPO)分解によるモデル圧縮 [2]は，重み

行列を低ランクテンソルネットワークに近似することで深層
学習モデルを効率的に圧縮する手法である．MPO分解では
入力次元N，出力次元M を持つ重み行列W ∈ RM×N に
対し，それぞれの次元を N =

∏n
k=1 Ik, M =

∏n
k=1 Jk と

なるn個の因子の積に分解し，高階テンソルWj1...jn,i1...in

に変形する．このとき，Wj1...jn,i1...in は式 (2)のように，
n個のコアテンソル w(k) の縮約として近似できる．

Wj1...jn,i1...in ≈ Tr
(
w(1)[j1, i1] · · ·w(n)[jn, in]

)
(2)

ここで，各コアテンソル w(k) は隣接するコアテンソルと
接続するための次元であるボンドインデックス（ボンドラ
ンク）を持ち，その大きさを調整することで表現力とパラ
メータ数のトレードオフを調整できる．
3.提案手法
本研究では，非構造枝刈りにおける枝刈り率を指標とし

て，MPO分解による低ランク近似を適用する層を動的に
選択する手法を提案する．具体的には，事前学習済みモデ
ルに対する非構造枝刈り手法として有効な AFRを用いて
各層の枝刈り率を算出する．そして，枝刈り率が高い上位
K 個の層の集合 Ltopk に対して MPO 分解による低ラン
ク近似を適用する．層 l に含まれる重み行列をW，提案
手法適用後の重みを Ŵ とすると，動的な層選択は式 (3)
のように定式化される．

Ŵ =

{
ΦMPO(W ) (l ∈ LtopK)

W (otherwise)
(3)

ここで，ΦMPO(·) は MPO 分解による低ランク近似を表
す．これにより，重要層は保持し冗長層のみ圧縮すること
で，精度維持と高速化を実現する．また，本手法では非構
造枝刈りを不要な重みを除去する前処理として利用する．
枝刈りによってノイズが低減された行列に対してMPO分
解を行うことで，元の行列を近似する場合と比較して，重
要な情報を損なわずに低ランク近似が可能になることを期
待する．
4.評価実験

ImageNet-1k で事前学習された ViT-B/16 を baseline
とし，提案手法による画像分類精度の変化およびモデル圧
縮と高速化の効果を評価する．
4.1.実験概要

MPO分解を適用する対象はMLPとし，適用する層数
は 12 ブロック中 6 ブロックとする．MPO 分解はコア数
2，ランク 4とする．また，提案手法の有効性を検証する
ため，以下 2つの選択方法において比較を行う．
固定選択 偶数番目のブロックにMPO分解を適用する．な
お，前処理として AFRによる枝刈り率を 70%とする．
動的選択 提案手法に基づき，ブロックごとの枝刈り率が高
い上位 6ブロックを選択してMPO分解を適用する．AFR
における枝刈り率を，10%および 70%とする．
評価データセットは CIFAR-10と CIFAR-100，Stanford
Cars を用い，提案手法を適用後に 150 エポックのファイ
ンチューニングを行う．
4.2.実験結果

ViT-B/16に対して提案手法を適用した際の画像分類精
度と推論の高速化率を表 1 に示す．表 1 より，固定選択
に比べ枝刈り率 70%の動的選択が高い精度を示した．こ
れは，枝刈り率を指標とすることで，圧縮による影響が少
ない層を適切に選択できていることを示している．また，
枝刈り率 10%と 70%の比較では，全てのデータセットで
70%の方が高い精度を示した．これは，非構造枝刈りによ
り低ランクでの近似のしやすさが向上していることが考え
られ，低ランク表現化における枝刈りの有効性を示してい
る．さらに，推論速度についてはベースラインと比較して
最大 1.06 倍の向上が確認されたものの，大幅な改善には
至らなかった．

表 1: 圧縮後モデルの分類精度 [%]
Dataset baseline Fixed Ours (10%) Ours (70%)

CIFAR-10 98.39 94.34 94.06 94.51

CIFAR-100 89.53 76.78 77.03 80.84

Stanford Cars 68.37 17.91 13.05 24.39

Speed-up 1.00x 1.05x 1.06x 1.06x

5.おわりに
本稿では，非構造枝刈りにおける枝刈り率を指標として，

MPO分解を適用する層を動的に選択する手法を提案した．
評価実験の結果，固定的な層選択と比較して，提案手法に
よる動的選択が精度の向上に寄与することを確認した．特
に，非構造枝刈り率が高い設定においてその効果が顕著で
あった．今後は，非構造枝刈りで生じた 0値が低ランク近
似に与える影響の調査と，より高度な層の選択指標の検討
を行う．
参考文献
[1] 新田常顧, et al. “事前学習済みモデルの知識維持と下流
タスク適応を両立したSingle-shot Foresight Pruning”,
画像の認識・理解シンポジウム, 2025．

[2] Ze-Feng Gao, et al. “Compressing deep neural net-
works by matrix product operators”, Physical Re-
view Research, 2020.



高密度 LiDAR点群と反射強度を用いたセマンティックセグメンテーションによるフレア検出
EP22044 奥谷俊宏 指導教授：山下隆義

1.はじめに
SPAD 型 LiDAR は，高密度な点群を取得できるため，

従来のレーザスキャン型 LiDARの弱点である垂直方向の
解像度の限界を克服している．しかしながら，原理的な問
題で，実際の物体の形状と異なる形状が取得されるフレア
が発生する．これは，本来存在しない障害物の誤検知を誘
発することになり，自動運転では事故の危険につながる．
本研究では，セマンティックセグメンテーションによるフ
レア検出を実現する．
2.フレアの発生現象と課題
フレアは，高密度点群の取得過程で，発光素子と受光素

子のミスマッチに起因し，実際の物体の形状と異なる形状
が発生する現象である．フレアが発生した時の Ambient
画像と点群のマスク画像を図 1 に示す．図 1(a) では赤枠
で囲む領域のようにフレアが発生していないのに対し，図
1(b)ではフレアが発生している．

図 1: Ambient画像とフレアが発生した点群の比較
　セマンティックセグメンテーションの学習では，画像中
の大きな範囲を占めるクラスを優先して学習する傾向があ
る．そのため，フレアのように占める割合が低いクラスの
精度は低くなる．そこで，フレアの検出に反射強度が有効
であるかを調査する．反射強度の可視化結果を図 2に示す．
図 2(a) より，看板領域では反射強度が高い数値で観測さ
れる一方で，フレア領域では反射強度が低い傾向にあるこ
とが確認できる．この結果から，フレアと実物体との間に
は反射強度に明確な差が存在し，フレア検出において反射
強度情報が重要であると考えられる．

図 2: 反射強度の可視化

3.提案手法
提案手法の全体構造を図 3に示す．高密度点群（1サン

プルあたり約 60 万点）は，従来の点群と比較して，1 サ
ンプルあたりに含まれる点数が約 20 倍と非常に多く，直
接セマンティックセグメンテーションを適用することは計
算コストの観点から困難である．そこで高密度点群を，解
像度 512 × 1200ピクセルの画像形式に変換する．具体的
には，各点の三次元座標を画像の RGBチャンネルに対応
させ，疑似的なカラー画像を生成する．これにより，2次
元畳み込み処理による CNNモデルでの学習が可能となる．
さらに，前述の事前調査に基づいて，点群から生成した疑
似画像に各点における反射強度をチャンネル方向に追加し
た 4チャンネル画像を入力として用いる．

図 3: 提案手法の概要

4.評価実験
提案手法におけるフレア検出の有効性を検証する．ここ

で，疑似画像のみ，反射強度のみを入力する手法をベース
ラインとする．データセットには，フレアが含まれる独自
の高密度点群データセットを使用する．データセットは高
速道路や市街地の走行シーンから取得した，全 41シーン，
6,400フレームで構成される．これを学習用に 4,100フレー
ム，検証用に 1,900フレーム，評価用に 400フレームに分
割する．
4.1.実験条件
セグメンテーションを行うベースモデルとして，Feature

