指導教授:山下隆義

1.はじめに

深層学習を用いて高精度な物体認識を実現するには、大 量の教師付きデータが必要となる. しかし, 手作業で大 量のデータに教師ラベルを付与する必要があり、人的コ ストがかかる. この問題を解決する方法として, Domain Adversarial Neural Network[1] (DANN) によるドメイ ン適応が提案されている. DANN は、Gradient Reversal Layer (GRL) を通じて敵対的学習を行うことで、Target Domain の認識精度を向上させることができる. しかし, Source Domain の転移に寄与しないデータも学習するこ とになる。そこで、本研究では DANN に共変量を導入す ることで、Source Domain の影響を抑制し、ドメイン適応 の高精度化を実現する.

2.DANN によるドメイン適応

ドメイン適応とは、学習データは十分だが認識対象でな いドメイン (Source Domain) と, 学習データは不十分だ が認識対象であるドメイン (Target Domain) の両データ を用いる学習法である。 DANN は、特徴抽出器 G_f とう ベル予測器 G_l で構成されるクラス分類の DCNN に GRL とドメイン分類器 G_a を導入してドメイン適応を行う。両 ドメインデータを学習することで、ドメイン間の違いを吸 収した特徴抽出器 G_f の構築が可能となる. GRL は、特 徴抽出器 G_f とドメイン分類器 G_d の間に導入する。GRL の順伝播は恒等関数として働き、逆伝播はドメイン分類器 G_d の勾配を負にして逆伝播する.

3.提案手法

Target Domain の性能向上に寄与しない Source Domain サンプルの影響を抑制するために、図1のようにド メイン分類誤差を共変量により重み付けする。 提案手法は、 事前に Source Domain データで学習した事前ネットワー クを準備する。この事前ネットワークは、学習ネットワー クと同じ特徴抽出器 G_f とラベル予測器 G_l で構成する。事 前ネットワークに Source Domain のデータを入力し、学 習ネットワークに Source Domain と Target Domain を 結合したデータを入力する。ここで、共変量 λ_{cov_i} は事前 ネットワークのクラス尤度 $P_a(c|\mathbf{x}_i)$ と、学習ネットワーク のクラス尤度 $P_t(c|\mathbf{x}_i)$ から式 (1) のように求める.

$$\lambda_{cov_i} = \frac{e^{P_a(c|\boldsymbol{x}_i)}}{e^{P_t(c|\boldsymbol{x}_i)}} \tag{1}$$

GRL を R_{λ} とした時、ミニバッチの Source Domain サ ンプルを入力した時のドメイン分類誤差 L_{di}^{source} は,式 (2) となる.

$$L_{d_i}^{source} = \lambda_{cov_i} L_{d_i}(G_d(R_{\lambda}(G_f(\boldsymbol{x}_i))), c)$$
 (2)

これにより、Target Domain の性能向上に貢献しない サンプルによる学習を抑制することができるため、Target Domain の精度向上が期待できる.

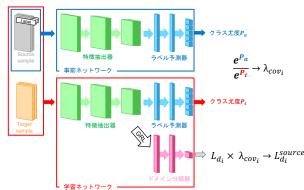


図1:本研究のネットワーク構造

4.評価実験

評価実験では GRL を導入しない単一 DCNN と従来の DANN, 提案手法を比較する.

4.1.実験概要

本実験では、25種類の日用品の分類を対象とし、各学 習データは3種類のドメインで構成されている.ここで, Unreal Engine 4 で生成した画像を Source 画像, NVIDIA 社が提供する IRay レンダラによって生成した画像を Target 画像、実画像を評価画像とする。25種類のアイテム画像に 対してランダムに矩形を切り出したパッチ画像 (図 2)を用 いる.

(a)Source 画像 (b)Target 画像 (c) 評価画像 図2:パッチ画像セットの例

DANN 及び提案手法は、Source Domain に 1 クラスあ たり 1,000 枚, Target Domain に 1 クラスあたり 500 枚 の学習データを用いる. GRL を導入しない単一 DCNN は Source Domain のみで学習する.

4.2. 実験結果

単一 DCNN と DANN,提案手法の認識精度の比較を 表1に示す. 提案手法は従来手法である DANN と比べて, Target Domain の認識精度が 5.3%向上した. さらに、未 学習ドメインである評価画像の認識精度が 2.5%向上した.

表 1: 各ドメインの認識精度 [%] 手法 評価 Source Target 単一 DCNN 98.6 82.8

DANN 92.8 89.5 98.2 提案手法 99.4 98.1 92.0

図3に、学習中の Source サンプルと共変量の推移を示 す、ドメイン間の差異が小さい場合、ドメインの違いを考 慮する必要が無いため、図 3(a) のように少ない更新回数 で共変量が小さくなると考えられる。ドメイン間の差異が 大きい場合, 学習初期の P_t は Target の影響を受けた特徴 抽出器により小さくなる。そのため、ドメイン間の差異を 考慮して学習するため、図 3(b) のように共変量が小さく なるまである程度の更新が必要だと考えられる。

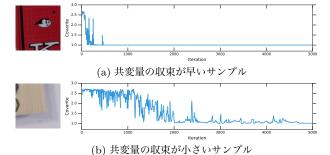


図3:学習サンプルと共変量の推移

5.おわりに

本研究では共変量を用いた DANN によるドメイン適応 を提案し,その評価を行った.提案手法は,2 種の CG デー タで学習した結果,全てのドメインにおいて認識精度の向 上を確認できた.今後は GRL の調整方法の検討とセグメ ンテーションへの応用を目指す.

参考文献

[1] Y. Ganin, et al., "Unsupervised Domain Adaptation by Backpropagation", ICML, pp.1180-1189, 2015.