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NIQE| (Var) 0.108 0.120 0.116
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PSNR? (Var) 3.207 2.809 11.129
SSIMT (Mean) 0.497 0.471 0.556
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[1] Y. Huang et al., “Periodic Vibration Gaussian for
Dynamic Scene Reconstruction ” ,IJJCV,2026.

2] J. Z. Wu et al, “DIFIX3D+: Improving 3D
Reconstructions with Single-Step Diffusion Mod-
els” ,CVPR,2025.
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T 5. RIT, Segment Anything in High Quality (HQ-
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RKEBRTIX, FEHAT &2 LTHIi~A7HhT—X&
56 K, AN T4 U IRy 2 ZABIUVEU~ A2 H D
7 —& 9,660 KEHWS. FHiiH T — 2 1&l & 2 7 @D
WHRET—2Ey b LTHWS. E7 /113 RetinaNet,
Ny FH A4 F 32, FEEHUL 80epoch, FMTFEIIAK
MHIZ AP, 2 X5 — a3 loU &5 3.
4.2 . RERFER
ERNFHAZE 1 1RT. £1 LD, LoRA @A L7
HQ-SAM 2SI bEMEETH D, @EHE D HQ-SAM ¥ i
LT, FED IoU 25 8.75pt M L L7,
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IoU

LoRA lightning | background
- —fEfk 60.08 34.07 08.31
- GrabCut | 58.43 42.86 97.96
- SAM 62.18 61.98 99.02
- HQ-SAM | 60.15 63.31 99.10
v HQ-SAM | 65.99 72.06 99.41
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R LTz~ AR LB Lo /X 7 —2 3
> OEMRFHMEZX 3 12RS. K325, LoRA Z#EAS
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WA D D B & B EERH O EEELE S
L7, FBRERLD, LoRA Z#ifH L7z HQ-SAM i2X %
B~ A7 OEAN, HEREB IO AV T—vay
FEOM LA TH 2 Z e BHER L. S7BIE, Lh&E
FERE 72 B 5 ~OVAERICIANT e FIEORE 21T 5.
BEX
[1] H.Lé et al., “Box for Mask and Mask for Box: weak

losses for multi-task partially supervised learning”,

BMVC, 2024.

[2] L.Ke et al., “Segment Anything in High Quality”,
NeurIPS, 2023.
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TR, ERETADA V7 SWEICHT B F XA VM
BEHLTORWHLSTHS. %2, ZORDO¥EFT—
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RA TS5 4 U RIRET 5.
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LT, BEDRBEERERNE b L IBKRA > 7 TWERE
ARTI2FETHZ. LHrL, M1OXSICHENBEDOHE
BALIZB VT, YHEESTEOMFICEREIR I TN,
T, BT BERETAD, 4 7 SWEICET SR
XA VHIEBEEELTWRWI E, 726 NS EDEEITH
T — &Rty PAREINTVRNWI L ICERT 3. #
D=, 4 V7 SUEBNBRORTEGRT — Xty FE2HT-
ISR T 2R ED D 5.

T (b)
X 1: OD-RASE I X %24 ¥ 7 S WEL R

3.7—3Rty FEBERNTTS1 Y

AT, 1V 7 FTHEREZEOXRTHEBGT -2y b
FHEHERTB3-004 54 VERETE. 4 TT
A ORERER 21T A1 5857 % X M OD-
RASE ZFHWTHBIAERT 2. 4754 1F, ¥ 77X R
758, Tar M MEE, ERERD 3 ODRAT Y s
XN, LUTRTIE, 3207y Ao WTEEMIzD
N3,
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X 2: F—&+t vy MERSAL T4
Stepl 72X U458 OD-RASE D4R L 72865 T F 2
b &, L—AR—ATH T RRATZAEET 5. ZOEHUI,
WETFA M HBERERTHD, 20F FTEIREN
BONHHERERRNZ T — 2ty MERENREETH % 7=
»TH%. %I T, Mapillary Vistas @ Validation 125
¥415 OD-RASE OHiT#ER Gt 1263 #0 Z4thL, &

BEHIE L ILTRE

HETHRE TAUEAR -V 2HBETES LS, L—1
PEE L. WEFIRAMIETNAFFHRPUENREF
M DIZ, ZOBENEERT Y TEXRA7E2H573 3.
Step2 7OV T MIE YT EZZA 7L T, HERE
LR TR EERERRNRL LTy L — bRy T
5T 5. HINCKET LEEEDT L — b BRI
WHTZ LT, 7ur 7 rORFEDIES 12 X 345
BHoRsos2HRL, —BHLUILEGESRERES X 5.
Step3 EREM £ETF NI, FlHEBRTEWIERE
7~ L7z Gemini Nano Banana Pro Z{#ifH 3 %. HEY 7
R AR LTIE, BiEROAREGRE XED AN LTE
RENAHZFTV, RWERERM LA > 7 SERD
H{§%5 5.
4. 7=t v b OSEFEE