Pyramid Network(FPN)[1]を用いる．学習条件として，エ
ポック数を 50，学習率を 0.001，損失関数はCross Entropy
と，不均衡なクラス分布に対応した Focal Loss とで比較
を行う．評価指標としてmIoU，フレアクラスの IoUを用
いる．
4.2.定量的評価
定量的評価結果を表 1に示す．表 1より，疑似画像と反

射強度の場合のmIoUは Focal Lossで 0.5965と疑似画像
のみの場合より 7.52pt，反射強度のみの場合より 1.61pt向
上した．また，フレアクラスの IoUはFocal Lossで 0.2210
と疑似画像のみの場合より 12.52pt，反射強度のみの場合
より 1.61pt向上した．これより，疑似画像と反射強度がフ
レアの検出に有効であることがわかった．

表 1: 定量的評価
疑似画像 反射強度 損失関数 mIoU↑ Flare-IoU↑

✓ Cross Entropy 0.4788 0.1109
✓ Focal Loss 0.5213 0.1089

✓ Cross Entropy 0.4865 0.2132
✓ Focal Loss 0.5645 0.2049

✓ ✓ Cross Entropy 0.5000 0.2341
✓ ✓ Focal Loss 0.5965 0.2210

4.3.定性的評価
提案手法および疑似画像のみを入力する場合の定性的評

価を図 4に示す．図 4(c)より，ベースラインではフレアと
看板の領域の境界が曖昧になっている．一方で図 4(d) よ
り，反射強度の入力によってフレアと看板の境界識別が正
しくなったことが確認できる．

図 4: モデルの定性的評価
5.おわりに
本研究では，高密度点群の取得時に発生するフレアの検

出を実現するため，疑似画像と反射強度を活用したセマン
ティックセグメンテーションを提案した．実験結果より，反
射強度の入力により点群のフレア検出を実現した．今後は
よりフレア検出に適したモデルの選定や，時系列の考慮に
よる効果についての検証を行う予定である．
参考文献
[1] A.kirillov, et al., “Panoptic Feature Pyramid Net-

works”, CVPR, 2019.



量子・古典特徴の階層的融合によるマルチスケール画像分類
EP22052　加藤 靖大 指導教授：山下 隆義

1.はじめに
機械学習モデルの大規模化に伴い，計算資源や学習時間

が増大し，計算コストの増加が問題となっている．解決策
として，量子コンピュータを利用した量子機械学習が注目
されている．量子機械学習の代表的な手法である HQNN-
Quanv[1] は，量子畳み込み層を構成する量子回路のパラ
メータを学習で最適化し，タスクに適した特徴抽出が可能
である．しかし，単一の量子畳み込み層では，使用可能な
量子ビット数や量子回路の深さに制約があり，局所的・大
域的な特徴を同時に抽出することが困難である．そこで本
研究では，局所的・大域的な特徴を同時に抽出するために，
量子・古典双方の特徴を活用したMS-HQNNを提案する．
2.HQNN-Quanv

HQNN-Quanv は，量子回路にパラメータ化量子回路
(Parameterized Quantum Circuits; PQC) を導入した手
法である．HQNN-Quanvの構造を図 1に示す．本手法は，
量子ゲートのパラメータを学習により最適化することで，
タスクに適した特徴の抽出が可能である．まず，入力デー
タを量子状態にエンコードし，量子畳み込み層で特徴抽出
を行う．その後，量子ビットの状態を測定し，全結合層で
分類を行う．HQNN-Quanvは，使用可能な量子ビット数
や量子回路の深さに制約があるため，局所的・大域的な特
徴を同時に抽出することが困難である．

Quanvolutional Layer

Encoding Gates with trainable parameters Measurement

Quanvolutional
feature map

Flatten

Output

FC

Input

図 1: HQNN-Quanv の構造
3.提案手法
本研究では，HQNN-Quanv における課題を解決する

Multi Scale-HQNN (MS-HQNN)を提案する．MS-HQNN
は，タスクに適応した特徴抽出を行うため，PQCを導入
した量子畳み込み層と古典畳み込み層を並列に組み合わせ
た手法である．MS-HQNN の構造を図 2 に示す．量子畳
み込み層の高次元な特徴と古典畳み込み層の線形な特徴を
結合することにより，表現力を向上させる．さらに，マル
チストライド構造を導入することで，異なるスケールで抽
出した特徴を結合する．これにより，局所的な特徴と大域
的な特徴を同時に抽出できる．学習においては，損失関数
から得られる勾配を古典畳み込み層と量子畳み込み層へ逆
伝播させ，両層のパラメータを最適化する．
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Quanv

Conv

concat

concat

Pooling
+

Padding
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stride=1

stride=2
Conv
+

Pooling

Flatten FC1 FC2

OutputInput

図 2: MS-HQNN の構造
4.評価実験
提案手法の有効性を検証するため，複数のデータセット

での既存手法との分類精度比較および推論時に各層・カー
ネルの出力を全て 0に置換するマスク実験により，各層・
カーネルの寄与度分析を行う．
4.1.実験概要
本実験では，提案手法，CNN，HQNN-Quanv，提案手

法の畳み込み層を量子層または古典層に置換し，マルチス
トライド構造を維持した場合 (Quantum Only, Classical
Only) の分類精度を比較する．ここで，分類精度の比較
のみでは，量子層および古典層が相補的な役割を果たし

ているかを十分に確認できない．そこで，各構成要素の貢
献度を明らかにするため，推論時に各層および各カーネル
の出力を 0 に置換するマスク実験を行う．エポック数は
50，バッチサイズは 100，最適化手法は Adam，損失関数
は Cross Entropy Loss を用いる．データセットについて
は，分類精度の比較実験ではMNIST，Fashion-MNISTお
よび CIFAR-10，マスク実験では CIFAR-10を用いる．
4.2.実験結果
実験結果を表 1に示す．MNISTでは，Classical Only

および提案手法が 99.02%の最高精度を達成した．CNNの
精度は 98.85%であり，CNNより 0.17ポイント向上して
いる．Fashion-MNISTでは，Classical Onlyが 91.22%の
最高精度を達成し，提案手法は 90.53%であった．MNIST
より複雑な分類タスクである CIFAR-10 で，提案手法は
67.77%の分類精度を達成し，他手法を上回る精度となった．
以上より，提案手法の有効性を確認した．

表 1: 各手法における分類精度
Model

Test acc [%]
MNIST Fashion MNIST CIFAR-10

CNN 98.85 88.72 65.10
HQNN-Quanv 86.49 81.07 32.53
Quantum Only 98.93 88.92 65.67
Classical Only 99.02 91.22 66.23
MS-HQNN 99.02 90.53 67.77

次に，層単位のマスク実験結果を図 3に示す．q1，c1は
ストライド 1，q2，c2はストライド 2における量子および
古典層を表す．量子層をマスクした場合，古典層よりも精
度低下が大きく，量子層の寄与が大きいことが確認された．
また，ストライド 1の層をそれぞれマスクした際に精度低
下が顕著であり，詳細な特徴抽出の重要性が示唆された．
最後に，カーネル単位のマスク実験結果を図 4 に示す．

括弧内の数字 0∼3はカーネル番号を表す．ストライド 1で
は，単一カーネルのマスクによる精度低下の幅が大きく，
代替困難な特徴を抽出していると考えられる．一方，スト
ライド 2では精度低下が小さく，特徴が複数カーネルに分
散して寄与していると考えられる．

Test acc

古典層

量子層

図 3: 畳み込み層単位のマスク実験結果
Test acc

古典層

量子層

図 4: カーネル単位のマスク実験結果
5.おわりに
本稿では，量子・古典特徴の階層的融合によるマルチス

ケール画像分類として，MS-HQNNを提案した．比較実験
の結果，提案手法は，複雑な特徴を持つ CIFAR-10におい
て全ての比較手法を上回る精度を達成した．今後は，量子
層と古典層の配置・組み合わせの変更による分類精度向上
や特徴抽出差異の分析を行う．
参考文献
[1] Senokosov, et al. Quantum machine learning for im-

age classification. Machine Learning: Science and
Technology, 5(1):015040, March 2024.