REFRCIOEELET Ry v, 4 V7 7%E
RAZIZBOTEHYRWEEE T 20MET 5.
4.1. 5@ M

F—&+t v M& Mapillary Z2f#H3%. OD-RASE 534
BT 247 7®ERET0 YT b LTHEBEREZITS
HbDER=ZAFAL e F5. fMIZEHBAIICELD, HENE
DR ¥ PR ESEOHERF D 2 mE R L 12 BT
WREHEHT 3.

4.2. 5F LR
FHMADRERER 1ITRT. 1 XD, R—XF74VFE
250 LD 5 5 168 Y, EIRDIIERIL 67.2%TH 5.
—7, IREBETIEZE 250 D 55 208 WA, 2IKRDAL
DIRIX 83.2%TH 5. Zh&bh, HEFEOBMMENER
BN RE N7,

7 1: IR X B LR
FiE N—RA54 v | IRETFE
B (%) 67.2 83.2
ERFERGIZRK 3 1R7T. K3 &b, HEFHREEROMR
FARHIARDBRE L Vo 72 Bz 28ENFICH L, PR
B LZEBPERZINTWE 2005,
X0, BEFRCL2IEROHELe Ty L= vy
FrBERSEOR EICEFES LW 5.

(a) AJIEI5
A= 8 SM-) ¥ c30))

(b) R=2F 4~ (c) REFHE

M58 D F R 2 S8R

h]&h

(d) AJJE%

() R=RF 4 ¥
Ty 7 b HEREEEEL T IEARDERE
3 MELETF—XEy bOF T

() REBTFE

5.80DIC
RETE, 1> 7 THEMBORTEBGET - Xy +
THBMEE T 284 77 4 YRR Uz, 85F AR, OD-
RASE A U7 A > 7 SeEUTED BT X X7 58]
&, 77— u T VAV EEBRERICED, &)
HNBEREBRAKMTE . 55BIF, ERL-T—X2ty
FEAWEEREFLOEEERET 5.
BE R
[1] K. Shimomura, et al., “OD-RASE: Ontology-Driven
Risk Assessment and Safety Enhancement for Au-
tonomous Driving”, ICCV, 2025.
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Transformer ZX—X & L7zRE¥EE ET7A0EH X
NTW3. BEHEZEBRIBFICBVWTS, HBE= > a—XIi2
Transformer Z HW/2E 7 /L TdH % Vision Transformer
(ViT) EBEEZRLTWS. —HT, VIT ZEART
R =BV, FREFEORONI Ty T4 X
ANDEFPNEETH 2. ZOFEIIHL, ETFTILDEAR
T X —=REHIRT % FiEke L TITAIEEE T (MPO) 7f#
WX BIES > 73805 % [2]. MPO ZfRIZETFILDARS
A — ZHIFRE HEFRO FE LA RETH 528, &2 TORFIC—
BCTHEHAT 2L ETAVHRENIE LR T T 2HENH 5.
ZZTARMFETE, BITLItRIX—RDNENIEL S
MICEHL, FEOEBEEICLC TEINES > 73
DFRELRRETS. ZUuc kb, HBEHER S8t Z iz
L7-BRIWFEOER T BIET.
2. 0ERF&E

ARETIE, IREFEORME L 1 2 IEEERN D FETH
% Adaptive Feature Retaining (AFR) &, K7 > 73
FiETH % Matrix Product Operator (MPO) 43 fi#IZ-DW
TR 3.

2.1.Adaptive Feature Retaining

Adaptive Feature Retaining (AFR)[1] 1%, FERI¥EE €
TOLVORIGEHER & Tl & X 7 B Z WL U 72 ISR D
FHETH 5. AFR TRAGMER: & & 2 7 @GO Mmi# S
LEAOHEEE 2T T 2EEZEALTWS. BRI
1%, i FHOEA T X —& w; 10T 2 FHIHE Sarr (w;)

2R (1) DXOWERT 5.
)+ (lg5]) o

9>, Fvp
ow;

T IT, Z() 3EREbERT. 8 1 HAR R OB
HEOWEEETHD, | BHOEWREEEICH T 2 B R M
DY Fryp ZHWT, w; PREEZEBOBERERHHIC
COREHFE L TWA20EiHiis 2. 5 2 HIX RV #EIG
OBSICESKETH Y, BEEE L) 1T 240 % H
WT, TRZ R OREEICHT 2 EADMERFHE L TV
3. ZHUT KD, A CEE LR ERIE LRSS,
TWE 2212005 20 D E R U 7230 RI 72X H 235
Hans.

2.2. 175 EEBFICL B ETILESE

fHREE T (MPO) 212 X 2 7 VESE [2] 1%, EHA
fANERKS VT Nty VT =21 5 2 TIEE
EHEFVEMRINITMT 2 FETH 5. MPO FfRTIX
ANITE N, HIIRTE M 2HOEATH W e RM*N |12
L, ZhZROXTE N =", I, M =[["_, Jx &
7% n HORFORIHREL, BT VYN Wiy it in
WEET S, ZOEE, Wi juir..in 32 (2) DX I,
nfHoa7Fr YL w® oL L OERITE 3.

Wi, nsinin = Tr (1”(1>L717i1]' --10(’”[]}17in]) (2)

T, garrryy L w® 3BT ar oYL
T ADDORTCTHERY FA Ty 22 RV EFES
V) BEL, TOREIERFETLZ e TRELERS
X—ZPD L — A7 RFETE 3.
SAREFZE

I TR, JERERNI D ICBITF 2N ReiE=EY L
T, MPO #f#IC & 31K5 > 70l % B 5 5 g 2 8
BIRT 2 FEERIERT 5. BAMIQIE, EREEBEAET
MTHPS B IEBERX D Tk LTHRI AFR 2HWT
BREOBA D RE2EH T 2. 2L T, FNDRBEFN AL
K EDBDES Liopk WX LT MPO 7f#IC X 2KT >~
7R EEAT 5. fICEER 2 EATIE W, 2R
TFHRERBROEARZ W T2 Y, BINREERIZN (3)
D EyIERbENG.

w;

Sarr(wi) = Z <

BEHIE L ILTRE

W= {(I)MPO(W) (le Lw;.)K) (3)
w (otherwise)
ZZT, ®mpo(-) & MPO DRIC K 2185 > 7iE 25k
. Zheky, EREERAELAEBOAEMT S Z
T, RBEHR SR LERET 3. 2, AFIETIEIERE
B D R AREREARRETZALE Y LTHHAT 5.
FXI D12 & » T/ A4 XPMERE N 7=ATFNISH LT MPO 4
fREATS 22T, TOfFFIEALNT 258 HRL T, &
ERERPELRDOTIRS > 2R LDAREIC R 2 2 L 21
g 5.
4. FHMRER
ImageNet-1k THR{ZE iz ViT-B/16 % baseline
L, BEFRE X 2EBEREOEB XUETIVE
fE Y EE LR R Z IS 2.
4.1. RERHE
MPO 5@z M3 2R MLP ¥ L, @3 5EH
F127my2de Jay 235, MPO ffida 7
2, V7435, Fi RETFEOEWEEMRIET 3
72, DUR 2 DOERAFEICBWTHKEITS
EE&ER MEEHD 7 a vy 712 MPO %2 AT 3. &
B, B Y LT AFRICE2EN D % 710% L5 5.
FIHNEIR IRRFIRICH DX, Tu v 7 Zr OB b R g
W6 7ay 7 2ER LT MPO @ % A5 5. AFR
WCBIFLZENDERE, 10%BXL 7T0%L T 5.
7 — &t v + & CIFAR-10 ¥ CIFAR-100, Stanford
Cars THV, RBEFELHEHARIC 150 =Ry 7D 7 74
VFa—= VT RITS.
4.2 . RERIER
ViT-B/16 123 U TIREFEZ#E A U RO ER 5
ErimomEtRZeR 1I1RT. £1 &b, FHEEER
WHEAFEN D R 70% D EIBEIRDEWHEEEZR L. 2
L, BN RZIEEL 2 22T, EMick 28E0D
BRWEZBETNICGERINTETWVWA I ERLTWS., -,
BXID X 10%E 10%DHETIE, £ ThF—Xty b T
T0%D T DREVKEEZ R L. 2, JERERXIbIc X
DKZ Y7 TORLD LT IDNMELTNWE Z 2 2E X
b, K > 7 RBULICBT 28X oGt E2RLTW»
%, X5, WERHEIZOWTIER—ZF4 e i LT
K 1.06 fEom LR ENTZ DD, KiERdEICIX
BEoRhoTz.
£ 1: EMRETNVONIEBE (%]

Dataset baseline | Fixed Ours (10%) Ours (70%)
CIFAR-10 98.39 94.34 94.06 94.51
CIFAR-100 89.53 76.78 77.03 80.84

Stanford Cars 68.37 17.91 13.05 24.39

Speed-up 1.00x 1.05x 1.06x 1.06x

5.50DIC

ARETIE, FERBERN D ICBIT 2EN D REFRZEY LT
MPO &% EH T 2 B BINGERT 2 FE2RE L .
FHEEROMR, EEREERE RL T, #BEFEC
X 2B E DR LcFHE T2 e 2R L.
12, FERRERND BOEWREICB VT Z DR DEE T
Holz. SR, IFEERND THET X 0 EMERS > ik
lizE 2 38 oi#E L, XD EELREOEFIEEOM
Z2179.