SVD を用いた LoRA と段階的知識蒸留による効率的なモデル圧縮
EP22061 熊澤綱佑 指導教授：山下隆義

1.はじめに
Vision Transformer（ViT）は画像認識分野を代表する

深層学習モデルの 1 つであり，高い認識性能を示す．そ
の一方で，ViT はパラメータ数が多く，学習・推論時の計
算量やメモリ消費が大きいという課題がある．この課題に
対し，LoRA による学習パラメータ削減と知識蒸留による
モデル圧縮を組み合わせた手法として WeCoLoRA が提
案されている．WeCoLoRA は，生徒モデル構築時に中間
層を間引くため，中間層が持つ重要な特徴表現が失われる
可能性がある．そこで本研究では，間引かれた層の知識を
LoRAの初期化時に効果的に活用する．さらに，段階的な
知識蒸留により，教師モデルの間引かれた層の特徴表現を
継承した生徒モデルを構築する手法を提案する．
2.WeCoLoRA

WeCoLoRA[1] は，図 1 に示すように，事前学習済み
ViT を教師モデルとし，一部の層を間引いて生徒モデルを
構築する知識蒸留手法である．WeCoLoRA では，間引き
率 r に基づいて教師モデルの層を等間隔に選択し，その重
みをコピーして生徒モデルを構築する．構築後，生徒モデ
ルの Transformer block 全体に LoRA を適用し，教師モ
デルとの知識蒸留を行う．LoRA の低ランク行列はランダ
ムに初期化され，学習を通じて更新される．損失関数を式
(1)に示す．

L
(
ET

i , E
S
i

)
=
∣∣∣ET

i − ES
i

∣∣∣ (1)

ここで，ET
i は教師の特徴ベクトル，ES

i は生徒の特徴ベ
クトルを表す．

WeCoLoRA は，間引いた層の重みを蒸留や初期化に利
用しないため，教師モデルが中間層で獲得した特徴表現を
生徒モデルに十分に継承できないという課題がある．
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図 1 : WeCoLoRA の概要

3.提案手法
提案手法の概要を図 2に示す．本研究では，間引いた層

の知識を活用するために，その重み行列に SVD を適用し
て LoRA のパラメータの初期値に活用する．また，LoRA
を浅い層から深い層へ段階的に適用することで，教師モデ
ルの中間出力を再現する段階的蒸留手法を提案する．
3.1.SVD を用いた LoRA の初期化
生徒モデル構築時に，間引く層の重み行列に SVD を適

用し，主要成分を LoRA の初期値として利用する．重み
行列 W は式 (2)のように分解できる．

W = UΣV ⊤ (2)

ここで，U は出力空間，V は入力空間における基底ベク
トルを表す．特異値の大きい成分が主要情報を担うことか
ら，Σ の上位 k 成分を用いて低ランク近似を行う．低ラン
ク行列 A,B を式 (3)に示す．

A =
√
Σk V

⊤
k , B = Uk

√
Σk (3)

3.2.知識蒸留を用いた段階的 LoRA チューニング
間引いて構築した生徒モデルに対し，教師モデルの中間

出力を用いた段階的蒸留を行う．段階的蒸留では，生徒モ
デルの浅い層から順に蒸留対象層を追加し，対応する教師
モデルの中間層出力を用いて学習することで，各層が段階
的に教師モデルの表現に近づくよう促す．
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図 2 : 提案手法

4.評価実験
事前学習済みの教師モデルから間隔 2 で間引いて生徒

モデルを構築する．構築した生徒モデルに対して，提案手
法およびWeCoLoRA をそれぞれ適用し，精度を定量的に
比較する．
4.1.実験概要
本実験では，事前学習済み ViT-B を教師モデルとする．

蒸留には ImageNet-1kの 1%のデータを用いる．WeCoL-
oRA は 15 エポック蒸留を行うのに対し，提案手法では 5
層分の段階的蒸留後，残りのエポック数で全体の蒸留を行
う．総蒸留エポック数はWeCoLoRA と同じである．下流
タスクの評価には ImageNet-1k または CIFAR-100 を用
いて，50 エポック学習する．
4.2.精度比較
各手法における精度を表 1に示す．表 1より，ImageNet-

1kデータセットにおけるTop-1 accuracyは，WeCoLoRA
が 64.50% であるのに対し，提案手法は最大 68.87% を達
成し，4.37pt の精度向上が確認された．また，CIFAR-100
データセットでは，WeCoLoRA の 62.46% に対して，提
案手法は最大 68.13% を達成し，5.67pt の精度向上が得
られた．さらに，学習時間は，WeCoLoRA と比較して約
15.8% 短縮した．これにより，精度の向上と効率的なモデ
ル圧縮の両立という観点から，本手法の有効性を確認した．

表 1 : 各手法の精度比較
手法 LoRA の初期値 学習数 学習時間 Top-1 accuracy

ランダム SVD 段階的蒸留 蒸留 ImageNet-1k CIFAR-100

教師モデル - - - - - 81.37 80.57

WeCoLoRA 3 - 15 0:20:33 64.50 62.46

提案手法 3
1×5 10 0:17:17

66.27 67.39

3 68.87 68.13

5.おわりに
本研究では，間引く層の知識を活用し，生徒モデルを教

師モデルの中間出力により近づける蒸留手法を提案した．
今後は，様々なデータセットやモデルサイズを変更して，
より汎化性能の高い生徒モデルの構築を目指す．
参考文献
[1] D. Grigore, et al., “Weight Copy and Low-Rank

Adaptation for Few-Shot Distillation of Vision
Transformers,” arXiv preprint arXiv:2404.09326,
2024.



Mambaを用いたマウスの単一細胞解析のための基盤モデル構築
EP22064 小林 岳隼 指導教授：山下 隆義

1.はじめに
次世代シーケンサを用いた Single-cell RNA sequencing

(scRNA-seq)解析の進展により，単一細胞内の遺伝子発現
量の取得が可能となった．これに伴い，深層学習を用いた
遺伝子解析技術も発展し，マウスの単一細胞データで事前
学習を行った基盤モデルとして Mouse-Geneformer[1] が
提案されている．本モデルは，遺伝子間の複雑な関係性を
学習しており，細胞型の分類や in silico 摂動実験において
高い性能を示す．しかし，そのアーキテクチャの基礎であ
る Transformer は，計算量が入力長の 2 乗に比例して増
大する．これにより，膨大なメモリ使用量がボトルネック
となり，現実的な計算リソースでは扱える遺伝子数に実質
的な制約が生じる．そこで本研究では，入力長に対して線
形な計算量で動作し，長い入力長でも効率的な学習が可能
な Mamba[2] モデルを採用した，Mouse-GeneMambaを
提案する．
2.Mouse-Geneformer

Mouse-Geneformerはマウスの単一細胞データの遺伝子
解析を目的とした基盤モデルである．学習には大規模なマ
ウスの単一細胞データセットである Mouse-Genecorpus-
20Mを用いる．Mouse-Genecorpus-20Mでは，各細胞内
の遺伝子発現量の上位 2,048個の遺伝子を抽出し，遺伝子
トークン列に変換することで細胞文とする．作成した細胞
文に対して，Masked Language Modeling (MLM) で学習
を行うことで，正常なマウスの遺伝子間の関係を学習でき
る．さらに，このモデルを特定の臓器の単一細胞データで
細胞型分類タスクにファインチューニングすることで，従
来手法より正確な細胞型分類ができることを示した．
3.提案手法：Mouse-GeneMamba