BENHER

[1] BT, ot al. “HAEBAHE 7L OHRMER ¥ T
KR 7 @GR AL L7z Single-shot Foresight Pruning”,
EROFEH - RS VARSI T 4, 2025.

[2] Ze-Feng Gao, et al. “Compressing deep neural net-
works by matrix product operators”, Physical Re-
view Research, 2020.
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SAREFZE

HETFEOLMAEELZN 3 1RT. SFEAE Q¥
TBHT=HH 60 ) X, /RSB EEBLT, 1Y
INBEDICEEND B 20 ErIEFEICEZL, B
By av oAV TF—vayEEAT S 2EE
HazxtoBlErol#ETch2. 2 TEEELRY, R
BRI 512 x 1200 ¥ 27 L OEGERICELRT 2. BERD
12iE, B =RITEEZEED RGB ¥ v ¥ 3 VISHIG
X4, B T —HEREAERT S, Z4HuTkb, 2
TEEAAAIIZ X 2 CNN EF L TOEEDRAREL 72 5.
X512, AROERFAEICESNT, SEE» AR L 725
PUERIC K RICBT 2 KTREE F ¥ > FVNSEBM L
724 F v OVEBRE AT LTHWS.
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X 3: ERFIEOME

BEHIE L ILTRE

4. FHMRER

RBEFRCBI 2 7L 7HRHOBMEEMGEST 2. 22
T, WUEBROA, KEEREDAE AT 2 FEER—2R
A4 TB. FT—Xty MNIZ, JLT7BEEThBME
DEEBEEET—X2y VEFEHTS. 7%ty MIE
HERPTEHOETS — o lE L, 241 3 —,
6,400 7 L — A THERREN S, ZhEEEHIC4,100 7L —
2y, MEEAINC 1,900 7 L — 24, FHMAIC 400 7 L — 2025
HF 5.

4.1. REREM

Y TR T—2arEB{TIRN—REFNE LT, Feature
Pyramid Network(FPN)[1] i\ 5. ¥E&EHFe LT, =
Ry 78% 50, ¥ EHR% 0.001, 1BREIEUX Cross Entropy
&, TR T 5 AFHITHIG L7z Focal Loss & TLE#
2175, FHMEEREY LT mloU, 7L 72 52D IoU #H
W3,
4.2. EEBVFTE
EEMNFHIREREL2E 1I1ORT. £1 &b, SUERE K
HH5RE DA D mloU 1 Focal Loss T 0.5965 & SE{LUH{5
DAHDEE LD 7.52pt, KETTREDADGE XD 1.61pt [
EU F72, 77275 AD 10U i& Focal Loss T 0.2210
L EELEIGR D ADGE X D 12.52pt, KEHERE D ADEGE
kb 16lptA EL. 2R & D, BLIE{G Y RETTRE 7
L7 OBHBICERITH 2 Z e dibhro

& 1. R AFHi

FECIER | RETRE FEELE mloUT | Flare-ToUT
v Cross Entropy 0.4788 0.1109
v Focal Loss 0.5213 0.1089
v Cross Entropy 0.4865 0.2132
v Focal Loss 0.5645 0.2049
v v Cross Entropy 0.5000 0.2341
v v Focal Loss 0.5965 0.2210

4.3. BV

REFIEB X UEMERO A% AT 2550 EEIRE
flizM 4 1R s. Kd(c) &b, R=RFAL ¥ TiE7L7L
EWRDOEBOBERAPEEIC KL > T3, —H TR 4(d) &
D, REBREDANICE > T7 L7 L BROEFRADNE
L B0zl b DMERRTE 5.

(ch SO & & 0 F e R

4: TV OE MR

5.80DIC

AWFFETIE, SEERHORGRICHELET 2 7L 7 DM
HERET 2729, RUEG: REEEZER Lt~
TAv IR ITRAY T ayERE L. EBMELD, K
SR A ) HEO 7 L 7B R EBH L. 5%
IO 7L 7BHICGE L2 BT L OEES, RRIDEEI
EXBHRICOVTOMGREZATS TETH 5.
BE X
[1] Akirillov, et al., “Panoptic Feature Pyramid Net-

works”, CVPR, 2019.
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AL, FHEa R NOEMAREL 2> TW0W5. fRRE
Y LT, BFarvva—22HALETHEREE»ER
ThTwd. B EEOREBNRFIETH S HQNN-
Quanv[l] 1F, BFEAAAELHERT 22 FEED S
X—REEETRIBEL L, A ZIHE L R A AT RE
TH5. LhrL, B—0ETFEAAAETIX, FEHTEER
BTy MR TRBOEXICHIIAD D, B - K
B 2R E RSB T 2 Z e AREECH 2. 22 TA
EETIx, RFTH - KRR R8E AR 5 2 729012,
BT - T ORI TEH L7z MS-HQNN 228585 5.
2. HQNN-Quanv

HQNN-Quanv &, EFHEEKIC T X — 2 L& T HE%
(Parameterized Quantum Circuits; PQC) Z&A L7 F
ETH%. HQNN-Quanv DFGERK 1 12”7, AFEE,
BTFTr—bDRIRX=2EER L RELT 52T,
BRI LR oMBSTEETH S, £3, AT —
REBTIREICZYa—F L, BTEBAAAE TR
175, 20k, BTy bOREEHIEL, 2F5ET
SHE1TS. HQNN-Quanv 1%, EHABERETFEY Y ML
SETRHOFESHIIND 2720, R - KB 2R
BEFRRICHE T2 Z 2 REETH 5.
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Input

utput

14 x 14 0) Ra(uwr) Ry () 89
0) Ra(uwz) FC 8

o 1= e

2 2kemel  [0) { & | é Fy(w) 5

4x4x4
Encoding Gates with trainable parameters. Measurement

1: HQNN-Quanv D
.REFZE
ARBFFETIE, HQNN-Quanv 1281} 2 FEZ RS %
Multi Scale-HQNN (MS-HQNN) #4243 2. MS-HQNN
X, XAZICHEG LU ZRHEMIEEIT S 7129, PQC 2EA
LB TEAAARE L B BAAEZFICHAS DY
72FETH B, MS-HQNN ofiEz N 2 1Ry, BF8
FIABSE DERICIFHY & i LB A0A A JE ORIE 2 Rt
ETiZricky, REANEMLEXES. 25T, v
FANTA FEEREAT LT, B3 25—/ TH
HUEBEEREAT 2. 2L, RS K
MR 2 R ICHiE T & 2. ZFiIcBWTIE, HEEEK
PG ON B A E HIEAALE L BT EAIALBAH
E%éﬁhﬁﬁwﬂax—&%%ﬁmﬁa

Pooling
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[Padding
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> Quanv

Input [> Conv 8% 27 x 27
28 > 28

2 x 2kernel
M Quanv
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2: MS-HQNN D#3&E
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4. FHHEER

BRTEOEMNEERLT 2729, BHoF—&ty b
TOBFFE L O FBE KRB X OHEGRRIcSE - 7 —
ANVOHNEETOIWEBERT 2R 7ERICED, &F -
B —=ANVDFGESEITS
4.1.KEREE

AEETIX, 82T, CNN, HQNN-Quanv, LT
HBOBEAAAE T B TEE IS HHEBEICERL, v LFR
b4 FREEEHERE L2285 A (Quantum Only, Classical
Only) OFEREL KT 2. 22T, HEKED TR
DATIE, BFEB X CHBEPHMN RS R

TWAD B TDICHERTERN., 22T, SEREZOH
REEIHS T 5720, HERRFICEEB X UE D —3IL
OHHE 0 ICBERTEYRAZEREITS. TRy 78X
50, NwFH 4 X100, FEEFEIE Adam, EREE
% Cross Entropy Loss ZF\5. 7—&t vy MZDOWT

RS RE D LU EER T ld MNIST, Fashion-MNIST 3B
X O CIFAR-10, < R 2 %EE&Tl& CIFAR-10 w3,
4.2 . RERIER

FEFER A 1179, MNIST Tl&, Classical Only
BLORETEN 99.02% DI EREEZERK L7z, CNN D
KL 98.85%TH D, CNN &b 0.17 R4 >~ FAELT
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BREAEEZZR L, REFIEZ 90.53%TH->7-. MNIST
SO MR X A7 TH % CIFAR-10 T, ETFEIZ
67.7T% DFEREE B3R L, hFEE LRIZFEE L iz o7.
HEEY, BREFEOEMEEHERL .