本研究では，Mouse-Geneformer の Transformer En-
coderをMambaブロックに置換したMouse-GeneMamba
を提案する．本手法の全体概要を図 1に示す．入力データの
構築において，順位情報を持つ遺伝子トークンと正規化し
た遺伝子発現量をそれぞれベクトル化して統合することで，
各遺伝子の順位と大きさを両方含む細胞文を作成する．次
に，この細胞文を Mamba ブロックへ入力して，長大な遺
伝子配列の大域的な文脈学習を行う．学習タスクには Next
Token Prediction (NTP) を採用し，過去の遺伝子配列か
ら次の遺伝子を予測することで，遺伝子ネットワークの因
果関係を獲得する．また，本モデルの学習には， Mouse-
Genecorpus-20M を拡張し，正規化された遺伝子発現量の
数値を保持した大規模データセットを用いる．
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図 1 : Mouse-GeneMambaの学習方法
4.評価実験
提案手法の有用性を検証するために，複数の評価実験を

行う．いずれの実験においても，事前学習モデルを細胞型分
類タスクのデータセットでファインチューニングし，分類精
度により評価する．事前学習タスクとしてNTPを用いたモ
デルとMLMを用いたモデルを用いて，タスクの違いがモ
デル性能に与える影響を比較する．また，遺伝子発現量をモ
デル入力に統合することの有効性を検証する．具体的には，

発現量の有無による精度比較に加え，Mouse-Geneformer
との比較を行う．
4.1 評価実験結果
事前学習タスクとして NTPとMLMで学習したモデル

の細胞型分類タスクの結果を表 1に示す．表 1より，事前
学習タスクとして NTPを採用したモデルは多くの臓器で
最も高い精度を達成した．
表 1 : 入力長 2,048における事前学習タスクによる性能比較
事前学習タスク 脳 四肢の筋肉 腎臓 胸腺 舌 乳腺 心臓 脾臓 大腸 平均

NTP 97.6 99.6 95.3 96.8 94.2 98.8 98.1 98.7 94.2 97.0

MLM 97.9 99.5 94.6 97.2 94.7 98.9 97.5 98.5 93.1 96.9

提案手法の発現量の有無と Mouse-Geneformer の細胞
型分類タスクの結果を表 2に示す．各臓器の分類において，
最も高い精度を赤色，低い精度を青色で示す．表 2 より，
遺伝子発現量の有無の観点では，発現量を考慮しない設定
においてより高い分類精度を示した．この結果から，遺伝
子発現量を学習に用いる場合，本研究で採用した方法とは
異なる利用方法を検討する必要がある．一方で，Mouse-
Geneformer との比較においては，提案手法の方が平均精
度において最も高い精度を達成し，有用性を確認した．
　各入力長における精度変化に着目すると，Mouse-Genefor-
merは入力長を 2,048から 8,192に拡張した際，平均精度
が 0.53ポイント低下したのに対し，提案手法は 0.20ポイ
ントの低下に留まった．以上の結果から，本手法に用いて
いるMambaモデルは長い入力長に対しても情報の損失を
抑えつつ特徴を抽出できることを示した．
表 2 : 提案手法とMouse-Geneformerの細胞型分類精度
モデル Mouse-GeneMamba Mouse-Geneformer

発現量 なし あり なし
入力長 2,048 4,096 8,192 2,048 4,096 8,192 2,048 4,096 8,192

脳 97.6 98.0 97.8 96.7 96.4 95.7 96.7 96.2 95.3

四肢の筋肉 99.6 99.7 99.6 99.5 99.4 99.3 99.6 99.5 99.7

腎臓 95.3 94.4 95.1 93.8 93.2 92.5 94.8 94.7 94.1

胸腺 96.8 97.3 96.9 94.9 96.1 96.2 96.8 96.8 97.3

舌 94.2 94.4 93.7 92.8 92.2 91.1 94.6 94.4 93.9

乳腺 98.8 98.8 98.7 98.5 98.1 98.4 98.9 99.1 98.9

心臓 98.1 97.3 97.2 96.5 97.0 96.9 96.8 96.4 96.9

脾臓 98.7 98.5 98.6 98.3 97.9 97.8 98.6 98.6 98.5

大腸 94.2 94.3 93.9 93.3 93.4 93.4 92.3 92.3 89.8

平均 97.0 97.0 96.8 96.0 96.0 95.7 96.6 96.4 96.0

事前学習におけるメモリ使用量を表 3に示す．表 3より，
提案手法は Mouse-Geneformer に比べてメモリ効率が向
上しており，Mambaモデルを用いる有効性を確認した．

表 3 : 事前学習におけるメモリ使用量
モデル Mouse-GeneMamba Mouse-Geneformer

入力長 2,048 4,096 8,192 2,048 4,096 8,192

メモリ使用量 (↓) 10.4GB 24.4GB 36.6GB 16.8GB 32.5GB out of memory

5.おわりに
本研究では，Mouse-Geneformerの高いメモリ使用量や

入力長の制限という問題を解決するためのモデルである
Mouse-GeneMamba を提案した．また，発現量の値を考
慮した新たなデータセットを構築し，そのデータで学習お
よび細胞型の分類実験を行うことで，発現量を考慮する学
習の有効性を検証した．
今後は，別の発現量の入力方法での学習やMambaの内

部構造の変更，データセットの大規模化を実施することで，
モデルの分類精度向上を目指す．加えて，多様な下流タス
クによる検証を行うことで，基盤モデルとしての汎用性と
有用性を実証していく．
参考文献
[1] Keita Ito, et al., “Mouse-Geneformer: A deep learning

model for mouse single-cell transcriptome and its cross-
species utility”, PLOS, 2025.

[2] Albert Gu, et al., “Mamba: Linear-Time Sequence Mod-
eling with Selective State Spaces”, COLM, 2024.



運転判断の因果関係を考慮した自動運転のための言語説明データセットの構築
EP22071 佐藤克昭 指導教授：山下隆義

1.はじめに
視覚情報と言語知識を統合したMultimodal Large Lan-

guage Model (MLLM) を用いた自動運転手法は，運転判
断の根拠を言語として表現可能な手法として注目されてい
る．MLLM の学習には，映像に対する判断とともに，そ
の判断の根拠に対応する言語キャプションを大量に用いた
学習が必要となる．既存のデータセットの言語キャプショ
ンには，道路構造や周辺物体の状態などの運転判断に関与
する外界情報が多く含まれる．しかし，運転判断に至る過
程を構成要素として明示的に表現することが経路予測精度
にどのような影響を与えるのかについては，明らかになっ
ていない．本研究では，運転判断に至る推論過程を自然言
語として明示的に付与したデータセットを構築し，各説明
要素の有無が経路予測精度に与える影響を比較する．
2.MLLMを用いた End-to-End自動運転

MLLM を用いた自動運転の代表的なアプローチとして
EMMA [1]が提案されている．EMMAは，複数のカメラで
撮影した全周囲の画像と自車両の走行履歴およびナビゲー
ション指示を自然言語で入力する．視覚情報と言語情報を
MLLM で共通の特徴表現へ変換することで，経路計画な
どの自動運転タスクを，タスク固有のプロンプトに基づき
統一的に処理可能である．しかし，このような説明可能な
自動運転を実現するためには，運転判断の根拠を明示的に
含んだデータセットが必要となる．既存の自動運転データ
セットは，知覚・運動タスクを中心に構成されており，運
転判断に至る因果関係が明示的に記述されていない課題が
ある．
3.提案手法
本研究は，運転判断に至る推論過程を 3つの説明タスク

として定義する．マルチセンサ情報を収録した nuScenes[2]
に運転判断に関する自然言語記述を付与することで，推論
過程を段階的に表現した自動運転データセットを構築する．
データセット構築のフレームワークの概要を図 1に示す．

フロントカメラ画像 GPT-4o

The ego vehicle is in the left lane
of a two-lane, signalized
intersection. The light is green,
the vehicle ahead is turning left,
and pedestrians are crossing.