£ 1. HEFRICBY 258 E
Model Test acc [%
MNIST | Fashion MNIST | CIFAR-10

CNN 98.85 88.72 65.10
HQNN-Quanv | 86.49 81.07 32.53
Quantum Only 98.93 88.92 65.67
Classical Only 99.02 91.22 66.23
MS-HQNN 99.02 90.53 67.77
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AT, BT - HIRHMEOBENREIC X 2 < LF R
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[1] Senokosov, et al. Quantum machine learning for im-
age classification. Machine Learning: Science and
Technology, 5(1):015040, March 2024.
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2. WeCoLoRA

WeCoLoRA[1] 1%, B 11ZRT & 312, FHii¥HEA
ViT 2#ffiE7T v e L, —HoEEMs I WTEFEETLE
WG T 2 AR TFIETH 5. WeCoLoRA TIZ, 5|
R \ZEOWTHETET VOB HERRIGERL, Z0HE
AHEAV—UTERETNVEMET . WKL, £
L@ Transformer block £{KIZ LoRA Zi#A L, A€
T OHEFHEE %2175, LoRA DIRS > 217535 v &
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DHFHBEIER T 272012, ZOEAITHNC SVD ZEAL
T LoRA D85 X—XDOAHIEICTER S 5. £72, LoRA
PERVED SFEWEANERBINER S 2 22T, e T
NOFRIH N EHE T 2 BREMNAEFRERET 5.

3.1.SVD %ZH\W/- LoRA DO#JHAL

AAEE PSRRI, 5] JEOEAITINC SVD %5E
FL, FE5% LoRA OFHEYL LTHHT 2. EA
I8 W idR (2) D& S ICHRTE 5.
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2T, U BHAZERE, V ZANERICE 5 REA Y
MLERT. BREOKZVEISEEHHEES 2 h
5, N 0Lk A ERCTES ¥ 2ENETS. K5 >
2175 A, B R (3) IORT
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BEHIE L ILTRE

3. 2. JIFAB Z AUV ERFERY LoRA Fa—=>4
5 IWTHE L 24T 7 1L, Zifer 1 odi
HE V- BREMZERE 21T 5. BIREMZAEE T, /T
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H BB ADEETE T &Rk 2 TG IWTARE
EFNLERE TS, BELEEEESTVICH LT, BEF
BB LU WeCoLoRA # ZNZIGE L, EELZEEMIC
s 5.

4.1. RRE

REBRTIE, FEYEEA VIT-B 2HfiET 12T 5.
7RI TmageNet-1k @ 1% OF7—XZHW 5. WeCol-
oRA X 15 =Ry ZZERZIT5> DT L, IREFIETIE S
JE DR, BY O Ry 2 TRDXRE %217
5. MBI Ry 78T WeCoLoRA Y[R TH 3. ik
& 27 DFHiIZIE ImageNet-1k 721 CIFAR-100 % H
W, 50 TRy 78T 5.
4.2 FBELEE

BFRCBI2EEEZR 1IWTRT. £1 XD, ImageNet-
1k 7—%&+t v MZEBIF 5 Top-1 accuracy &, WeCoLoRA
P 64.50% TH DI L, IREFEIIERK 68.87T% TiE
L, 4.37pt DFEER_ RSN, 72, CIFAR-100
F—&+t v FTlX, WeCoLoRA @ 62.46% 1cxf LT, 12
KFREITFRK 68.13% ZEK L, 5.67pt OFEER L2515
LTz, X5, FEKEENE, WeCoLoRA ¥ Ll L THY
15.8% WME L7z, Zhuck b, BEOR L $FENZET
NVEFEDWNL 2 W B S, KRFEOENM 2R L.

£ 1: S PERORELE

Fik ]:O\RA @%}J%ﬁﬂﬁ _ ’?:%ﬁ | e Top-1 accuracy
Fv &L SVD | BBSIAR E¥ TmageNet-1k  CIFAR-100
BUE T - - - - 81.37 80.57
‘WeCoLoRA v - 15 0:20:33 64.50 62.46
N v 66.27 67.39
BRTFE 1x5 10 | 0177 |t T
v 68.87 68.13
5.8HDIC

AT, Mgl JEOREEZERAL, £EET L E2H
FiE 7L OFEHINC LK DEDIT 2 BEFELRREL .
SHBIX, BRART Xty FRETAHAXEEELT,
X DiEHERE O E WA E T L O BT
BE R
[1] D. Grigore, et al., “Weight Copy and Low-Rank

Adaptation for Few-Shot Distillation of Vision
Transformers,” arXiv preprint arXiv:2404.09326,
2024.
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KRS — & > %% H 7z Single-cell RNA sequencing
(scRNA-seq) fEfTOERIC K D, BN DEETFFHHA
BORENAHEL oo /=, ZAUTEW, BEEEEZ v
B TRNTHEM D REEL, ~ v ROBE—HET — X THhl
HEET o 7 HBE T L LT Mouse-Geneformer[1] %3
BRINTWS., RETIUVE, BIETFREOEMHE 2R
FHELTHED, MO in silico HEIFEBRICHBWT
EBWEREERRT. LAL, ZO7—F77F vy DEIRETH
% Transformer 1%, FTHEENANED 2 FizLbH L THE
KF3. Zhuckh, BAEXEVFEHELR LRy 2
b, BFENZEIEY Y —ATIERZ 2 BETFBICHE
MRGIRIDET 5. & 2 TR T, AR L TR
JERFHEETHEL, BWATRTHRRNREE D RE
7% Mamba[2] €7V %ZERH L7z, Mouse-GeneMamba %
RET 5.
2.Mouse-Geneformer

Mouse-Geneformer (&~ X O H—Hifid7 — X OE(&T
TR B LR e T A Th 5. B IR~
v ZADHE—HIfgT — &+t v b THS Mouse-Genecorpus-
20M % Hw 3. Mouse-Genecorpus-20M T, iR
DBETHREFEED L7 2,048 HOBEGFEME L, EET
=2 VHNCERS S Z e THIlE e 5. PR L 7MY
TR LT, Masked Language Modeling (MLM) TH%
BTS2 2T, EFRITADBEMLTEOBZRESEETE
%. ¥, ZOETAEFEDREGOR—lEr — & T
HRERINHE R R C T 7 4 VFa—=v T BT, it
KFE LD BRI SENTES 2 2R L.
3.BEF%E | Mouse-GeneMamba

RIS TIX, Mouse-Geneformer @ Transformer En-
coder % Mamba 7 B v 7 ZiEH#i L 72 Mouse-GeneMamba
PIRET 5. AFROSHRMELZK 11TRT. ANT7—%20
MERIZBWT, JEMEREFFOEETF N—27 Y e IEREL
FERTREERZ ZNZEART MUELTHET S Z 8T,
BHEETONEM E KRE X ZWFEOMIS 2 ER T 2. X
12, Zofildx% Mamba 712y ZAAN LT, ERE
BFESNOIIRN SR B 21T 5. FE X A7 121E Next
Token Prediction (NTP) ZERH L, &EDEETFHEAID
LROBEFEFHT 2 22T, BaFry PV —2OK
REFREESET 5. £z, RETLDOFEICIX, Mouse-
Genecorpus-20M #HR L, EH{bX B TFRERD
BEZ R L RBIR T -2y b2V 5.

Ve

4 —4
10x CELLx Panglao
Genomics GENE DB
D 3:Gene C
Single Single Cells 1 i
ez Cell Expression [ = -
\
F—&tvk Rank Value Encoding
/Cell A [genen| - |genev
Cell A Gene A
CellB [geneC| - |egeneh|~sprd
gene N Gene C
: B I N gene B Gene G
CellM [geneN| -~ | genec y;’fbg Ly et
- " : g Gono v |
CellA 4.7 11
gene C Gene Y _
CellB 29 0
5 : T T | o ROBEFOFN
CellM 9 - 0
A\ A k=525
TR L 7
S SIS
1 : Mouse-GeneMamba D2 F51%
=
4. FHHEER

REFFEOFRAMNERILS 272912, BROFHIERZ
75, WIhOERIIBWTD, HEEE 7L 2 MRS
FRXRIDTF—REy FyTI7 4 vFa—=22 L, 25EE
Bz X DEHlis 5. BHREE X R 22 LTNTP Z2fW-%
T ¥ MLM ZHWEEFALEZHWT, X227 DEWIE
TR G X 28R T 5. /-, B FHERL T
TIVATNTRET 5 Z e OB EMEET 5. BRI,

1RSI LT BE

HEBOERIC X 2MBELLEICI X, Mouse-Geneformer
DL EITS.
4.1 FHEEERER

HREEH R R 2 ¥ LTNTP ¥ MLM T¥E L7-E7L
DRI Z R 7 OFERZR 1 WRd. £1 &b, Hhi
FEEXRAZ L LTNTP 28RA L7 MWIE L OFERT
RO EWVEEZIERL /-,
£ 1: ANIE 2,048 128 2 HAGFE X R 712 & 5 ERELLE
WHEEAAs | W WROmA ER WK & fR DR R AR | T

NTP 97.6 99.6 95.3  96.8 94.2 988 98.1 98.7 942 | 97.0
MLM 97.9 99.5 94.6 972 947 989 975 985 93.1 96.9

REFEOHBEDHE YL Mouse-Geneformer DT
RIS R R 7 DFERE R 2 1R T, BEZROSFHITBNT,
RLEWEEZRO, BOWBEELFOTRT. K2 XD,
BEETFHRAROGEOBATE, RHEBLZEZERLARVEE
KBTI EWAEREL R L. ZofR» S, EIR
FRESTZFHICHV5E, R THRHA LR
B 2FHAEEBRF T 20ERH 5. —J57T, Mouse-
Geneformer ¥ OHBIZBWTIE, ERBTFEDOT TR
BilzBWTRbEWREEEZERL, GHEEZHERELZ.