道路環境を自然言語で説明

フロントカメラ画像（６フレーム分）

Qwen2.5-VL

The white van continues straight
ahead in the left turn lane
maintaining its current speed
and trajectory

重要物体の行動を自然言語で説明

半径30m以内のオブジェクト情報

2DBBox
（６フレーム分）

意図ラベル

LLaVA-Next-Video-7B

The ego vehicle is approaching a
T-intersection with a left-turn
lane. The navigation instruction
indicates a left turn, but a vehicle
ahead and a crossing pedestrian
require yielding. Therefore, the
correct intent is “Medium speed
and gentle left turn.”

自車両の意図の説明

60m

将来６点のWaypoint

図 1: データセット構築のフレームワーク
道路構造の記述
　フロントカメラ画像から，交差点，車線区分，信号，自
車両位置などを言語キャプションで生成する．生成には空
間理解能力に優れる GPT-4o を用いる．
重要物体の検出および将来行動説明
　 nuScenesに収録されている画像内の各オブジェクトの
BBox，クラスラベルや属性情報を用いる．将来 3秒間の
自車両経路から半径 30m以内に存在する物体を重要物体
と定義し，道路構造の説明を補助情報として与え，これら
の重要物体の状態および将来行動を言語キャプションで生
成する．生成には Qwen2.5-VL-7B-Instruct を用いる．
自車両の運転意図の説明
　速度および軌道形状をもとに 16種類の運転意図にルール
ベースで分類する．さらに，道路構造，重要物体の将来行動
およびナビゲーション指示を根拠として，運転意図に対す

る判断理由を生成する．生成には LLaVA-Next-Video-7B
を用いる．これらの説明要素をMLLMに推論させること
で，経路予測精度の向上を図る．
4.評価実験
提案手法の有効性を検証するため，評価実験を行う．LLaVA-

Next-Video-7Bをベースモデルとし，学習率 1e-5，エポッ
ク数 5で学習を行う．比較手法として，追加学習を行わず
に推論を行わせるプロンプトチューニングをベースライン
として用いる．評価指標は経路予測における平均 L2誤差
を用いる．また，各説明要素の有無を変化させ，それらが
経路予測精度に与える影響を比較する．
4.1.定量的評価
表 1に各説明要素の有無による L2誤差を示す．結果か

ら，プロンプトチューニングのみでは，「意図説明＋経路予
測」と比較して経路予測精度が低い傾向が見られた．また，
「経路予測のみ」と比較すると，説明要素の付与により経
路予測精度が向上し，特に「意図説明＋経路予測」で顕著
な改善が確認された．これは，意図説明が意図ラベルに加
えて道路構造および重要物体の将来行動を統合した表現で
あり，経路生成に有効に作用したためと考えられる．一方，
「重要物体＋経路予測」のみの場合は，半径 30m以内の物
体を重要物体と定義しているため，経路予測に直接関与し
ない物体が含まれ，精度が低下したと考えられる．
表 1: 説明要素の有無による平均 L2 誤差の比較

提案手法 平均 L2 誤差 [m] ↓
道路構造 重要物体 意図説明 経路予測

✓ 2.45
✓ ✓ 2.29

✓ ✓ 2.49
✓ ✓ ✓ 2.37

✓ ✓ 2.26
プロンプトチューニング 4.96

4.2.定性的評価
図 2に比較結果を示す．「経路予測のみ」では，横断歩行

者が存在する状況においても直進する経路が生成されてい
る．一方，「意図説明＋経路予測」では，横断歩行者を認識
した上で「停止」という意図を選択しており，状況認識と
運転行動の因果関係が明確に表現されている．

意図説明＋経路予測経路予測のみ

Although the road structure and navigation instruction indicate going 
straight, pedestrians are crossing the crosswalk ahead, requiring the 
ego vehicle to stop for safety. Therefore, the correct intent is "Stop."

図 2: 説明要素が寄与した一例
5.おわりに
本研究では，自動運転タスクに特化したマルチタスク

データセットを構築し，有効性を検証した．その結果，説
明要素の活用により経路予測精度が向上することが判明し
た．今後は，ベースモデルの変更や異なるドメインのデー
タセットでの検証を行うとともに，交通ルールを収録した
Retrieval Augmented Generation を用いて未学習の地域
の交通ルールに対応可能な手法を目指す．
参考文献
[1] J.-J. Hwang, et al., “ EMMA: End-to-End Mul-

timodal Model for Autonomous Driving”, arXiv
preprint arXiv:2410.23262, 2024.

[2] H. Caesar, et al.,“nuScenes: A Multimodal Dataset
for Autonomous Driving”, in *Proceedings of the
IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR)*, 2020.



自己教師あり学習による脳MRI解析基盤モデルの構築と評価
EP22114 羽澄 直弥 指導教授：山下 隆義

1.はじめに
脳の皮質厚や皮質下領域の体積は，加齢や精神・神経疾患

と関連していることが知られている．Magnetic Resonance
Imaging（MRI）を用いた脳画像解析の従来の研究では，脳
年齢予測や疾患分類等のタスクに特化した個別モデルで実
現されている．そのため，複数の下流タスクに適用可能な
基盤モデルの実現が期待されている．画像や自然言語処理
の分野では，自己教師あり学習による基盤モデルの構築が
有効とされている．そこで，本研究では，脳MRIを対象
とした基盤モデルの構築を目的とする．また，下流タスク
において基盤モデルがどの程度有用な表現を獲得できてい
るかを検証する．
2.従来研究

Siegel らは，MRI からの脳年齢予測タスクにおいて，
CNNと Transformerの有用性を評価している [1]．結果と
して，いずれのモデルにおいても高精度な脳年齢予測が可
能であることが示唆された．しかし，従来手法は教師あり
学習を前提としており，大規模なラベル付きデータの確保
や他タスクへの展開という課題がある．これに対し，自己
教師あり学習を用いることで，ラベルなしデータからさま
ざまなタスクに共通する汎用的な特徴を抽出でき，基盤モ
デルの作成が可能と考える．これにより，脳年齢予測や疾
患分類といった複数のタスクに特化したモデルを構築する
ためのデータ収集やアノテーションコストを低減できる．
3.提案手法
本研究では，教師あり学習による脳MRI解析手法で必

要となる大規模なラベル付きデータを用いず，自己教師あ
り学習により基盤モデルを構築する．
3.1 データセットと前処理
基盤モデルの構築に向けて，8つのデータベースおよび

公開サイトから 54,521 件のデータを収集した．データの
内訳は，事前学習用データ 47,699 件，年齢予測タスク用
データ 8,824 件，3 クラス分類の疾患データが 1,421 件，
2クラス分類の疾患データが 571件である．なお，分類タ
スクの健常は年齢予測タスクと共有されている．各データ
ベースでは撮影条件や保存形式が異なり，学習に悪影響を
及ぼす可能性が高いため，3つの前処理を実施した．図 1
に本研究で用いた前処理を示す．1 つ目に RAS 座標系の
統一，2 つ目に 1mm ボクセルへのリサンプリング，3 つ
目に Z スコアによる正規化を行う．これらの処理により，
複数のデータバンク間に存在する差異を低減した統一的な
MRIデータを得ることができる．

RAS座標の統⼀ 1mmボクセルへのリサンプリング Zスコアによる正規化
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図 1 : 本研究におけるMRIデータの前処理
3.2 基盤モデルの構築
事前学習では，自己教師あり学習に基づく手法として 3D

Masked Autoencoder（3D MAE）を採用する．入力とな
る 3次元MRIを 3Dパッチに分割し，ランダムに選択し
たパッチをマスクする．マスクされていないパッチのみを
3D Vision Transformer (3D ViT) の Encoderに入力し，
得られた潜在表現からDecoderによりマスクされたパッチ
の復元を行う．このとき，Decoderで出力した復元パッチ

と元画像中の対応するパッチとの差を平均二乗誤差として
計算し，その誤差を最小化するように学習を行う．この事
前学習によって得られた Encoder を基盤モデルとして用
いる．
4.実験概要
事前学習は 47,699件のデータを使用し，マスク率 75%

で学習する．基盤モデルの汎用性を検証するために下流タ
スクとして脳年齢予測タスクと疾患分類タスクを実施し，
教師あり学習で学習を行った ViT-Largeと比較検証する．
4.1 脳年齢予測タスク

MRIから被験者の実年齢を予測する脳年齢予測タスクを
行う．脳年齢予測タスクには，8,824件のデータを使用して
いる．脳年齢予測タスクにおける教師あり学習と自己教師
あり学習の精度比較を表 1に示す．表 1より，教師あり学
習モデルに対し，自己教師あり学習で事前学習を行ったモ
デルではMAEが 1.59pt低下し，決定係数 R2 は 0.16pt
向上した．

表 1 : 脳年齢予測タスク
学習方法 MAE (↓) R2 (↑)
教師あり 6.11± 0.37 0.48± 0.06

自己教師あり 4.52 ± 0.12 0.64 ± 0.02

4.2 アルツハイマー分類タスク
疾患分類として，健常者と認知機能障害，アルツハイ

マーの 3クラス分類を行う．3クラス分類では，2,037件の
MRIデータを 8:2に分割した交差検証を用いている．表 2
に，アルツハイマーの 3 クラス分類タスクの結果を示す．
表 2より，自己教師あり学習で事前学習を行ったモデルの
方が，教師あり学習で学習を行ったモデルと比較して精度
が向上した．

表 2 : 3クラス分類の精度比較
学習方法 Accuracy (%) Macro F1 (%)

教師あり 44.31± 2.24 33.01± 1.30

自己教師あり 65.43 ± 1.58 57.36 ± 1.72

4.3 自閉スペクトラム症分類タスク
疾患分類として，健常者と自閉スペクトラム症の 2クラ

ス分類を行う．2クラス分類では，1,099件のMRIデータ
を 8:2に分割した交差検証を用いている．表 3に，自閉ス
ペクトラム症の 2クラス分類タスクの結果を示す．表 3よ
り，自己教師あり学習で事前学習を行ったモデルの方が，
教師あり学習で学習を行ったモデルと比較して精度が向上
した． 表 3 : 2クラス分類の精度比較
学習方法 Accuracy (%) Macro F1 (%)

教師あり 55.16± 4.09 54.74± 4.14

自己教師あり 58.90 ± 2.04 58.71 ± 2.99

これらの結果から，大規模な事前学習を行うことでその
タスクに特化した学習と比較して，より良い精度を得られ
ることが確認できた．
5.おわりに
本研究では，MRIを用いた脳画像解析のための基盤モデ

ル構築に向け，3D Vision Transformerによる大規模デー
タを用いた自己教師あり学習の有効性を検証した．MRI
データを用いて自己教師あり学習を行うことで，従来研究
である教師あり学習を用いた手法と比較して精度の向上を
確認した．このことから，特定のタスクに特化させるため
の教師あり学習よりも，自己教師あり学習による汎用的な
特徴獲得の有効性が示された．今後は，拡散モデルによる
データ拡張や，他の事前学習手法の検討を行う．
参考文献
[1] N. T. Siegel, et al.“Do Transformers and CNNs Learn

Different Concepts of Brain Age?”, Wiley, 2025.



MLLMと BEV映像を用いた走行映像からの OpenSCENARIO自動生成
EP22115 服部美月 指導教授：山下隆義

1.はじめに
自動運転システムの安全性評価には，多様なシナリオで

の検証が必須である．事故等の危険な状況を実環境で再現
することは安全性の面で難しいため，シミュレータの活用
が検討されている．しかしながら，人手による多様なシナ
リオ作成には多大なコストを要する．そこで，本研究では
Multimodal Large Language Model (MLLM) を用いた
シナリオの自動生成法を提案する．提案手法により，事故
につながる危険なシナリオを効率的に作成でき，自動運転
システムの安全性評価に貢献することを目指す．
2.OpenSCENARIO XML

OpenSCENARIO XMLは，自動化システムと測定シス
テムの国際標準化団体によって策定された，自動運転検証
用の標準シナリオ記述フォーマットである．本規格は，車
両や歩行者などの交通参加者を定義する Entitiesや，シナ
リオ推移を記述する Storyboardなどのタグにより階層的
に構成される．OpenSCENARIO が動的な挙動を記述す
るのに対し，OpenDRIVEは静的な道路環境を提供する．
シナリオ生成には道路構造を定義する OpenDRIVE との
連携が不可欠であり，両者の統合により整合性のとれた交
通状況が再現可能となる．
3.提案手法
本研究では，MLLM として Gemini 3 Pro [1] を用い，

実環境の走行動画から OpenSCENARIO XML を自動生
成する手法を提案する．本手法の概要を図 1に示す．入力
情報には，実環境のフロントカメラ映像に加え，逆透視投
影変換を用いて生成した俯瞰（Bird’s Eye View: BEV）
映像を使用する．BEV 映像を補助的に用いることで，フ
ロントカメラ映像だけでは困難な自他車両間の距離や挙動
を捉えられると考える．

図 1: 提案手法の概要
3.1.走行シーンから中間表現の生成
フロントカメラ映像と BEV 映像を MLLM に入力し，

走行シーンの自然言語説明を生成する．次に，再度MLLM
を用いて自然言語説明から車両情報 (車両の挙動や速度)の
パラメータを抽出し，JSON形式に出力する．深い階層構
造を持つ XMLをMLLMに直接生成すると，タグの不整
合や構文エラーが多発する．そこで，JSON形式にするこ
とで，中間表現としてデータの構造化を行う．MLLM の
学習データ特性との親和性を活かし，生成エラーを抑制し
ながら複雑なシナリオ情報を正確に構造化することを可能
にしている．
3.2.中間表現からOpenSCENARIO XMLの生成
生成したJSON形式の中間表現をMLLMを用いてOpen-

SCENARIO XML形式に変換する．MLLMに対し前段の
中間表現に加え，OpenSCENARIO XMLの記述例と道路
情報が記述された OpenDRIVE ファイルを入力する．次
に，生成された OpenSCENARIO XML に対し，データ
型などが定義された XML Schemaを用いた構文チェック
を行う．この構文チェックを行うことで，シミュレータで
の実行可能率を向上させる．

4.定量評価
本実験では，OpenSCENARIO XML の生成の成功率

とともに，走行軌跡の再現性を定量的に評価する．
4.1.実験条件
本実験では，提案手法の有効性を検証するため，入力情

報の違いによるシナリオ再現精度の比較を行った．比較手
法として，図 2(a)のような前方映像のみを入力とする場合
と，前方映像に加え図 2(b)のような BEV映像を補助情報
として入力する場合の 2パターンで比較実験を行う．評価
にはKITTI Odometry Dataset [2]の直進，右左折を含む
計 15シーン（10秒間）を用いる．評価指標には，生成し
た OpenSCENARIO XMLをシミュレータ（Esmini）で
実行したときの走行軌跡と実走行軌跡 (Ground Truth)と
の平均位置誤差 (ADE) と最終地点誤差 (FDE) を用いて
比較する．