BATTRIZBT 2MEEZCEH T % &, Mouse-Genefor-
mer ZIANER 2,048 705 8,192 I[ZHEFE U 72BR, SEENEE
A 053 KA ¥ MER L0t L, BEFIEEF 0.20 KA
YIFOETRICEE T DEOHER» S, AFIRICHNT
W3 Mamba &7 /UIRWANRIIN LT HIEROIEKZ
Mz oo e TE S Z 2 BRL .
3% 2 : #8%EFiE L Mouse-Geneformer Ol 5Kk L

ETIV Mouse-GeneMamba Mouse-Geneformer

FEH %L »Hh L

ANE 2,048 4,096 8,192 | 2,048 4,096 8,192 | 2,048 4,096 8,192
ivd 97.6  98.0 97.8 | 96.7 964 957 | 96.7 962 953
VU O | 99.6  99.7  99.6 | 99.5  99.4  99.3 | 99.6  99.5  99.7
Tk 95.3 944 951 | 93.8 932 925 | 948 947 94.1
s 96.8 97.3 969 | 949 961 962 | 96.8 968  97.3
& 94.2 944 937 | 928 922  9L1 | 946 944 939
FLIR 98.8 98.8 987 | 985 981 984 | 98.9 99.1 989
D 98.1 973  97.2 | 965 97.0 969 | 968 964  96.9
IRk 98.7 985 98.6 | 983 97.9 97.8 | 98.6 98.6 985
PN 942 943 939 | 933 934 934 | 923 923 898
R 97.0 970 968 | 96.0 96.0 957 | 96.6 964  96.0

HEFHICBI 2 A EVHEHEZR3ITRT. 3 XD
REFHIE Mouse-Geneformer 1ZEEART X E YRR HIH]
ELTED, Mamba EFVEZHWL2EMEZHEREL /2.

#* 3 HFFFF B X VAR

ETIL Mouse-GeneMamba Mouse-Geneformer
ANE 2,048 4,096 8,192 2,048 4,096 8,192
AEVMEHE (1) | 104GB  244GB  36.6GB | 16.8GB  32.5GB  out of memory
5.5HDIC

AIFFETIX, Mouse-Geneformer D\ X E V) fHFHEP
ANEDHIRE WS BEERIRT 272DDETILTH 5
Mouse-GeneMamba 2R L7z, 72, BRHEBDHEEZE
BLFRT -2ty VEREEL, 2057 —XT¥EB
S UM O HEEEREITS 28 T, RHEEBRERT 2%
BRI EMBEEL 7.

5%, BIOFHBEED AN ITIETDE S Mamba O
HHEDEE, T — &ty bDOKRBLEEMT 2 Z 2 T,
ETNONEBER LZHIET. MAT, ZHRRTRER
WX BREAEERITO 22T, e LToNALE
BHEERFIELTWL.

BEXHE

[1] Keita Ito, et al., “Mouse-Geneformer: A deep learning
model for mouse single-cell transcriptome and its cross-
species utility”, PLOS, 2025.

[2] Albert Gu, et al., “Mamba: Linear-Time Sequence Mod-
eling with Selective State Spaces”, COLM, 2024.



ELHORRBRZZER LICBFEGDO O DSHEHAT -2 v FOBE

EP22071 {ki%523

1.13C®IC

HHEIEHR & 5B T G L7z Multimodal Large Lan-
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%. MLLM %82k, B3 25 2 dic, Z
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[The ego vehicle is in the left lane|
lof a two-lane, signalized
e = |intersection. The light is green, [~
he vehicle ahead is turning left,
land pedestrians are crossing.
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[The ego vehicle is approaching a|
[T-intersection with a left-turn
llane. The navigation instruction
indicates a left turn, but a vehicle
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= |require yielding. Therefore, the
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straight, pedestrians are crossing the crosswalk ahead, requiring the
ego vehicle to stop for safety. Therefore, the correct intent is "Stop."

[Although the road structure and navigation instruction indicate going ]
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| want a motion that represents the power of starting from their left foot in the air, person stands ready with fists
up then takes two swings with their right hand downward then two more high and to their right and finally two

lefts downward mirroring the rights from before. to create positive change in the field of peacebuilding and
conflict resolution. Can you generate that?
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[1] R. Inoue, et al., “2D Motion Generation Using Joint
Spatial Information with 2CM-GPT”, VISIGRAPP,
vol.2, pp.582-590, 2025.