(a) フロントカメラ (b) BEV

図 2: 入力シーンの例
4.2.実験結果
表 1にシーンごとの評価結果を，図 3に生成したシナリ

オの軌跡と正解軌跡を示す．表 1より，動画情報のみを用
いた場合は，右左折シーンにおける精度が悪く，動作の再
現性が低い結果となった．しかし補助情報（BEV）を用い
た場合は，右左折時の ADEが改善した．また，全体平均
においても ADEが半減し，FDEは 6分の 1程度となり，
誤差の低減が確認できた．さらに，図 3の通り，補助情報
を追加した場合の軌跡は，正解軌跡により近いことが分か
る．以上の結果から，OpenSCENARIO XML の生成は，
右左折時の軌跡再現精度の向上に効果的である．
表 1: 生成シナリオの軌跡評価と生成成功率

シーン Video Only Video ＋ BEV

ADE(m) FDE(m) 成功率 (%) ADE(m) FDE(m) 成功率 (%)

右折 12.4 43.1 60.0 6.8 8.7 60.0

直進 2.6 6.3 80.0 2.6 6.2 100.0

左折 12.1 46.7 20.0 4.8 1.2 80.0

平均 9.0 32.0 66.7 4.7 5.4 86.6

(a) Video Only (b) Video＋ BEV

図 3: 軌跡の比較
5.おわりに
本研究では，実環境映像から MLLM を用いて Open-

SCENARIO XML を自動生成する手法を提案した. 評価
実験において, フロントカメラ映像に加えて BEV 映像の
補助情報を入力することで，直進のみならず右左折シーン
においても高精度なシナリオ生成が可能であることを確認
した．今後はより長時間のシナリオへの対応や，他車両を
含めた動的環境の再現精度の向上が課題である．
参考文献
[1] Gemini Team, Google, “Gemini 3 Pro Model Card.”,

Google DeepMind, 2025.

[2] A. Geiger, et al., “Are we ready for autonomous
driving? The KITTI vision benchmark suite”,
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Mutual DDQN：深層強化学習エージェントの相互学習

EP22126 前田登生 指導教授：山下隆義

1.はじめに
深層強化学習 (DRL)は，環境との相互作用を通じて累

積報酬を最大化する方策を深層ニューラルネットワークで
学習する枠組みである．代表的な手法である DQNは，状
態 sにおいて行動 aを選択したときの累積報酬の期待値を
表す行動価値（Q値）をニューラルネットワークで近似す
る．しかし，実際より Q 値を大きく見積もり，学習が不
安定化する問題がある．この問題は，Q値に含まれる誤差
（推定誤差）とその誤差が増幅されやすい学習構造に起因す
る．Double DQN(DDQN) [1] は，この学習構造を改善す
る代表的な手法であるが，推定誤差を直接抑制する手法で
はない．そこで本研究では，相互学習 (DML)をDDQNに
導入し，学習の安定化を図るMutual DDQNを提案する．
2.DDQN

従来の DQNは，選択した行動の Q値が目標値 y に近
づくように学習する．しかし，目標値 y は，次状態 s′ に
おける最大の Q 値に依存して求められる構造のため，推
定誤差により大きく見積もられた Q 値が目標値 y に反映
されやすい．DDQNでは，目標値 y を求める際に，行動
の選択と Q 値の算出に異なるネットワークを用いる．具
体的には，学習によって逐次更新されるオンラインネット
ワーク Qθ で次状態 s′ において Q値が最大の行動 a′ を選
択し，更新を遅らせるターゲットネットワーク Qθ− で行
動 a′ の Q値を算出し，報酬 rと合わせて目標値 y を求め
る．目標値 y を式 (1)に示す．

y = r + γQθ−(s′, argmaxa′Qθ(s
′, a′)) (1)

　行動の選択に影響を与えた推定誤差が，Q値の算出には
反映されないため，推定誤差により大きく見積もられた Q
値を目標値 y に用いる傾向を抑制できる．
3.提案手法：Mutual DDQN

本研究では，異なる初期パラメータを持つ 2つの独立し
たネットワーク（Qθ1 , Qθ2）が互いの出力を参照しながら
学習する DMLを DDQNに導入し，推定誤差を直接抑制
する Mutual DDQN を提案する．提案手法の概要図を図
1に示す．ネットワーク Qθi の学習には，式 (2)および式
(3)で定義する 2つの損失関数 L

(i)
MTD と L

(i)
KL の和を用い

る．ここで i ∈ {1, 2}，j ̸= iとする．

L
(i)
MTD =

(
r + γmeanQ(s′, a′)−Qθi(s, a)

)2
(2)

L
(i)
KL = DKL(pj∥pi) (3)

L
(i)
MTD は，平均 Q値を用いた目標値と現在の Q値の二

乗誤差である．ここでMean TD(MTD)は，DDQNの目
標値 yに用いる次状態のQ値を，2つのターゲットネット
ワークで算出した平均 Q 値 meanQ(s′, a′) に置き換える
手法である．これにより，目標値に含まれる推定誤差を緩
和し，学習の安定化を図る．

L
(i)
KL では，状態 sにおける 2つのネットワークの出力

に softmax関数を適用して得られる行動分布 p1 および p2
の間で KLダイバージェンスを最小化する．softmax関数
により行動間の相対関係を分布として表現し，すべての行
動でQ値の相対的な大きさと順位関係を学習する．これに
より，ネットワーク間の行動分布を近づけ，行動選択の一
致を促進する．

Q-Network 

Q-Network 

入力画像

（状態 ）

図 1: Mutual DDQN

4.評価実験
4.1.実験概要
行動数が異なる複数の Atari 2600 環境のタスク（Air-

Raid, Enduro, Seaquest）を用い，提案手法の評価を行っ
た．比較手法は，標準的な DDQNおよび提案手法とする．
提案手法に導入した損失関数の分析としてMTDのみ，KL
のみを使用した比較を行う．学習ステップ数は合計 500万
ステップとする．提案手法の評価には，並列に学習された 2
つのネットワークのうち高い累積報酬を達成した単一ネッ
トワークを用いる．報酬は学習，評価ともに-1から 1にク
リップする．学習過程は DDQNと提案手法の累積報酬の
推移を比較し，学習後の評価指標として，複数エピソード
の平均累積報酬，およびQ値と実際の累積報酬の差である
Q値の推定誤差を用いる．
4.2.実験結果
図 2に示した累積報酬の推移より，提案手法は学習初期

の立ち上がりが早く，全タスクで DDQNを上回る累積報
酬の推移を示した．
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図 2: 累積報酬の推移

表 1に示すように，全タスクにおいて提案手法はDDQN
を上回る平均累積報酬を獲得した．また，MTDのみ，KL
のみのいずれも DDQNから性能が向上しており，各損失
の導入が有効であることを確認した．

表 1: 平均累積報酬
手法 MTD KL AirRaid Enduro Seaquest

DDQN 39 323 50

提案手法
✓ 88 483 95

✓ 74 834 81

✓ ✓ 119 895 101

表 2 に示した Q 値の推定誤差より，全ての条件で推定
誤差は正の値を示し，実際の累積報酬よりも推定するQ値
が高くなる傾向を確認した．提案手法は全タスクで推定誤
差が最小であり，Q値を過剰に見積もる傾向を改善してい
る． MTD のみ，KL のみでも，DDQN と比較して推定
誤差は小さいが，KLと比べてMTDがより推定誤差の減
少に寄与している．

表 2: Q値の推定誤差
手法 MTD KL AirRaid Enduro Seaquest
DDQN 2.1 8.2 2.9

提案手法
✓ 0.6 2.5 0.9

✓ 1.0 6.7 2.9
✓ ✓ 0.4 2.4 0.8

5.おわりに
本研究では，Q値推定を改善するためにDDQNにDML

を導入したMutual DDQN を提案した．評価実験では，提
案手法は従来手法を上回る累積報酬と推定誤差の改善も見
られ，提案手法の有効性が示された．今後の展望として，
単一ネットワークではなく複数ネットワークの平均 Q 値
に基づく行動選択を DMLで改善することや Actor-Critic
等の DRL手法への応用が考えられる．
参考文献
[1] H. van Hasselt et al., Deep Reinforcement Learning

with Double Q-learning, AAAI, 2016.



時間的整合性を考慮したテキストからの 2次元モーション生成
EP22058 川本寛和 指導教授：山下隆義

1.はじめに
テキストからの 2次元モーション生成の先行研究として，

2CM-GPT[1] が提案されている．2CM-GPT は，3 次元
モーション生成モデルと異なり，収集が容易な 2次元モー
ションのデータセットを学習に利用できる．そのため，生
成に失敗した 2次元モーションを収集して，データセット
を動的に拡張することにより，効果的なファインチューニ
ングが実現できる．一方で，2CM-GPTはいくつかの課題
もある．1つ目は，各フレームのモーションを独立で生成
するため，時間的な整合性が低い．2つ目は，テキストと
モーションを対応付けることなく混在して学習するため，
テキストとモーションの整合性が損なわれる．これらの課
題を解決するために，本研究ではテキストとモーションを
アテンション機構で関連付けるとともに，時間的な整合性
を考慮する手法を提案する．
2.2次元モーション生成

2CM-GPTは，2次元のモーションを生成する代表的な
手法である．2CM-GPTのモデル構造を図 1に示す．2CM-
GPTは，Motion Tokenizerで人間のモーションを離散的
なトークンに変換する．そして，テキストも同様にText To-
kenizerでトークンに変換する．これらを連結させたMixed
Tokensを Language Encoderに入力して潜在ベクトルを
獲得する．潜在ベクトルをもとに Language Decoderが出
力したOutput TokensをMotion Tokenizerに入力して 2
次元のモーションを生成する．
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図 4.1: 2CM-GPTのモデル構造

から出力された潜在変数 zeとコードブックB := {bk}Kk=1の各ベクトルとの間で最も近い
ベクトルbkを求める．ここで，コードブックは d次元のK個の潜在変数ベクトルで構築
される．ベクトル量子化を式 (4.1) に示す．

zq = bk, where k = argmink ∥ze − bk∥2 (4.1)

次に，デコーダを用いて量子化した潜在変数から入力モーションを再構成する．
2CM-GPTでは，モーショントークナイザのエンコーダとデコーダで使用される畳み込
みを 1次元畳み込みから 2次元畳み込みへ変更する．3次元モーションデータは関節の位
置，速度及び角度などを同一の次元で表現しており，MotionGPTでは 1次元畳み込みを
適用している．しかし，2次元モーションデータは関節と x，y座標の 2つを異なる次元
で表現しているため，これを同一の次元に集約し 1次元畳み込みを適用すると関節間の空
間的な関係性を適切にモデル化できない．そこで 2CM-GPTでは，2次元モーションデー
タを同一の次元に集約するのではなく，異なる 2つの次元で表現し 2次元畳み込みを適用
することで，関節間の空間的な関係性を直接考慮できるようにする．モーショントークナ
イザのエンコーダとデコーダの構造を図 4.2に示す．

MotionGPTのモーショントークナイザは，再構成損失，埋め込み損失及びコミットメ
ント損失の 3つの異なる損失関数を学習に使用している．これらの損失のうち，埋め込
み損失は埋め込みから関節の速度情報を抽出して計算される．しかし，2CM-GPTでは関
節の座標のみで表現される 2次元モーションを使用しているため，速度情報を持たない．
そこで 2CM-GPTでは，再構成損失とコミットメント損失の 2つの異なる損失関数を学
習に使用する．コードブックの利用率を向上させるため，Exponential Moving Average

(EMA) とコードブックリセット技術 [66]を使用する．また，再構成損失には L1 Smooth

Lossを使用する．
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図 1 : 2CM-GPTのモデル構造
3.提案手法
本研究では，2CM-GPTの学習アプローチが抱える「時

間的な整合性」と「テキストとモーションの整合性」の不
一致を解決する手法を提案する．提案手法のモデル構造を
図 2に示す．なお，提案手法がテキストと 2次元モーショ
ンの関係性を学習する過程を Training Phase，テキストか
ら 2次元モーションを生成する過程を T2M Phaseとする．
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図 2 : 提案手法のモデル構造

3.1.学習
Training Phase では，VAE で学習された Motion En-

coderを用いて人間の連続的な動作を離散化しない形で潜
在空間に埋め込む．この埋め込み特徴をMotion Branchに
入力する．テキストは，Text Tokenizerで埋め込み特徴と
し，Text Branchに入力する．各ブランチにおいて，埋め
込み特徴を Projectorに入力し，Query, Key, Valueベク
トルを抽出する．そして，Motion BranchとText Branch
の各ベクトルを同じ Cross-Modal Attention に入力して，
Motion BranchのValueベクトルにテキスト特徴を反映さ
せる．Motion Branchの出力をMulti-Head Attentionに
入力して潜在ベクトルを獲得する．潜在ベクトルを Diffu-
sion Headに入力し，後述の T2M Phaseのための逆拡散
過程を学習する．損失関数には，生成モーションと実モー
ションの差を評価する特徴再構成損失，対応関係にあるモー

ションとテキストがクロスモーダルな特徴空間上で近接す
るよう制約する分類損失，逆拡散過程における潜在表現の
再構成誤差を評価する拡散損失を用いる．
3.2.モーション生成

T2M Phase では，Motion Branch と Text Branch の
Cross-Modal Attentionによって，Motion Branchに入力
したHolderにテキスト特徴を反映させる．Motion Branch
の出力をMulti-Head Attentionに入力して，潜在ベクト
ルを獲得する．潜在ベクトルを Diffusion Head に入力し
て，逆拡散過程によるノイズ除去を行う．その後，VAEで
学習されたMotion Decoderを用いて，潜在ベクトルから
2次元のモーションを生成する．
4.評価実験

2CM-GPT との比較実験により，提案手法の有効性を
示す．
4.1.定量的評価
表 1より，提案手法は FIDが低いことから，2CM-GPT

と比べて 2次元モーション生成精度の向上を確認した．一
方，2CM-GPTの Diversityは提案手法よりも高い．その
要因として，モーション生成精度が十分でないために，類
似の指示文に対しても多様なモーションを生成することが
考えられる．
表 1 : テキストからの 2次元モーション生成精度の比較

Method
FID ↓ Diversity ↑

real gen real gen
2CM-GPT −1.37×10−9 32.36 16.96 19.28
提案手法 −5.24×10−9 12.15 16.69 12.92

そこで，多様性の要因を検証するために，表 1のDiver-
sity と，後述の定性的評価で用いる図 3 の指示文のみを
与えて生成されたモーションの Diversityを比較する．表
2より，2CM-GPTは同一の指示文のみを与えた場合でも
Diversity が高い傾向を示したことから，上記の可能性を
裏付ける傾向が確認された．
表 2 : 指示文ごとの生成モーションの Diversityの比較

Method Multi Instruction Single Instruction
2CM-GPT 19.28 18.85
提案手法 12.92 6.07

4.2.定性的評価
2CM-GPTと提案手法に同じ指示文を与えて生成させた

2次元モーションを図 3に示す．図 3の手の動きに注目す
ると，提案手法の生成モーションは 2CM-GPT と比較し
て，指示文の動作内容を正確に反映していると判断できる．

2
C

M
-G

P
T

3
2
C

M
-G

P
T

I want a motion that represents the power of starting from their left foot in the air, person stands ready with fists 
up then takes two swings with their right hand downward then two more high and to their right and finally two 

lefts downward mirroring the rights from before. to create positive change in the field of peacebuilding and 
conflict resolution. Can you generate that?

time

図 3 : テキストからの 2次元モーション生成結果の可視化
5.おわりに
本研究では，2CM-GPTと提案手法の評価実験を行い，

提案手法の有効性を示した．今後は，提案手法で生成した
モーションを用いてポーズ誘導による人物動画生成を実施
し，実用性を検証する．
参考文献
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